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Quantum-like model of subjective expected
utility

August 24, 2017

1 Introduction

Recently quantum probability (QP) started to be widely used to model the
processes of decision making (DM) in cognitive psychology, behavioral eco-
nomics and finance, see, e.g., monographs Khrennikov (2004, 2010), Buse-
meyer and Bruza (2012) , Bagarello (2012), Haven and Khrennikov (2013),
Asano et al. (2015), reviews Pothos and Busemeyer (2013), Khrennikov
(2015a), Haven and Sozzo (2016), the recent handbook edited by Haven and
Khrennikov (2017a), and the first textbook for students (Haven et al. 2017).1

One may consider the appeal to QP to model DM instead of the usage of the
conventional probabilistic measures too exotic. Yet, we recall that as early
as the 1970s, Tversky, Kahenman and other researchers in psychology and
economics following the seminal paradoxes by Allais (1953), Ellsberg (1961)
have been demonstrating cases where classical probability (CP) prescription
and actual human thinking persistently diverge, seeking to explain these de-
viations from the normative DM frameworks (Kaheneman and Tversky 1972;
Tversky and Kahneman 1974, Shafir 1994, Kahneman, 2003; Kahneman and
Thaler, 2006).

The main inquiry of the experimental studies was often focused on human
evaluation and revision of probabilities in uncertain DM situations. Following
questions naturally emerged:

Do people obey the rules of classical probability theory, and if not, in which
circumstances? Are there any other laws that can be applied to formalize
human judgments and preferences?

After demonstrating first comprehensive evidence on deviation of human
preference formation from the postulates of von Neumann and Morgenstern

1The first steps in this direction were done in 1990th, see, e.g., Khrennikov (1999).
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(1944) theories (VNM), Ellsberg (1961, p.646) conceived that: there would
be simply no way to infer meaningful probabilities for those events from
their [participants] choices, and theories which purported to describe their
uncertainty in terms of probabilities would be quite inapplicable in that area
(unless quite different operations for measuring probability were devised).

A wide array of elegant generalizations of classical probabilistic formula-
tions of rational decision theories (VNM)2 were devised following the emerg-
ing empirical evidence. Generalized utility theories focused particularly on
eliminating the linearity in probabilistic measures, and seeking to relax the
assumption of agents’ possessing firm and state-independent probabilistic es-
timates (Kahneman and Tversky, 1979; Machina, 1982, 1989; 2005, Gilboa
and Schmeidler, 1989, 1994; Schmeidler, 1989; Tversky and Kaheneman,
1992; Klibanoff et al., 2005, and others.)

As articulated by Machina (1989), the main appeal of the devised gener-
alizations of VNM formulations was to reach three goals; the empirical (fit to
the experimental data), the theoretical (allow to use the formulation in the
most general settings, from trading on the financial markets, to insurance
and gambling) and finally, the normative status (logical implications such as
rationality of the assumptions in VNM).

Another stream of case by case explanations, based on heuristics and
biases pioneered3 by Kahneman and Tversky, 1972; Tversky and Kahne-
man 1974, also gained wide recognition in behavioral economics, that mainly
emerged due to expensive collection of empirical evidence on human prefer-
ence formation and judgment. Yet, the convincing explanations of each such
bias and its effect on DM formation were placed under critique largely due
to their lack of theoretical coherence and normative appeal (e.g., Wolford,
1991; Gigenzenger, 1996)4.

Today, we still find ourselves at the theoretical cross-roads, with consider-
able divisions across conflicting, entrenched theoretical positions that revolve
around the following dilemmas:

• Should we continue to rely on CP as the basis for descriptive and norma-
tive predictions in decision making (and perhaps ascribe inconsistencies

2We allude to von Neumann and Morgenstern’s (1944) expected utility formulation un-
der objective risk, as well as Savage’s (1954) subjective expected utility over consequences
in uncertain states of the world.

3See also an earlier excellent survey of the behavioral factors that ought to falsify the
postulates of modern decision theories under uncertainty and risk by Simon (1959).

4We remark that Prospect Theory by Kahneman and Tversky (1979), and the advanced
version, Cumulative Prospect Theory by Tversky and Kahneman (1992) can be considered
as great accomplishments in the pursuit for a generalized and structured DM framework,
encompassing some of the effects of human heuristics and biases.
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to methodological idiosyncrasies)?

• Should we abandon probability theory completely and instead pursue
explanations based on heuristics and biases, as proposed by Tversky
and Kahneman?

Yet, a need for a DM framework with theoretical foundations that can be
utilized in economics, finance and other domains persists. Hence, by gener-
alizing or replacing classical VNM framework, one is compelled to maintain
the theoretical foundations of the alternative decision theory. Probabilistic
and statistical methods are undeniably the cornerstones of modern scientific
methodology in all spheres of social science. Thus, although the heuristic
approach to decision making cannot be discarded completely and serves as
an important tool to research the nature of human reasoning, it appears that
it is more natural to approach novel probabilistic models to formalize pref-
erence formation. Hence, in the present contribution we proceed with the
slogan:

QP instead of heuristics and biases!

