login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225371
a(n) = number of squares in M(n,2), the ring of n X n matrices over GF(2).
6
1, 2, 10, 260, 31096, 13711952, 28275659056, 224402782202048, 7293836994286696576, 952002419516769475035392, 497678654312172407869125822976, 1044660329769242614113093804053562368, 8745525723307044762290950664928498588583936
OFFSET
0,2
COMMENTS
a(0)-a(4) computed by W. Edwin Clark, May 07 2013.
A226321 is a similar sequence which counts the real {0,1} matrices which are the square of a {0,1} matrix. - Giovanni Resta, Jun 03 2013
PROG
(PARI) a(n)=#vecsort(lift(vector(2^n^2, k, matrix(n, n, i, j, bittest(k, (i-1)*n+j-1))^2*Mod(1, 2))), , 8) \\ Charles R Greathouse IV, May 07 2013
(PARI) ZM(k)=matrix(n, n, i, j, bittest(k, (i-1)*n+j-1))*Mod(1, 2)
MZ(M)=my(n=matsize(M)[1]); sum(i=1, n, sum(j=1, n, M[i, j]<<((i-1)*n+j-1)))
a(n)=#vecsort(vector(2^n^2, i, MZ(lift(ZM(i, n)^2))), , 8) \\ Charles R Greathouse IV, May 07 2013
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
N. J. A. Sloane, May 07 2013
EXTENSIONS
a(5)-a(6) from Giovanni Resta, May 08 2013
a(7)-a(30) from Victor S. Miller, May 24 2013
STATUS
approved

  NODES
orte 1
see 1
Story 1