login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058532
McKay-Thompson series of class 18B for the Monster group.
3
1, 0, 7, 10, 27, 38, 82, 108, 207, 278, 486, 644, 1052, 1404, 2182, 2880, 4293, 5654, 8182, 10692, 15076, 19604, 27108, 35000, 47547, 61020, 81713, 104236, 137781, 174800, 228498, 288360, 373174, 468566, 601020, 751036, 955642, 1188756, 1501730, 1859944
OFFSET
-1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
From Michael Somos, Aug 19 2012: (Start)
Expansion of -2 + (1/q) * psi(q^3)^2 / (psi(q) * phi(q^9)) * (f(-q^3)^2 / (f(-q) * f(-q^9)))^3 in powers of q where psi(), f() are Ramanujan theta functions.
Expansion of -3 + (1/q) * (chi(-q^9) / chi(-q))^3 + q * (chi(-q) / chi(-q^9))^3 in powers of q where chi() is a Ramanujan theta function.
Expansion of -2 + (eta(q^3) * eta(q^6))^4 / (eta(q) * eta(q^2) * eta(q^9) * eta(q^18))^2 in powers of q.
Expansion of -5 + (eta(q^3)^8 + 4 * eta(q^6)^8) /(eta(q) * eta(q^2) * eta(q^3)^2 * eta(q^6)^2 * eta(q^9) * eta(q^18)).
a(n) = A215407(n) unless n=0. (End)
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
EXAMPLE
T18B = 1/q + 7*q + 10*q^2 + 27*q^3 + 38*q^4 + 82*q^5 + 108*q^6 + 207*q^7 + ...
MATHEMATICA
QP = QPochhammer; s = -2*q+(QP[q^3]*QP[q^6])^4/(QP[q]*QP[q^2]*QP[q^9]* QP[q^18])^2 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 13 2015, after 3rd formula *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = eta(x + A) * eta(x^2 + A) / (eta(x^9 + A) * eta(x^18 + A)); polcoeff( x + A + 9 * x^2 / A, n))} /* Michael Somos, Aug 19 2012 */
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved

  NODES
orte 1
see 2
Story 1