Application of the laws of QP, instead of CP, can resolve some paradoxes
of classical DM theory, see section 2. The number of different ‘paradoxes’
generated by the classical DM theory is startling. The authors of a recent
review (Ert and Erev 2015) distinguished 35 basic paradoxes. The history
of decision theory, can be characterized by advancement of the theoretical
frameworks via creation and resolution of paradoxes through modifications
of the theory. As an example, von Neumann-Morgenstern (VNM) expected
utility theory was generalized to Prospect decision theory after numerous
empirical studies (cf. Tversky and Kahenman, 1992; Shafir 1994). However,
any modification suffered from new paradoxes.

It seems that the use of QP can resolve all such paradoxes (including
Allais (1953), Ellsberg (1961) and Machina (2009) paradoxes), at least this
is claimed in the recent paper of Asano et al. (2017). In this paper the au-
thors develop a quantum-like model of selection of lotteries under uncertainty
based on QP realization of subjective expected utility (SEU) approach. In
particular, this model reproduces VNM expected utility theory (in this case
probabilities can be interpreted objectively) and the Prospect theory (in-
cluding its representation with cumulative probability weighting function,
Tversky and Kahenman, 1992). Moreover, the quantum-like model of lot-
tery selection recreates one special form of the probability weighting function
used in the Prospect theory. We recall that in the prospect theory, the prob-
ability weighting function is the important concept to explain the violation
of independence axiom in VNM theory. Actually, from phenomenological
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discussions, various weighting functions have been proposed (Prelec, 1998;
Rieger and Wang, 2006; Tversky and Kahneman,1992; Gonzales and Wu,
1999; Wu and Gonzales,1996).

wλ,δ(x) =
δxλ

δxλ + (1− x)λ
, (1)

which was discussed in (Gonzalez and Wu, 1999). The parameters λ and
δ control the curvature and elevation of the function, respectively. Such
a phenomenological function with λ = 1/2 corresponds to the subjective
probabilities derived from the usage ofquantum probability framework, see
Asano et al. (2017) for a detailed discussion. Thus, quantum theory provides
an argument in favor of one special type of the weighting function of the
formulation of the Prospect theory.

The quantum-like SEU-model Asano et al. (2017) does not only repro-
duce the output of the Prospect theory (for the aforementioned special choice
of the weighting function), but (depending on the belief-state of an agent)
can lead to new decision rules, including the existence of new parameters (be-
sides the subjective probabilities). These parameters are given by relative
phases expressing correlations between different outcomes of lotteries A and
B (within a single lottery or between two lotteries). The presence of phases
induces the effects of constructive and destructive interference. An agent,
say Alice, can make a decision A � B even if 〈A〉σ ≥ 〈B〉σ, where 〈A〉σ, 〈B〉σ
are the subjective expected utilities of the lotteries. The decision depends
crucially on the sign of the factor of the form cos θ representing the interfer-
ence effect, where θ is a combination of the relative phases, see sections ??,
6.

In the quantum-like SEU-model by Asano et al. (2017), a classical VNM
utility function is used to construct a comparison operator D. It encodes op-
erationally the process of comparison of two lotteries. Hermitian operators
(whereby their eigenvectors signify the possible monetary outcomes), repre-
sent the random outcomes of the lotteries. The belief state of an agent is
mathematically realized as a quantum state that can be either a pure, or
mixed state.

In this paper we advance the representation scheme of the model proposed
in (Asano et al., 2017), by representing Alice’s beliefs about the lotteries’
outcomes by two orthonormal bases in the same Hilbert space. In Asano
et al. (2017) each lottery was represented in its own space and the pair
of lotteries was represented in the direct sum of these two belief-spaces (cf.
Pothos and Busemeyer, 2009; Broekaert et al., 2017), the Cartesian product
of the belief-state spaces for individual lotteries. The use of a single belief
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space gives the possibility (absent in the model by Asano et al. (2017)) to
represent complementary (incompatible) systems of events corresponding to
different lotteries. At the same time this new approach reduces the dimension
of the state space. It also describes the subtle features of the DM process
that were not present in the previous model by Asano et al. (2017).

In the present model with the common belief-state space, the DM-process
is split into four sub-processes, see section 7. The previous model Asano et
al. (2017) (with the direct sum of belief-state spaces) handled only one of
these processes (Process 1, see section 7). The new counterparts of the DM-
process model describe mathematically Alice’s reflections in respect to the
selection of lotteries. These reflections are modeled with the aid of quan-
tum transition probabilities. For complementary lotteries, these probabilities
are nontrivial and their presence generates complex reflections of a decision
maker, cf. (Asano et al., 2017). The transition probabilities are involved in
the creation of more complex subjective probabilities for lotteries’ outcomes
than the probabilities of Process 1 only, see Asano et al. (2017). The devised
model is quite complicated from the viewpoint of mathematical computa-
tions. We reproduce the detailed model derivation in the special appendix
(appendix 1).

The structure of the model is very rich. To demonstrate at least some of
its distinguishing features, we analyze in very detail the example of lotteries
with two outcomes, see section 8 and appendix 2. This simple example
shows that, in fact, a quantum-like agent uses the probability amplitudes (an
not the squares of their absolute values) as weights for averaging of utility
function. (So, roughly speaking an agent works with square roots of quantum
probabilities.) Of course, the straightforward probability interpretation of
this construction is impossible (since amplitudes need not be positive real
numbers). For the probabilistic interpretation, one has to proceed with four
counterparts of the process of decision making considered in section 7. At the
same time modeling based on amplitudes is attractive by its simplicity. One
can proceed in this direction by using signed and complex “probabilities”
which are widely used in quantum mechanics and recently strated to be
applied to decision making, see de Barros et al. (2016, 2017).

