login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036368
Number of chiral orthoplex n-ominoes in n-2 space.
2
0, 0, 4, 14, 37, 110, 324, 888, 2368, 6336, 16874, 44414, 116181, 303362, 790157, 2051880, 5317599, 13764133, 35586766, 91910082, 237183164, 611701614, 1576773162, 4062606255, 10463699696, 26942811809, 69358469092
OFFSET
4,3
COMMENTS
Orthoplex polyominoes are multidimensional polyominoes that do not extend more than two units along any axis.
FORMULA
G.f.: (C^2(x) + C(-x^2))^2/8 - C^2(-x^2)/4 - C(-x^4)/4 + C^5(x)/(2-2C(x)) - (C(x)+C(-x^2))*C^2(-x^2)/(2-2C(-x^2)) where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.
EXAMPLE
a(6)=4 because there are 4 pairs of chiral hexominoes in 2^4 space.
MATHEMATICA
sc[ n_, k_ ] := sc[ n, k ]=c[ n+1-k, 1 ]+If[ n<2k, 0, sc[ n-k, k ](-1)^k ]; c[ 1, 1 ] := 1;
c[ n_, 1 ] := c[ n, 1 ]=Sum[ c[ i, 1 ]sc[ n-1, i ]i, {i, 1, n-1} ]/(n-1);
c[ n_, k_ ] := c[ n, k ]=Sum[ c[ i, 1 ]c[ n-i, k-1 ], {i, 1, n-1} ];
Table[ c[ i, 4 ]/8+Sum[ c[ i, j ], {j, 5, i} ]/2-If[ OddQ[ i ], 0,
c[ i/2, 2 ](-1)^(i/2)/8+If[ OddQ[ i/2 ], 0, c[ i/4, 1 ](-1)^(i/4)/4 ]
+Sum[ c[ i/2, j ](-1)^(i/2), {j, 3, i/2} ]/2 ]+Sum[ c[ j, 1 ]c[ i-2j, 2 ](-1)^j/4
-Sum[ If[ OddQ[ k ], c[ j, (k-1)/2 ]c[ i-2j, 1 ](-1)^j/2, 0 ], {k, 5, i} ],
{j, 1, (i-1)/2} ], {i, 4, 30} ]
CROSSREFS
Sequence in context: A192974 A187428 A316878 * A006071 A086954 A111583
KEYWORD
easy,nice,nonn
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1