login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009970
Powers of 26.
5
1, 26, 676, 17576, 456976, 11881376, 308915776, 8031810176, 208827064576, 5429503678976, 141167095653376, 3670344486987776, 95428956661682176, 2481152873203736576, 64509974703297150976, 1677259342285725925376, 43608742899428874059776, 1133827315385150725554176, 29479510200013918864408576, 766467265200361890474622976, 19928148895209409152340197376
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 26), L(1, 26), P(1, 26), T(1, 26). Essentially same as Pisot sequences E(26, 676), L(26, 676), P(26, 676), T(26, 676). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 26-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Number of n-letter words over an alphabet with 26 letters. - Wesley Ivan Hurt, Apr 17 2016
FORMULA
G.f.: 1/(1-26*x). - Philippe Deléham, Nov 23 2008
E.g.f.: exp(26*x). - Zerinvary Lajos, Apr 29 2009
From Vincenzo Librandi, Nov 21 2010: (Start)
a(n) = 26*a(n-1) for n > 0, a(0) = 1.
a(n) = 26^n. (End)
MAPLE
A009970:=n->26^n: seq(A009970(n), n=0..25); # Wesley Ivan Hurt, Apr 17 2016
MATHEMATICA
26^Range[0, 25] (* Alonso del Arte, Mar 25 2015 *)
NestList[26#&, 1, 20] (* Harvey P. Dale, Jan 14 2017 *)
PROG
(Sage) [lucas_number1(n, 26, 0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
(Magma)[26^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
(Maxima) A009970(n):=26^n$
makelist(A009970(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
CROSSREFS
Sequence in context: A360509 A188697 A188696 * A041313 A042302 A097835
KEYWORD
nonn,easy
STATUS
approved

  NODES
orte 1
see 2
Story 1