The example presented in section 8 also reflect the very special feature of
the quantum probability update: generation of nonzero (subjective) proba-
bility from zero prior probability (Basieva et al., 2017), cf. with Cromwell’s
rule for the classical Bayesian update.
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2 From the von Neumann-Morgenstern ex-

pected utility theory to quantum(-like) mod-

eling of subjective expected utility

In their book von Neumann and Morgenstern (1944) introduced an expected
utility function over lotteries, or gambles. The type of uncertainty which
was embedded in their expected utility5 approach was objective uncertainty
(i.e. an uncertainty which is formalizable by using objective probabilities).
A key theorem in the VNM theory establishes the so called expected utility
representation, which in essence requires that preferences over lotteries sat-
isfy a specified number of axioms6. As economic history has shown, some
of their axioms were not as ‘natural’ as expected and Allais’ paradox (see
Allais, 1953) showed a violation of the so called substitution axiom7. Whilst
VNM developed an axiomatic choice framework along objective uncertainty,
it surely is the case that real life decisions can revolve around subjective
choice situations. The purpose of Savage’s theory is to consider choice under
subjective uncertainty (see Savage, 1954). In words, the Savage model can be
summarized as follows (Kreps (1988) (p. 195-196): “ Savage models ...hold
that you should assess probabilities for the subjectively uncertain events,
probabilities that add up to one, and then choose whichever gamble gives
the highest subjective expected utility.”

Savage (1954) formulated the famous Sure Thing Principle which is an
essential axiom (amongst seven other axioms) which allow for the existence
of an equivalence relation between a preference over acts8 and an ordering of
expected utilities.

We remark that in purely probabilistic terms, this principle is equivalent
to the validity of the law of total probability (see Khrennikov, 2010). Hence, a
violation of this law for our quantum-like model of DM (will be equivalent to
a violation of Savage’s Sure Thing Principle (see Busemeyer et al., 2006). We
note that the well known Ellsberg paradox (see Ellsberg, 1961) specifically
refers to a violation of the sure-thing principle9.

5We note that in economics there has been a long standing discussion between expected
value and expected utility. This debate relates to the so called St. Petersburg paradox
(see Blavatskyy , 2005 and Samuelson, 1977).

6In essence, those preferences need to satisfy the ‘substitution’ and ‘continuity’ axioms.
7This axiom says that for three lotteries, a,b and c the preference of lottery a over

lottery b will imply that the weighted average of lotteries a and c is preferred over the
weighted average over lotteries b and c.

8An act, as per Kreps (1988), p. 128, is a function from a set of states to a set of prizes.
9The sure thing principle can also be found back in von Neumann-Morgenstern’s theory

but only if one considers probabilities without finite support (see Krep, 1988, p. 59 and
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In the expected utility representation of the Savage approach (as well as in
the VNM approach), the utility function will be bounded and unique (up to
an affine transformation). The linearity10 of the preference function is tightly
connected to the substitution axiom which forms part of the VNM theory.
Violation of this axiom, was shown to occur via the Allais paradox which we
already mentioned above. More paradoxes exist. The Machina paradox (see
Machina, 2009) will challenge a whole variety of expected utility approaches,
such as the max-min expected utility (see Gilboa and Schmeidler, 1989) and
the Choquet expected utility (see Gilboa and Schmeidler, 1994). See also
Haven and Sozzo (2016) for more of a discussion on why non-classical prob-
ability can be an answer in the presence of such paradox (see also Machina,
1983, 1987 and Erev et al., 2016).

All these DM-theories are mathematically formalized with the aid of
classical probability (CP), the axiomatics of Kolmogorov (1933). Those
axiomatics are based on the set-representation of events and the measure-
representation of probabilities. Let us make the following point. The con-
straints posed on a DM-model by the CP-calculus can have fundamental
consequences. The most important set of CP-constraints is related to the
set-representation of events. In fact, this is the special representation of
classical Boolean logic. Thus, all probabilistic utility models (not only the
expected utility ones) are based on the implicit assumption that all agents
use the special calculus of propositions known as the Boolean algebra. This
assumption precedes, e.g. the axioms about the rationality of agents. To
even formulate such axioms, one has to appeal to Boolean logic. We also
remark that expected utility theory uses mathematical expectation which
corresponds to the CP-model.

It would be interesting to investigate what consequences will emerge if we
consider a relaxation of some of the axioms of CP for DM under uncertainty.
However, this general project has a very high complexity: one can create a
huge variety of novel ‘non-Kolmogorovean models’ and to analyze all possible
consequences for DM is really impossible. In particular, in mathematical
applications we can find a variety of generalized averaging procedures leading
to nonclassical notions of mathematical expectation. Therefore, it would be
natural to try to go beyond CP (and Boolean logic) on the basis of some
concrete and well developed non-CP model which has already demonstrated
its applicability to the solution of non-trivial problems in not only natural
science but also in economics, psychology and other areas of social science.

following).
10Mark Machina did note in Machina (1982) (p. 295) that ....“from the fact that differ-

entiable functions are ‘locally linear’, and that for preference functionals over probabililty
distributions, linearity is equivalent to expected utility maximization.”
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Such a non-CP model is now well known: this is the probabilistic coun-
terpart of the mathematical apparatus of quantum mechanics - QP. It is
essential we make a remark about possible interpretations of quantum me-
chanics. The variety of interpretations of quantum mechanics is huge and we
have no possibility to present even the most important ones (see Khrennikov,
2010).

