login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007904
Crystal ball sequence for diamond.
2
1, 5, 17, 41, 83, 147, 239, 363, 525, 729, 981, 1285, 1647, 2071, 2563, 3127, 3769, 4493, 5305, 6209, 7211, 8315, 9527, 10851, 12293, 13857, 15549, 17373, 19335, 21439, 23691, 26095, 28657, 31381, 34273, 37337, 40579, 44003, 47615, 51419, 55421, 59625, 64037
OFFSET
0,2
COMMENTS
Binomial transform of [1, 4, 8, 4, 2, -4, 8, -16, 32, -64, 128, ...]. - Gary W. Adamson, Feb 07 2010
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
FORMULA
G.f.: -(x^4 + 2*x^3 + 4*x^2 + 2*x + 1)/((x-1)^2*(x^2-1)*(1-x)).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). - Wesley Ivan Hurt, Jan 20 2024
MAPLE
gf:= -(x^4+2*x^3+4*x^2+2*x+1)/((x-1)^2*(x^2-1)*(1-x)):
seq(coeff(series(gf, x, n+1), x, n), n=0..50);
MATHEMATICA
b[0]=1; b[1]=4; b[2]=8; b[3]=4; b[n_] := (-1)^n*2^(n-3); a[n_] := Sum[Binomial[n, k]*b[k], {k, 0, n}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Aug 08 2012, after Gary W. Adamson *)
LinearRecurrence[{3, -2, -2, 3, -1}, {1, 5, 17, 41, 83}, 80] (* Harvey P. Dale, Jan 22 2024 *)
CROSSREFS
Partial sums of A008253.
Sequence in context: A304079 A109722 A097121 * A139545 A106972 A086499
KEYWORD
nonn,nice
STATUS
approved

  NODES
orte 1
see 1
Story 1