login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058526
McKay-Thompson series of class 16e for the Monster group.
1
1, 2, -2, 4, 3, 2, -6, 4, 7, 12, -10, 16, 16, 14, -20, 20, 29, 40, -40, 52, 52, 52, -70, 68, 91, 114, -116, 148, 149, 152, -190, 196, 242, 296, -306, 368, 383, 396, -478, 496, 590, 698, -730, 856, 897, 940, -1096, 1152, 1342, 1548, -1630, 1876, 1975, 2080, -2390, 2516
OFFSET
0,2
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
EXAMPLE
T16e = 1/q + 2*q - 2*q^3 + 4*q^5 + 3*q^7 + 2*q^9 - 6*q^11 + 4*q^13 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 100; e4D := q^(1/2)*(eta[q]/eta[q^2])^12; T4B := e4D + 64*q/e4D; T8C := (((e4D + 64*q/e4D) /. {q -> q^4}) + O[q]^nmax)^(1/2); a:= CoefficientList[Series[(1 + 4*q + ((T8C - 1) // Normal /. {q -> q^4}) + O[q]^nmax)^(1/2), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 20 2018 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved

  NODES
orte 1
see 1
Story 1