Let us point to the recently developed subjective probability interpreta-
tion, known as Quantum Bayesianism (QBism) (see e.g. Fuchs and Schack,
2011). By this interpretation, QP is the machinery used by agents to update
probabilities for outcomes of experiments. QBism stresses the private agent
perspective in quantum theory. The only shortcoming of QBism (from our
perspective) is that it handles only decisions about outcomes of observations
done for quantum physical systems.

This shortcoming of QBism was discussed in the papers by Khrennikov
(2016) and Haven and Khrennikov (2017b), where we extended the applica-
tions of QBism to areas outside of quantum physics. Thus, QP is treated as
formalizing the DM-process by an agent who follows the rules of quantum
logic. The latter relaxes some basis rules of classical logic. Here, in partic-
ular, an agent can violate the law of distributivity between conjunction and
disjunction. The QBism interpretation of the quantum formalism is very
supporting for its applications to decision making, since it justifies the use
of subjective probability.

In this paper we shall present a concrete QP-based model of the DM-
process under uncertainty which is generated by a complex information envi-
ronment, including internal representations of lotteries by a decision maker.
Here lotteries should not be reduced to mechanical devices such as roulettes.
These are generators of events with complex inter-relation, inside each of the
lotteries as well as between lotteries.

3 Quantum-like model of selection of lotter-

ies

There are two lots, say A = (xi, Pi) and B = (yi, Qi), where (xi) are outcomes
and (Pi) and (Qi) are probabilities of these otcomes. All of the outcomes are
different from each other. Which lot do you select?

An agent, say Alice, can simulate the experience that she draws the lot
A (or B) and gets the outcome xi (or yi). Let us represent such an event by
(A, xi) (or (B, xi)). As usual, Alice assigns the utilities of (A, xi) and (B, yi)
by u(xi). (In the present model the utility of an event depends on only
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outcome.) Here, u(x) is a utility function of outcome x. By using the utility
function the agent evaluates various comparisons for making the preference
A � B or B � A.

The first mathematically consistent theory of decision making was VNM
expected utility theory based on VNM axioms (Completeness, Transitivity,
Independence, Continuity). VNM axioms are given for the relation of utilities
like u � v and the operation using probability like pu + (1 − p)v. This
motivates an agent to operate with the expected utilities, EA =

∑
u(xi)Pi

and EB =
∑
u(yi)Qi, and to use their difference as the criterion for making

the preference.
However, the VNM decision theory is not free of paradoxes, section 2.

This problem is fundamentally coupled to the interpretation of probability
used in the VNM theory. VNM used the frequency (statistical) interpretation
of probability. Therefore it is natural to test models of decision making based
on other interpretations. The most powerful alternative to the frequency
probability is the subjective probability.

The subjective probability is not the frequency of an event obtained on the
basis a large number of trial experiments, rather it is the weight of awareness
assigned for unmeasured event. Why do people prefer to appeal to subjective
probability? It can be difficult for them to simulate a large number of trial
experiments in their heads. Thus they use the subjectively assigned weights.
Our model is based on the assumption that agents proceed with subjective
probabilities and that a “natural” operation exists, which is different from
the form of pu+ (1− p)v. In our model of decision making we describe it by
using the framework of quantum theory. We emphasize that the quantum
formalism operates with a state before measurement. In quantum-like models
of cognition and decision making a quantum state is treated as the belief
state of an agent. Such state represents subjective recognition for uncertain
(unmeasured) events. And the measurement is regarded as an acquisition of
subjective experience.

Consider the space of belief states of an agent. In accordance with the
quantum-like modeling of cognition belief-states are represented by normal-
ized vectors of a complex Hilbert space H. These are so-called pure states.
More generally, belief-states are represented by density operators encoding
classical probabilistic mixtures of pure states.

Lotteries A and B are mathematically realized as two orthonormal bases
in H : (|ia〉) and (|ib〉). Here we use the Dirac notation |i〉 for the ith vector
of a basis. In a Hilbert space, each vector |u〉 determines the continuous
linear functional on H which is denoted as 〈u|. Then action of the functional
〈v| on the vector |x〉 is represented by the formal multiplication of these two
symbols: 〈v||u〉 ≡ 〈v|u〉, the scalar product of these two vectors. This algebra

9
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will be heavily used in this paper, see especially appendix 1. We can also
represent lotteries by Hermitian operators

A =
∑
i

xi|ia〉 B =
∑
j

yj|jb〉. (2)

We also remark that any pure state |u〉 determines the orthogonal pro-
jector; in the Dirac notations, σu = |u〉〈u|. This is the density operator
representation of a pure state.

