login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051877
Partial sums of A051740.
5
1, 12, 57, 182, 462, 1008, 1974, 3564, 6039, 9724, 15015, 22386, 32396, 45696, 63036, 85272, 113373, 148428, 191653, 244398, 308154, 384560, 475410, 582660, 708435, 855036, 1024947, 1220842, 1445592, 1702272, 1994168, 2324784, 2697849, 3117324, 3587409
OFFSET
0,2
COMMENTS
Convolution of triangular numbers (A000217) and enneagonal numbers (A001106). - Bruno Berselli, Jul 21 2015
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.
FORMULA
a(n) = C(n+4, 4)*(7*n+5)/5.
G.f.: (1+6*x)/(1-x)^6.
From Wesley Ivan Hurt, May 02 2015: (Start)
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6).
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(7*n+5)/120. (End)
E.g.f.: (5! +1320*x +2040*x^2 +920*x^3 +145*x^4 +7*x^5)*exp(x)/5!
MAPLE
A051877:=n->binomial(n+4, 4)*(7*n+5)/5: seq(A051877(n), n=0..40); # Wesley Ivan Hurt, May 02 2015
MATHEMATICA
Table[(n+1)(n+2)(n+3)(n+4)(7n+5)/120, {n, 0, 40}] (* Vincenzo Librandi, May 03 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 12, 57, 182, 462, 1008}, 40] (* Harvey P. Dale, May 05 2022 *)
PROG
(Magma) [(n+1)*(n+2)*(n+3)*(n+4)*(7*n+5)/120 : n in [0..40]]; // Wesley Ivan Hurt, May 02 2015
(PARI) vector(40, n, (7*n-2)*binomial(n+3, 4)/5) \\ G. C. Greubel, Aug 29 2019
(Sage) [(7*n+5)*binomial(n+4, 4)/5 for n in (0..40)] # G. C. Greubel, Aug 29 2019
(GAP) List([0..40], n-> (7*n+5)*Binomial(n+4, 4)/5); # G. C. Greubel, Aug 29 2019
CROSSREFS
Cf. A093564 ((7, 1) Pascal, column m=5).
Sequence in context: A212682 A212134 A071270 * A212065 A121693 A190297
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Dec 14 1999
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1