login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058740
McKay-Thompson series of class 66B for Monster.
1
1, 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 7, 8, 9, 10, 12, 14, 17, 19, 21, 24, 29, 33, 38, 43, 48, 54, 61, 70, 79, 88, 98, 111, 124, 140, 157, 174, 193, 214, 239, 266, 295, 326, 361, 398, 441, 488, 538, 592, 650, 715, 786, 864, 948, 1041, 1138, 1246, 1364, 1492
OFFSET
-1,6
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum
FORMULA
Expansion of -1 + A, where A = eta(q^2)*eta(q^3)*eta(q^22)*eta(q^33)/( eta(q)*eta(q^6)*eta(q^11)*eta(q^66)), in powers of q. - G. C. Greubel, Jun 29 2018
a(n) ~ exp(2*Pi*sqrt(2*n/33)) / (2^(3/4) * 33^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2018
EXAMPLE
T66B = 1/q + q + q^2 + q^3 + 2*q^4 + 2*q^5 + 3*q^6 + 3*q^7 + 3*q^8 + 4*q^9 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; A:= (eta[q^2]*eta[q^3]*eta[q^22]* eta[q^33])/(eta[q]*eta[q^6]*eta[q^11]*eta[q^66]); a:= CoefficientList[Series[-1 + A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 29 2018 *)
PROG
(PARI) q='q+O('q^50); A = eta(q^2)*eta(q^3)*eta(q^22)*eta(q^33)/( q*eta(q)*eta(q^6)*eta(q^11)*eta(q^66)); Vec(-1 + A) \\ G. C. Greubel, Jun 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 24 2014
STATUS
approved

  NODES
orte 1
see 1
Story 1