Any vector |ia〉 represents the event (A, xi) - “selecting of the A-lottery
which generates the outcome xi. The same can be said about vectors of the
B-basis. These events are not real, but imaginable. Alice plays with potential
outcomes of the lotteries and compares them.11

We now consider the notion of the quantum transition (conditional) prob-
ability. For our applications, it is sufficient to consider transitions between
the states (|ia〉) and (|jb〉). We have

〈mb| ia〉 =
√
p(mb|ia)eiθia→mb , (3)

where p(mb|ia) = p(ia → mb) is the probability of transition from the state
ia to the state mb. Thus

p(mb|ia) = |〈mb| ia〉|2 (4)

This is the Born rule of quantum theory. Symmetry of a scalar product
implies that

p(ia → mb) = p(mb → ia), i.e., p(mb|ia) = p(ia|mb).

We also remark that the corresponding transition phases are related as
θia→mb

= −θmb→ia .

4 Probabilities and phases

Here we shall discuss the meaning of coefficients in expansion of a quantum
state |ψ〉 with respect to an orthonormal basis. For simplicity, we consider
the two dimensional state space (qubit space). Here we represent some di-
chotomous observable by Hermitian operator A with the eigenvalues (x1, x2)

11This is a kind of counterfactual reasoning. From this viewpoint, we treat the quantum
formalism as a mathematical device for counterfactual reasoning. Of course, we well aware
that this not the only possible representation for such a reasoning; in future other models
of counterfactual reasoning can be in the use.
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and eigenvectors |1〉, |2〉. Any state |ψ〉 can be expanded with respect to this
basis:

|ψ〉 = c1|1〉+ c2|2〉, (5)

where c1, c2 are complex numbers and

|c1|2 + |c1|2 = 1. (6)

By using the quantum terminology the state |ψ〉 is superposition of the
(eigen)states |1〉, |2〉. We remark that the use of the linear space representa-
tion is very common in a variety of cognitive and psychological models, see,
e.g., [?]. Thus one might think that the only uncommon feature of the model
is the use of complex numbers. However, since each complex number z can
be represented as z = u+ iv, where u, v are real numbers, any complex linear
model of dimension n can be treated as the real model of dimension 2n.

The main distinguishing feature of the quantum model is that the coeffi-
cients have a probabilistic meaning given by the famous Born’s rule. For the
state |ψ〉 of the form (5), the numbers

pj = |cj|2 (7)

are interpreted as the probabilities of the outcomes xj of the observable A
having the basis of eingenvectors |1〉, |2〉. This is the fundamental rule of
quantum theory and its validity has been tested in huge variety of experi-
ments. At the same time to be honest with economists who will use this rule,
we have to stress that this is an axiom of quantum theory and, in fact, the
conventional theory does not provide any justification of this rule. It is used,
because it works well. 12

Thus the absolute values of the coefficients in the expansion (5) have the
clear meaning: these are square roots of probabilities, |cj| =

√
pj. However,

any complex number has also the phase: cj = |cj|eiθj , j = 1, 2. The inter-
pretation of phases is more complicated. Why do we need phases at all?
Why is it not sufficient to work with states with real coefficients? From the
viewpoint of the Born rule, it seems that it would be sufficient to proceed
with superpositions of the form:

|ψ〉 =
√
p1|1〉+

√
p2|2〉. (8)

12Some non-conventional approaches to quantum theory can provide derivations of this
rule. However, in such approaches quantum mechanics is considered not as the funda-
mental theory (as it should be in accordance with the Copenhagen interpretation), but
as a theory emergent from some more fundamental theory. In particular, one of the au-
thors derived quantum theory and Born’s rule from theory of classical random fields, see,
e.g., []. However, in this random field model Born’s rule is not fundamental, but just an
approximation. Hence, one can expect deviations from it.

11

Emmanuel Pothos
Highlight

Emmanuel Pothos
Sticky Note
Nosofsky, R.M. (1988). Similarity, Frequency, and Category Representations. Journal of Experimental Psychology: Learning Memory and Cognition, 14,54-65.Shepard, R. N. (1987). Toward a Universal Law of Generalization for Psychological Science. Science, 237, 1317-1323.

Emmanuel Pothos
Highlight

Emmanuel Pothos
Sticky Note
should we not include a mention of Gleason's theorem, ie that this is the only possible way to assign probabilities to subspaces? otherwise, the way you talk about this is sounds that the rule is arbitrary. 

Emmanuel Pothos
Highlight



One of the possibilities to provide a consistent interpretation to the phases
is to consider the dynamical model of states generation. This model is basic
in quantum computing [] and it is widely used outside of physics in theory of
decision making [], []. The crucial point is that to have the law of conservation
of probability, see (6), we have to consider the unitary dynamics. And a
unitary dynamics can generate nontrivial phases starting with superpositions
of the form (8). The dynamics of the quantum state is described by the
Schrödinger equation:

i
∂|ψ〉
∂t

(t) = H|ψ〉(t), |ψ〉(0) = |ψ0〉, (9)

where H is the generator of quantum dynamics, a Hermitian positively defi-
nite operator. It has the dimension of frequency, i.e., 1/time. 13 Therefore H
can be called the oscillation operator. To understand better its meaning, let
us consider its eigenvalues ω1, ω2 and corresponding eigenvectors |e1〉, |e2〉. In
this basis the Schrödinger equation is the system of two equations (j = 1, 2) :

i
dzj
dt

(t) = ωjzj(t), (10)

Its solution has the form
zj(t) = e−iωjtz0j. (11)

These are two oscillatory processes. They combination gives the complete
state-oscillations:

|ψ〉(t) = e−iω1tz01|e1〉+ e−iω2tz02|e2〉. (12)

Thus even if, for the initial state, the coefficients z0j ∈ R, the dynamics
generates nontrivial phases and complex coefficients.

