login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006380
Number of equivalence classes of 4 X n binary matrices when one can permute rows, permute columns and complement columns.
(Formerly M2735)
8
1, 3, 8, 19, 41, 81, 153, 273, 468, 774, 1240, 1930, 2933, 4356, 6341, 9064, 12743, 17643, 24093, 32479, 43270, 57019, 74377, 96103, 123089, 156354, 197081, 246622, 306519, 378520, 464614, 567028, 688276, 831169, 998845, 1194793, 1422899, 1687447, 1993182
OFFSET
0,2
REFERENCES
M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
Index entries for linear recurrences with constant coefficients, signature (4,-5,2,-2,2,5,-8,6,-8,5,2,-2,2,-5,4,-1).
FORMULA
G.f.: (1 - x + x^2 + x^4 + x^6 - x^7 + x^8)/((1 - x)^8*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2). - Andrew Howroyd, May 30 2023
MATHEMATICA
LinearRecurrence[{4, -5, 2, -2, 2, 5, -8, 6, -8, 5, 2, -2, 2, -5, 4, -1}, {1, 3, 8, 19, 41, 81, 153, 273, 468, 774, 1240, 1930, 2933, 4356, 6341, 9064}, 40] (* Harvey P. Dale, Nov 23 2024 *)
PROG
(PARI) Vec((1 - x + x^2 + x^4 + x^6 - x^7 + x^8)/((1 - x)^8*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2) + O(x^41)) \\ Andrew Howroyd, May 30 2023
CROSSREFS
Row n=4 of A363349.
Sequence in context: A082535 A007326 A136396 * A328540 A260547 A328541
KEYWORD
nonn,easy
EXTENSIONS
Terms a(7) onwards from Max Alekseyev, Feb 05 2010
STATUS
approved

  NODES
orte 1
see 1
Story 1