login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112224
McKay-Thompson series of class 140a for the Monster group.
1
1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 5, 6, 5, 8, 6, 9, 6, 9, 8, 11, 10, 12, 11, 14, 12, 16, 13, 18, 16, 20, 18, 22, 20, 25, 23, 29, 25, 31, 29, 36, 33, 39, 36, 45, 40, 49, 45, 54, 51, 61, 58, 66, 63, 75, 70, 84, 77, 91, 86, 101
OFFSET
0,15
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of sqrt(T70A + 2) in powers of q, where T70A = A058744. - G. C. Greubel, Jul 03 2018
a(n) ~ exp(2*Pi*sqrt(n/35)) / (2 * 35^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 03 2018
EXAMPLE
T140a = 1/q +q +q^7 +q^11 +q^15 +q^19 +q^21 +q^23 +q^25 +...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 130; b:= eta[q]*eta[q^10]* eta[q^14]*eta[q^35]/(eta[q^2]*eta[q^5]*eta[q^7]*eta[q^70]); T70A:= 1 + b + 1/b; a:= CoefficientList[Series[(q*T70A + 2*q + O[q]^nmax)^(1/2), {q, 0, 100}], q]; Table[a[[n]], {n, 1, 80}] (* G. C. Greubel, Jul 03 2018 *)
PROG
(PARI) q='q+O('q^80); b = eta(q)*eta(q^10)* eta(q^14)*eta(q^35)/(q* eta(q^2)*eta(q^5)*eta(q^7)*eta(q^70)); T70A = b + 1 + 1/b; Vec(sqrt(q*( T70A + 2))) \\ G. C. Greubel, Jul 03 2018
CROSSREFS
Sequence in context: A185317 A373606 A008682 * A058774 A033101 A220413
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved

  NODES
orte 1
see 1
Story 1