login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210244
Numerators of the polylogarithm li(-n,-1/2)/2.
3
-1, -1, 1, 5, -7, -49, -53, 2215, 1259, -14201, -183197, 248885, 9583753, 14525053, -554173253, -4573299625, 99833187251, 215440236599, -1654012631597, -84480933600305, -36267273557287, 10992430255511053, 117548575473066241, -1380910044674479865
OFFSET
1,4
COMMENTS
Given an integer n>0, consider the infinite series s(n) = li(-n,-1/2) = Sum_{k>=1} (-1)^k*k^n/2^k. Then s(n)=2*a(n)/A131137(n+1).
LINKS
S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), Stan's Library Vol.I, April 2006, updated March 2012. See Eq.(29).
Eric W. Weisstein, MathWorld: Polylogarithm
FORMULA
Recurrence: s(n+1)=(-1/3)*Sum_{i=0..n} binomial(n+1,i)*s(i), with the starting value of s(0)=2/3.
EXAMPLE
s(1)=-2/9, s(2)=-2/27, s(3)=+2/27, s(4)=+10/81.
MATHEMATICA
nn = 30; s[0] = 1; Do[s[n+1] = (-1/3) Sum[Binomial[n+1, i] s[i], {i, 0, n}], {n, 0, nn}]; Numerator[Table[s[n], {n, 0, nn}]] (* T. D. Noe, Mar 20 2012 *)
Table[PolyLog[-n, -1/2]/2, {n, 30}] (* T. D. Noe, Mar 23 2012 *)
PROG
(PARI) a(n)=numerator(polylog(-n, -1/2)/2) \\ Charles R Greathouse IV, Jul 15 2014
CROSSREFS
Denominators: A131137, offset by 1.
Cf. A212846.
Sequence in context: A217039 A299452 A110420 * A123789 A367572 A180552
KEYWORD
sign,frac
AUTHOR
Stanislav Sykora, Mar 19 2012
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1