login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058485
McKay-Thompson series of class 12G for Monster.
1
1, -2, -3, 8, -2, -6, 18, -20, -21, 52, -24, -36, 101, -78, -93, 224, -116, -156, 398, -284, -327, 772, -412, -528, 1308, -866, -996, 2336, -1274, -1572, 3784, -2396, -2745, 6368, -3520, -4224, 9997, -6132, -6999, 16112, -8934, -10554, 24630, -14784, -16776, 38348, -21316, -24828, 57341, -33796
OFFSET
0,2
COMMENTS
The convolution square of this sequence is A121667: T12G(q)^2 = T6D(q^2). - G. A. Edgar, Apr 15 2017
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..502 from G. A. Edgar)
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of q^(1/2)*(eta(q)*eta(q^2)/(eta(q^3)*eta(q^6)))^2 in powers of q. - G. C. Greubel, Jun 18 2018
EXAMPLE
T12G = 1/q - 2*q - 3*q^3 + 8*q^5 - 2*q^7 - 6*q^9 + 18*q^11 - 20*q^13 - ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/2) (eta[q]*eta[q^2]/(eta[q^3]*eta[q^6]))^2, {q, 0, 60}], q]; Table[a[[n]], {n, 0, 50}] (* G. C. Greubel, Jun 18 2018 *)
PROG
(PARI) q='q+O('q^50); Vec((eta(q)*eta(q^2)/(eta(q^3)*eta(q^6)))^2) \\ G. C. Greubel, Jun 18 2018
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved

  NODES
orte 1
see 1
Story 1