login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055363
Triangle of asymmetric mobiles (circular rooted trees) with n nodes and k leaves.
12
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 6, 10, 5, 1, 0, 0, 1, 9, 22, 19, 7, 1, 0, 0, 1, 12, 42, 53, 31, 8, 1, 0, 0, 1, 16, 73, 130, 109, 45, 10, 1, 0, 0, 1, 20, 119, 280, 321, 190, 63, 11, 1, 0, 0, 1, 25, 184, 556, 833, 672, 310, 83, 13, 1, 0, 0, 1, 30, 272
OFFSET
1,12
FORMULA
G.f. satisfies A(x, y) = x*(y - Sum_{i>0} moebius(i)/i * log(1 - A(x^i, y^i))). - Michael Somos, Aug 19 2015
Sum_k T(n, k) = A032171(n). - Michael Somos, Aug 24 2015
EXAMPLE
G.f. = x*(y + x*y + x^2*y + x^3*(y + y^2) + x^4*(y + 2*y^2 + y^3) + x^5*(y + 4*y^2 + 4*y^3 + y^4) + ...).
n\k 1 2 3 4 5 6 7 8
--:-- -- -- -- -- -- -- --
1: 1
2: 1 0
3: 1 0 0
4: 1 1 0 0
5: 1 2 1 0 0
6: 1 4 4 1 0 0
7: 1 6 10 5 1 0 0
8: 1 9 22 19 7 1 0 0
MATHEMATICA
T[n_, k_] := Module[{A}, A[_, _] = 0; If[k<1 || k>n, 0, For[j=1, j <= n, j++, A[x_, y_] = x*y-x*Sum[MoebiusMu[i]/i * Log[1 - A[x^i, y^i]] + O[x]^j // Normal, {i, 1, j}]]; Coefficient[Coefficient[A[x, y], x, n], y, k]]];
Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 30 2017, after Michael Somos *)
PROG
(PARI) {T(n, k) = my(A = O(x)); if(k<1 || k>n, 0, for(j=1, n, A = x*y - x*sum(i=1, j, moebius(i)/i * log(1 - subst( subst( A + x * O(x^min(j, n\i)), x, x^i), y, y^i) ) )); polcoeff( polcoeff(A, n), k))}; /* Michael Somos, Aug 24 2015 */
CROSSREFS
Row sums give A032171.
Sequence in context: A188816 A168312 A076837 * A363845 A350681 A110855
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, May 15 2000
STATUS
approved

  NODES
orte 1
see 1
Story 1