login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014031
Inverse of 22nd cyclotomic polynomial.
1
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0
OFFSET
0,1
COMMENTS
Periodic with period length 22. - Ray Chandler, Apr 03 2017
FORMULA
G.f.: 1/(1 - x + x^2 - x^3 + ... - x^9 + x^10). - R. J. Mathar, Aug 11 2012
From Luce ETIENNE, Nov 04 2018: (Start)
a(n) = a(n-22).
a(n) = (-9*m^10 + 485*m^9 - 11340*m^8 + 150690*m^7 - 1251117*m^6 + 6709605*m^5 - 23140710*m^4 + 49127860*m^3 - 57244824*m^2 + 25659360*m + 3628800)*(-1)^floor(n/11)/3628800 where m = (n mod 11). (End)
MAPLE
with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80);
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[22, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 03 2014 *)
LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, -1, 1, -1}, {1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, 81] (* Ray Chandler, Sep 15 2015 *)
PROG
(PARI) Vec(1/polcyclo(22)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014
(Magma) &cat[[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0]: n in [0..6]]; // Vincenzo Librandi, Apr 03 2014
CROSSREFS
Cf. A010880.
Sequence in context: A016365 A016426 A014020 * A016418 A016413 A016403
KEYWORD
sign,easy
AUTHOR
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1