Following the model of dynamical decision making [], [], agent’s state
evolves driven by the Schrödinger equation until the moment of decision
making T = Tdm. The simplest problem of decision making can be repre-
sented as measurement of some observable, say dichotomous, represented by
a Hermitian operator A with eigenvectors |1〉, |2〉. By expanding the state
|ψ〉(t) with respect to this basis we get the representation:

|ψ〉(t) = c1(t)|1〉+ c2(t)|2〉, (13)

13In physics the left-hand side of the equation contains also the Planck constant hav-
ing the dimension of action= time× energy. Therefore the generator has the dimension
of energy. It is called Hamiltonian and has the meaning of the energy observable. In
applications outside of physics we treat it formally as dynamics’ generator. In financial
modeling [] H was interpreted as a kind of financial energy; in social modeling [] it was
interpreted as a kind of social energy. However, such interpretations suffer of the absence
of measurement methodology.

12
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where cj(t) = e−iγjt
√
pj(t). Now at the instant of the self-measurement of

the mental observable A an agent uses the state

|ψ〉 = e−iθ1
√
p1|1〉+ e−iθ2

√
p2|2〉, (14)

where θj = γjT and pj = pj(T ). If the operator A coincides with H, then
θj = ωjT (but this is the very special situation).

For this state, an agent makes the A-observation and she obtains the
output aj with the probability pj. This is the objective probability model of
decision making: for a large ensemble of agents the probability-frequency
of the output xj equals to pj []. Another model is based on the subjective
interpretation of probability []. An agent assigns subjective probabilities of
the outputs by extracting them from the state (14), then she computes odds
O(1/2) = p1

p2
and she makes her choice depending on the value of odds.

In this paper we shall study a more complex problem of comparison of
two lotteries which cannot be reduced to quantum-like modeling of a single
observable. The process of comparison involves two in general incompatible
observables A and B. We shall proceed with the subjective interpretation
of probabilities. However, the main feature of the quantum-like process of
decision making, namely, reduction of this process to elementary oscillations,
will be crucial even in the coming model of comparison of lotteries, see section
7.

5 Belief-state

The state of Alice’s believes about the lottery A can be represented as su-
perposition

|ΨA〉 =
∑
i

√
Pie

iθai|ia〉;

The probability of realization of the event (A, xi) is given by the Born rule
and equals to Pi = |〈ia|ΨA〉|2. In the same way the state of believes about
the lottery B can be represented as superposition

|ΨB〉 =
∑
i

√
Qie

iθbi|ib〉;

To point that an index serves to describe the lottery A (lottery B), we shall
label it by its own index, say ia or jb. And we omit these labels, a, b, when
the meaning of indexes be clear or their coupling to A and B would not be
important.

13

Emmanuel Pothos
Highlight

Emmanuel Pothos
Sticky Note
beliefs

Emmanuel Pothos
Sticky Note
it would be worth including a line re: utilities. do you basically have a standard utility approach but instead of classical probabilities you have quantum probabilities? where do utilities are meant to come from? as in standard theory? 

Emmanuel Pothos
Highlight

Emmanuel Pothos
Sticky Note
indices



Now, Alice also superpose her belief-states about the lotteries and her
total belief-state is created via superposition of her believes about the A-
lottery and the B-lottery:

|Ψ〉 = |ΨA〉+ |ΨB〉. (15)

However, since in general the states representing Alice’s believes about the
lotteries are not orthogonal14, i..e., in general 〈ΨA|ΨB〉 6= 0, the vector |Ψ〉
is not normalized and the state of combined believes is obtained via nor-
malization: |Φ〉 = |Ψ〉/‖|Ψ〉‖. Since the normalization factor is positive, it
does not play any role in the process of comparison of lotteries, see section
6. Therefore we can proceed with the vector |Ψ〉.

In further calculations it is useful to use the operator representation of
|Ψ〉 :

σ ≡ σΨ = |Ψ〉〈Ψ| = 1

2
(σA + σB + σB→A + σA→B),

where
σA = |ΨA〉〈ΨA| =

∑
ij

√
PiPje

i(θai−θaj)|ia〉〈ja|

σB = |ΨB〉〈ΨB| =
∑
ij

√
QiQje

i(θbi−θbj)|ib〉〈jb|

σB→A = |ΨA〉〈ΨB| =
∑
ij

√
PiQje

i(θai−θbj)|ia〉〈jb|

σA→B = |ΨB〉〈ΨA| =
∑
ij

√
PiQje

−i(θai−θbj)|jb〉〈ia|.′

We remark that, since |Ψ〉 is not normalized, trσ 6= 1. (But we repeat that
this is not important in the process of lotteries selection described in section
6.)

