login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132672
a(1)=1, a(n) = 8*a(n-1) if the minimal positive integer not yet in the sequence is greater than a(n-1), else a(n) = a(n-1) - 1.
0
1, 8, 7, 6, 5, 4, 3, 2, 16, 15, 14, 13, 12, 11, 10, 9, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17
OFFSET
1,2
COMMENTS
Also: a(1)=1, a(n) = maximal positive integer < a(n-1) not yet in the sequence, if it exists, else a(n) = 8*a(n-1).
Also: a(1)=1, a(n) = a(n-1) - 1, if a(n-1) - 1 > 0 and has not been encountered so far, else a(n) = 8*a(n-1).
A permutation of the positive integers. The sequence is self-inverse, in that a(a(n)) = n.
FORMULA
G.f.: g(x) = (x(1-2x)/(1-x) + 8x^2*f'(x^(15/7)) + (15/64)*(f'(x^(1/7)) - 8x-1)/(1-x) where f(x) = Sum_{k>=0} x^(8^k) and f'(z) = derivative of f(x) at x = z.
a(n) = (23*8^(r/2) - 9)/7 - n if both r and s are even, else a(n) = (78*8^((s-1)/2) - 9)/7 - n, where r = ceiling(2*log_8((7n+8)/15)) and s = ceiling(2*log_8(7n+8)/7)) - 1.
a(n) = (8^floor(1 + (k+1)/2) + 15*8^floor(k/2) - 9)/7 - n, where k=r if r is odd, else k=s (with respect to r and s above; formally, k = ((r+s) - (r-s)*(-1)^r)/2).
CROSSREFS
For formulas concerning a general parameter p (with respect to the recurrence rule ... a(n)=p*a(n-1) ...) see A132374.
For p=2 to p=10 see A132666 through A132674.
Sequence in context: A265338 A090915 A194756 * A212410 A328759 A132037
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Sep 15 2007
STATUS
approved

  NODES
orte 1
see 3
Story 1