login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090492
G.f.: (1+x^10)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).
1
1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 16, 20, 21, 27, 28, 35, 36, 44, 46, 55, 58, 67, 71, 82, 86, 99, 103, 117, 123, 138, 145, 161, 169, 187, 196, 216, 225, 247, 258, 281, 294, 318, 332, 359, 374, 403, 419, 450, 468, 501, 521, 555, 577, 614, 637, 677, 701, 743, 770, 814
OFFSET
0,5
COMMENTS
A_8 = SL_2(4) and acts on F_2[x_1, ..., x_4]. There are two copies of A_5 inside A_8. This is the Poincaré series (or Molien series) for the subgroup A_5 acting on F_2[x_1, ..., x_4] by tensoring over F_2 from the action of S_5 on Z^4 where Z^4 consists of those elements (n_1, ..., n_5) with Sum n_i = 0. That is, A_5 acts on the subring F_2[x_1 - x_5, x_2 - x_5, x_3 - x_5, x_4 - x_5] subset F_2[x_1, ..., x_5] by restriction to A_5 of the permutation S_5 action. See A089596 for the other A_5.
a(n) is the number of partitions of n into parts 2, 3, 4, 5, and 10 containing at most one part 10. - Joerg Arndt, Aug 15 2020
REFERENCES
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 113.
H. Derksen and G. Kemper, Computational Invariant Theory, Springer, 2002; p. 130.
FORMULA
a(n) ~ 1/360*n^3 + 1/60*n^2. - Ralf Stephan, Apr 29 2014
G.f.: ( 1-x^2-x^6+x^4+x^8 ) / ( (1+x+x^2)*(1+x+x^3+x^2+x^4)*(1+x)^2*(x-1)^4 ). - R. J. Mathar, Dec 18 2014
Euler transform of length 20 sequence [ 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Jul 19 2015
a(n) = - a(-4-n) for all n in Z. - Michael Somos, Jul 19 2015
EXAMPLE
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + ...
PROG
(PARI) {a(n) = (n^3 + 6*n^2 + 96*n - 45*(n%2)*(n+2) - 9*(n%15==11)) \ 360 + 1}; /* Michael Somos, Jul 19 2015 */
(PARI) {a(n) = my(s=1); if( n<0, n = -4-n; s = -1); s * polcoeff( (1 + x^10) / ((1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)) + x * O(x^n), n)}; /* Michael Somos, Jul 19 2015 */
(PARI) Vec((1+x^10)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) + O(x^80)) \\ Michel Marcus, Jul 19 2015
CROSSREFS
Sequence in context: A275972 A364349 A364533 * A325768 A371736 A371794
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 02 2004
STATUS
approved

  NODES
orte 1
see 2
Story 1