login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053501
Number of degree-n permutations of order dividing 11.
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3628801, 43545601, 283046401, 1320883201, 4953312001, 15850598401, 44910028801, 115482931201, 274271961601, 609493248001, 1279935820801, 4644633666390681601, 106826520356358566401, 1281918194457262387201
OFFSET
0,12
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013.
L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
FORMULA
E.g.f.: exp(x + x^11/11).
a(n) = n!*Sum_{k=1..n} (if mod(11*k-n,10)=0 then C(k,(11*k-n)/10)*(11)^((k-n)/10)/k!, else 0), n>0. - Vladimir Kruchinin, Sep 10 2010
MAPLE
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 11])))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 14 2013
MATHEMATICA
a[n_]:= n!*Sum[If[Mod[11*k-n, 10] == 0, Binomial[k, (11*k-n)/10]*11^((k-n)/10)/k!, 0], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 20 2014, after Vladimir Kruchinin *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^11/11], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
PROG
(Maxima) a(n):=n!*sum(if mod(11*k-n, 10)=0 then binomial(k, (11*k-n)/10)*(11)^((k-n)/10)/k! else 0, k, 1, n); /* Vladimir Kruchinin, Sep 10 2010 */
(PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^11/11) )) \\ G. C. Greubel, May 15 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^11/11) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
(Sage) m = 30; T = taylor(exp(x +x^11/11), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
CROSSREFS
Column k=11 of A008307.
Sequence in context: A071552 A181726 A195394 * A229677 A350335 A253992
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved

  NODES
orte 1
see 2
Story 1