login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007151
Number of planted evolutionary trees of magnitude n.
(Formerly M3064)
4
1, 3, 19, 198, 2906, 55018, 1275030, 34947664, 1105740320, 39661089864, 1590232358584, 70482038536880, 3421732373367504, 180574681050278960, 10292371442183694832, 630125771602386523392, 41239934114630205030656
OFFSET
1,2
COMMENTS
Also number of labeled rooted trees with n generators. (A generator is a leaf or a node with just one child.) - Christian G. Bower, Jun 07 2005
REFERENCES
L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f. satisfies (2-x)*A(x) = x - 1 + exp(A(x)). - Christian G. Bower, Jun 07 2005
a(n) = Sum_{k=1..(n-1)} (n+k-1)!*Sum_{j=1..k} (1/(k-j)!)*Sum_{i=0..(n-1)} binomial(j+i-1,j-1)*Sum_{m=0..j} 2^m*(-1)^(m+i)*Stirling2(n-m+j-i-1,j-m)/(m!*(n-m+j-i-1)!), n>1, a(1)=1. - Vladimir Kruchinin, Aug 07 2012
a(n) ~ sqrt(LambertW(1)+1) * n^(n-1) * (LambertW(1))^n / (exp(n) * (2*LambertW(1)-1)^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014
MAPLE
A007151 := proc(n)
local k, j, i, m , a;
if n =1 then
1;
else
a := 0 ;
for k from 1 to n-1 do
for j from 1 to k do
for i from 0 to n-1 do
for m from 0 to j do
a := a+(n+k-1)! /(k-j)! *binomial(j+i-1, j-1) *2^m *(-1)^(m+i) *combinat[stirling2](n-m+j-i-1, j-m) / m! /(n-m+j-i-1)! ;
end do:
end do:
end do:
end do:
a ;
end if;
end proc:
seq(A007151(n), n=1..10) ; # R. J. Mathar, Mar 19 2018
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[(1 - E^x + 2*x)/(1 + x), {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
PROG
(Maxima) a(n):=if n=1 then 1 else (sum((n+k-1)!*sum(1/((k-j)!)*sum(binomial(j+i-1, j-1)*sum((2^m*(-1)^(m+i)*stirling2(n-m+j-i-1, j-m))/(m!*(n-m+j-i-1)!), m, 0, j), i, 0, n-1), j, 1, k), k, 1, n-1)); /* Vladimir Kruchinin, Aug 07 2012 */
(PARI) for(n=1, 20, print1(if(n==1, 1, sum(k=1, n-1, (n+k-1)!*sum(j=1, k, (1/(k-j)!)* sum(i=0, n-1, binomial(j+i-1, j-1)*sum(m=0, j, 2^m*(-1)^(m+i)* stirling(n-m+j-i-1, j-m, 2)/(m!*(n-m+j-i-1)!)))))), ", ")) \\ G. C. Greubel, Nov 26 2017
CROSSREFS
KEYWORD
nonn,easy,changed
STATUS
approved

  NODES
orte 1
see 1
Story 1