login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020990
a(n) = Sum_{k=0..n} (-1)^k*A020985(k).
5
1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 10, 9, 8, 9, 8, 9, 10, 9, 10, 11
OFFSET
0,4
LINKS
John Brillhart and Patrick Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, (German) Illinois J. Math. 22 (1978), no. 1, 126--148. MR0476686 (57 #16245). - N. J. A. Sloane, Jun 06 2012
J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.
Narad Rampersad and Jeffrey Shallit, Rudin-Shapiro Sums Via Automata Theory and Logic, arXiv:2302.00405 [math.NT], February 1 2023.
FORMULA
Brillhart and Morton (1978) list many properties.
MATHEMATICA
Accumulate[Table[(-1)^n*RudinShapiro[n], {n, 0, 100}]] (* Paolo Xausa, Oct 18 2024 *)
PROG
(Haskell)
a020990 n = a020990_list !! n
a020990_list = scanl1 (+) $ zipWith (*) a033999_list a020985_list
-- Reinhard Zumkeller, Jun 06 2012
(PARI) a(n) = sum(k=0, n, (-1)^(k+hammingweight(bitand(k, k>>1)))); \\ Michel Marcus, Oct 07 2017
(Python)
def A020990(n): return sum(-1 if ((m&(m>>1)).bit_count()^m)&1 else 1 for m in range(n+1)) # Chai Wah Wu, Feb 11 2023
CROSSREFS
Sequence in context: A165592 A059285 A165578 * A260686 A037891 A037899
KEYWORD
nonn
EXTENSIONS
Edited by N. J. A. Sloane, Jun 06 2012
STATUS
approved

  NODES
orte 1
see 1
Story 1