login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048679
Compressed fibbinary numbers (A003714), with rewrite 0->0, 01->1 applied to their binary expansion.
28
0, 1, 2, 4, 3, 8, 5, 6, 16, 9, 10, 12, 7, 32, 17, 18, 20, 11, 24, 13, 14, 64, 33, 34, 36, 19, 40, 21, 22, 48, 25, 26, 28, 15, 128, 65, 66, 68, 35, 72, 37, 38, 80, 41, 42, 44, 23, 96, 49, 50, 52, 27, 56, 29, 30, 256, 129, 130, 132, 67, 136, 69, 70, 144, 73, 74, 76, 39, 160, 81
OFFSET
0,3
COMMENTS
Permutation of the nonnegative integers (A001477); inverse permutation of A048680 i.e. A048679[ A048680[ n ] ] = n for all n.
FORMULA
a(n) = A106151(2*A003714(n)) for n > 0. - Reinhard Zumkeller, May 09 2005
a(n+1) = min{([a(n)/2]+1)*2^k} such that it is not yet in the sequence. - Gerard Orriols, Jun 07 2014
a(n) = A072650(A003714(n)) = A003188(A227351(n)). - Antti Karttunen, May 13 2018
MAPLE
a(n) = rewrite_0to0_x1to1(fibbinary(j)) (where fibbinary(j) = A003714[ n ])
rewrite_0to0_x1to1 := proc(n) option remember; if(0 = n) then RETURN(n); else RETURN((2 * rewrite_0to0_x1to1(floor(n/(2^(1+(n mod 2)))))) + (n mod 2)); fi; end;
fastfib := n -> round((((sqrt(5)+1)/2)^n)/sqrt(5)); fibinv_appr := n -> floor(log[ (sqrt(5)+1)/2 ](sqrt(5)*n)); fibinv := n -> (fibinv_appr(n) + floor(n/fastfib(1+fibinv_appr(n)))); fibbinary := proc(n) option remember; if(n <= 2) then RETURN(n); else RETURN((2^(fibinv(n)-2))+fibbinary_seq(n-fastfib(fibinv(n)))); fi; end;
# second Maple program:
b:= proc(n) is(n=0) end:
a:= proc(n) option remember; local h; h:= iquo(a(n-1), 2)+1;
while b(h) do h:= h*2 od; b(h):=true; h
end: a(0):=0:
seq(a(n), n=0..100); # Alois P. Heinz, Sep 22 2014
MATHEMATICA
b[n_] := n==0; a[n_] := a[n] = Module[{h}, h = Quotient[a[n-1], 2] + 1; While[b[h], h = h*2]; b[h] = True; h]; a[0]=0; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 27 2016, after Alois P. Heinz *)
PROG
(PARI)
A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
A003714(n) = { my(s=0, w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
A007814(n) = valuation(n, 2);
A000265(n) = (n/2^valuation(n, 2));
A106151(n) = if(n<=1, n, if(n%2, 1+(2*A106151((n-1)/2)), (2^(A007814(n)-1))*A106151(A000265(n))));
A048679(n) = if(!n, n, A106151(2*A003714(n))); \\ Antti Karttunen, May 13 2018, after Reinhard Zumkeller's May 09 2005 formula.
(Python)
from itertools import count, islice
def A048679_gen(): # generator of terms
return map(lambda n: int(bin(n)[2:].replace('01', '1'), 2), filter(lambda n:not (n<<1)&n, count(0)))
A048679_list = list(islice(A048679_gen(), 20)) # Chai Wah Wu, Mar 18 2024
KEYWORD
nonn,base
STATUS
approved

  NODES
orte 1
see 1
Story 1