login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A018932
The number of permutations of n cards in which 4 will be the next hit after 2.
2
0, 3, 10, 60, 408, 3120, 26640, 252000, 2620800, 29756160, 366508800, 4869849600, 69455232000, 1058593536000, 17174123366400, 295534407168000, 5377157001216000, 103149354147840000, 2080771454361600000
OFFSET
4,2
COMMENTS
From the game of Mousetrap.
LINKS
D. J. Mundfrom, A problem of permutations: the Game of "Mousetrap", Eur. J. Combinat. 15 (1994) 555-560.
FORMULA
a(n) = (n-2)! - 3*(n-3)! + 2*(n-4)! if n > 5. - R. J. Mathar, Oct 02 2008
E.g.f.: (x*(1020 - 1290*x + 340*x^2 - 15*x^3 + 3*x^4) + 60*(17 - 30*x + 15*x^2 - 2*x^3)*log(1-x))/360. - G. C. Greubel, Feb 21 2019
MAPLE
0, 3, seq((n^2-8*n+17)*factorial(n-4), n=6..30); # Muniru A Asiru, Feb 22 2019
MATHEMATICA
Join[{0, 3}, Table[(n^2-8*n+17)*(n-4)!, {n, 6, 30}]] (* G. C. Greubel, Feb 21 2019 *)
PROG
(PARI) for(n=4, 30, print1(if(n==4, 0, if(n==5, 3, (n^2-8*n+17)*(n-4)!)), ", ")) \\ G. C. Greubel, Feb 21 2019
(Magma) [0, 3] cat [(n^2-8*n+17)*Factorial(n-4): n in [6..30]]; // G. C. Greubel, Feb 21 2019
(Sage) [0, 3] + [(n^2-8*n+17)*factorial(n-4) for n in (6..30)] # G. C. Greubel, Feb 21 2019
(GAP) Concatenation([0, 3], List([6..30], n-> (n^2-8*n+17)*Factorial(n-4) )) # G. C. Greubel, Feb 21 2019
CROSSREFS
Cf. A002468.
Sequence in context: A158873 A103591 A245312 * A111562 A009654 A013565
KEYWORD
nonn
EXTENSIONS
Offset changed to 4, more terms, better definition and link from R. J. Mathar, Oct 02 2008
STATUS
approved

  NODES
orte 1
see 1
Story 1