6 Comparison operator

In the classical expected utility theory Alice calculates the averages of the
utility function. In the quantum-like model Asano et. al (2017) the utility
function determines the comparison operator.

14Nonorthogonality of the states |ΨA〉 and |ΨB〉 means that the believes about two
lotteries are not complementary. There is an “overlap” between them. The presence of
such overlap plays the important role in the process of decision making, see section 8.
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Let us introduce the operators Eia→jb = |jb〉〈ia| and Ejb→ia = |ia 〉〈jb|.
We have, e.g., Eia→jb|ia〉 = |jb〉. This operator describes the process of tran-
sition from preferring the state |ia〉 to preferring the state |jb〉. The operator
Ejb→ia = |ia〉〈jb| describes transition in the opposite direction. We stress
that these are transitions between the belief-states of Alice. So, they happen
in her mind. We remark that Ejb→ia = E?

ia→jb , i.e., elementary transitions in
opposite directions are represented by adjoint operators.

Now we introduce the two comparison operators:

DB→A =
∑
nm

(u(xn)−u(ym))eiγmb→naEmb→na =
∑
nm

(u(xn)−u(ym))eiγmb→na |na〉〈mb|.

The operator DB→A represents the utility of selection of the lottery A rela-
tively to the utility of selection of the lottery B. We can say that by transition
from the potential outcome (B, ym) to the potential outcome (A, xn) Alice
earns utility u(xn) and at the same time she loses utility u(ym). If u(x) = x
and x has the meaning of cash amounts (say USD), then by such a transition
Alice (potentially) earns xn − ym USD. In the same way we interpret the
transition operator:

DA→B =
∑
nm

(u(ym)−u(xn))eiγna→mbEna→mb
=
∑
nm

(u(ym)−u(xn))eiγna→mb |mb〉〈na|.

This operator represents the utility of selection of the lottery B relatively to
the utility of selection of the lottery A. And finally we define the comparison
operator:

D = DB→A −DA→B.

The operator D compares these two relative utilities. This operator has the
form:

D =
∑
nm

(u(xn)−u(ym))eiγmb→na |na〉〈mb|−
∑
nm

(u(ym)−u(xn))eiγna→mb |mb〉〈na|

(16)

=
∑
nm

δnm(eiγmb→na |na〉〈mb|+ eiγna→mb |mb〉〈na|),

where
δnm = u(xn)− u(ym).

Since all quantum observables are represented by Hermitian operators, the
phases should be related as follows:

γna→mb
= −γmb→na . (17)
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At the same time the operators DB→A and DA→B not Hermitian. We have
that D?

A→B = −DB→A and D = DB→A + D?
B→A. Hence, they can not be

treated as observables. Thus the comparison operator D gives us the integral
judgment. Only heuristically we can treat the D-based judgment as the
result of comparison of two relative utilities represented by the operators
The quantum analog of (subjective) expected utility theory is based on the
natural decision rule:

Decision rule. If the average of the comparison operator D is non-
negative, i.e., 〈D〉ψ = trDσΨ ≥ 0, thnn A � B.

We remark that the comparison operator D has no direct relation to com-
parison of these two concrete lotteries A and B. It was created on the basis
of previous experience of decision making and it was memorized in Alice’s
brain. It is natural to assume that for each class C of decision problems
Alice has its own comparison operator D(C), e.g., the financial operator, the
private life operator, and so on. Of course, these operators are not fixed for
ever and they can be modified on the basis of the new (negative) experience.
However, we do not consider this problem of learning in this paper.

The appendix contains calculations of the quantum averages. The struc-
tures of the comparison operator D and the belief-state σ induce nontrivial
decomposition of the process of decision making into a few sub-processes.
We shall analyze these subprocesses separately, see section 7.

From calculations in the appendix we get:

1

2
trDσA =

∑
ij;m

δjm

√
p(mb|ia)PiPj cos ΘA

ij;m, (18)

where ΘA
ij;m = θia→mb

− γia→mb
+ θai − θaj.

1

2
trDσB =

∑
ij;n

δnj

√
p(na|ib)QiQj cos ΘB

ij;n (19)

where ΘB
ij;n = θib→na − γib→na + θbi − θbj.

Calculations in appendix shows that it is natural to consider the following
combinations of traces for comparison operators and “transition states”, see
(46), (47):

∆1 =
1

2
tr(DB→AσA→B −DA→BσB→A) =

∑
ij

δij

√
PiQj cos Θij. (20)

where Θij = θbj − θai + γjb→ia ;

∆2 =
1

2
tr(DB→AσB→A−DA→BσA→B) =

∑
ij;nm

δnm

√
p(mb|ia)p(na|jb)PiQj cos Γij,nm,

(21)
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where Γij,nm = θjb→na − θia→mb
+ γna→mb

+ θbj − θai.

7 Analysis of the basic counterparts of the

process of comparison of lotteries

As we have seen, the average of the comparison operator is naturally decom-
posed into four counterparts representing special subprocesses of the process
of decision making. We start with the simplest (mathematically) expression.

Process 1: Its output is represented by the quantity ∆1, see (20). To
simplify considerations, let us assume that all phases Θij in the sum are
equal, i.e., Θij ≡ Θ. Thus

∆1 =
[∑

i

u(xi)
√
Pi
∑
j

√
Qj −

∑
j

u(yj)
√
Qj

∑
i

√
Pi

]
cos Θ.

