login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035086
Number of increasing rooted polygonal cacti (Husimi graphs) with n nodes.
3
1, 0, 1, 3, 19, 135, 1204, 12537, 150556, 2043930, 30969211, 517973148, 9478800604, 188381470095, 4040440921699, 93020386382742, 2287969523647171, 59877222907995675, 1661259526266784171, 48705364034046758493, 1504614657169716311674, 48848750173492332588525
OFFSET
1,4
COMMENTS
Nodes are numbered and the numbers increase as you move away from the root to any point on the same polygon.
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 301 and Chapter 5.
F. Harary and E. M. Palmer, Graphical Enumeration, p. 71.
LINKS
F. Harary and R. Z. Norman, The Dissimilarity Characteristic of Husimi Trees, Annals of Mathematics, 58 1953, pp. 134-141.
F. Harary and G. E. Uhlenbeck, On the Number of Husimi Trees, Proc. Nat. Acad. Sci. USA vol. 39 pp. 315-322 1953.
FORMULA
E.g.f. satisfies A'(x) = exp(A(x)^2/(2-2*A(x))).
MAPLE
A:= proc(n) option remember; if n<=1 then x else convert(series(Int(exp(A(n-1)^2/ (2-2*A(n-1))), x), x=0, n+1), polynom) fi end; a:= n-> coeff(A(n), x, n)*n!: seq(a(n), n=1..22); # Alois P. Heinz, Aug 22 2008
MATHEMATICA
max = 22; sy = Series[Integrate[E^(-(y^2/(2-2*y))), y], {y, 0, max}]; sx = Normal[ InverseSeries[sy, x]]; a[n_] := Coefficient[sx, x, n]*n!; Table[a[n], {n, 1, max }] (* Jean-François Alcover, Feb 24 2015 *)
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Nov 15 1998
STATUS
approved

  NODES
orte 1
see 1
Story 1