OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 26), L(1, 26), P(1, 26), T(1, 26). Essentially same as Pisot sequences E(26, 676), L(26, 676), P(26, 676), T(26, 676). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 26-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Number of n-letter words over an alphabet with 26 letters. - Wesley Ivan Hurt, Apr 17 2016
LINKS
T. D. Noe, Table of n, a(n) for n=0..100
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (26).
FORMULA
G.f.: 1/(1-26*x). - Philippe Deléham, Nov 23 2008
E.g.f.: exp(26*x). - Zerinvary Lajos, Apr 29 2009
From Vincenzo Librandi, Nov 21 2010: (Start)
a(n) = 26*a(n-1) for n > 0, a(0) = 1.
a(n) = 26^n. (End)
MAPLE
MATHEMATICA
26^Range[0, 25] (* Alonso del Arte, Mar 25 2015 *)
NestList[26#&, 1, 20] (* Harvey P. Dale, Jan 14 2017 *)
PROG
(Sage) [lucas_number1(n, 26, 0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
(Magma)[26^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
(Maxima) A009970(n):=26^n$
makelist(A009970(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved