login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060437
a(n) is the number of different degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n, i.e., count each degree only once.
5
1, 1, 2, 3, 4, 5, 7, 12, 15, 22, 28, 38, 45, 52, 81, 107, 130, 179, 194, 280, 348, 438, 502, 693, 848, 1037, 1274, 1594, 1847, 2473, 2851, 3652, 4271, 5137, 6140, 7995, 9103, 11046, 12978, 16216, 18348, 23153, 26239, 31880, 37582, 45144, 51469, 63571, 71910
OFFSET
1,3
COMMENTS
The total number of irreducible representations of S_n is the partition function p(n) (sequence A000041) - this is the total number of the degrees counting multiplicities.
Also a(n) = number of distinct values of A153452(m) when A056239(m) is equal to n. - Naohiro Nomoto, Dec 31 2008
EXAMPLE
a(6) = 5 because the degrees for S_6 are 1,1,5,5,5,5,9,9,10,10,16 and counting each degree only once only 5 numbers remain: 1,5,9,10,16.
MAPLE
with(numtheory):
g:= proc(n) option remember; `if`(n=1, 1,
add(g(n/q*`if`(q=2, 1, prevprime(q))), q=factorset(n)))
end:
b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n],
[seq(map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)])
end:
a:= n-> nops(map(g, {b(n, n)[]})):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 09 2012
MATHEMATICA
g[n_] := g[n] = If[n == 1, 1, Sum[g[n/q*If[q == 2, 1, NextPrime[q, -1]]], {q, FactorInteger[n][[All, 1]]}]]; b[n_, i_] :=b[n, i] = If[n == 0 || i<2, {2^n}, Flatten @ Table[ Map[Function[{p}, p*Prime[i]^j], b[n-i*j, i-1]], {j, 0, n/i}] ]; a[n_] := Length[Union[g /@ b[n, n]]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Avi Peretz (njk(AT)netvision.net.il), Apr 07 2001
EXTENSIONS
More terms from Vladeta Jovovic, May 20 2003
a(22)-a(49) from Alois P. Heinz, Aug 09 2012
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1