Following Asano et al. (2017), consider the normalized difference

∆1∑
ij

√
PiQj

=
[∑

i

u(xi)P̃i −
∑
j

u(yj)Q̃j

]
cos Θ, (22)

where the quantities

P̃i =

√
Pi∑

i

√
Pi
, Q̃j =

√
Qj∑

j

√
Qj

(23)

can be interpreted as subjective probabilities.15 Alice assigns these probabil-
ities to outcomes of the lotteries in the process of comparison of the relative
utility of the B → A transition (based on her believes encoded in the σB→A
counterpart of her belief state) with the relative utility of the A → B tran-
sition (based on her believes encoded in the σA→B counterpart of her belief
state). We remark that the quantities

〈u〉P̃ =
∑
i

u(xi)P̃i, and 〈u〉Q̃ =
∑
j

u(yj)Q̃j

are expected utilities for the lotteries with respect to these subjective prob-
abilities. Thus, for this part of the process of comparison of two lotteries,
Alice assigns subjective probabilities (P̃i) and (Q̃j) given by the square root
transformation of the original probabilities (Pi) and (Qj). (The latter can be

15We remark that
∑

i P̃i = 1 and
∑

j Q̃j = 1.
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treated as objective statistical probabilities.) Then she calculates subjective
expected utilities and compare them. The final step of comparison is taking
into account the sign of the factor cos Θ. This is really nontrivial quantum
counterpart of the decision process.

We remark that the square root transformation of probabilities can be
directly coupled to selection of weighting functions in the prospect theory, see
(1) in introduction.

Process 2: Now we analyze the counterpart of the decision making
process based on the comparison average given by the quantity

1

2
trDσA =

∑
ij;m

δjm

√
p(m|i)PiPj cos Θij;m,

see (18). In this subprocess Alice uses only the part of her belief-state (given
by ΨA) representing her believes about the A-lottery. She compares these
A-believes with possible transitions to the B-states. Such transitions are
expressed through the transition probabilities p(m|i) = p(ia → mb) and the
phases θia→mb

and γia→mb
. These phases represent correlations between the

events (A, xi) and (B, xm). These quantities are of the subjective nature. Al-
ice tries to treat two lotteries separately, but she has a variety of correlations
between them coming from the analysis of the situation and the previous ex-
perience. The transition probabilities p(m|i) are also subjective quantities.

To simplify analysis, we again assume that all trasition phases Θij;m are
equal, i.e., ΘA ≡ Θij;m. Besides the subjective probabilities P̃i, we consider
subjective probabilities of transition from the lottery A to the lottery B given
by

Q̃m;A =

∑
i

√
p(m|i)Pi∑

i,m

√
p(m|i)Pi

. (24)

(We have
∑

m Q̃m;A = 1.)
If Alice were acting on the basis of the classical (Kolmogorov) probability

and if she were not using the square root weighting of probabilities, then the
quantity Q̃m;A would be equal to the original probability Qm =

∑
i p(m|i)Pi.

Consider now the normalized quantity

trDσA

2
∑

ij;m

√
p(m|i)PiPj

=
[∑

j

u(xj)P̃j −
∑
m

u(ym)Q̃m;A

]
cos ΘA

= [〈u〉P̃ − 〈u〉Q̃A
] cos ΘA,

where the quantities in the brackets are expected utilities with respect to
the corresponding subjective probability distributions. Thus in this decision
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subprocess Alice assigns subjective probabilities to the A-events (by using the
square root transformation). Then she assigns subjective probabilities p(m|i)
for transitions ia → mb. They can be interpreted in the following way. Alice
assumed that the event (A, xi) would happen (with the probability P̃i, but
with the probability p(m|i) she changes her mind and assumes that the event
(B, ym) would happen. The output of such mental fluctuations is assignment
of subjective probability to the events (B, ym) conditioned on the believes
about the A-states, the probability Q̃m;A. Then Alice compute the difference
between expected utilities. If cosΘA ≥ 0, then she uses this difference to
order the lotteries as A � B. However, if cosΘA ≤ 0, then B � A. Thus
the ordering is opposite to the expected utility ordering. We recall that this
is not the final ordering of the lotteries, but just ordering generated by the
subprocess under consideration.

Process 3:
The counterpart of the decision process based on comparison correspond-

ing Alice’s beliefs about the B-lottery is analyzed similarly - again under the
assumption of coincidence of all phases: in (19) ΘB ≡ Θij;n. Consider sub-
jective probabilities of transition from the lottery B to the lottery A given
by

P̃n;B =

∑
i

√
p(n|i)Qi∑

i,n

√
p(n|i)Qi

. (25)

(We have
∑

m P̃n;B = 1.) Then we have

trDσB

2
∑

i,n

√
p(n|i)QiQj

=
[∑

n

u(xn)P̃n;B −
∑
j

u(yj)Q̃j

]
cos ΘB (26)

= [〈u〉P̃B
− 〈u〉P̃ ] cos ΘB.

Thus the output of this counterpart of the decision process is based on com-
parison of subjective expected utilities and relative phases. One of the ex-
pected utilities is based on the subjective account of probability of the transi-
tion (in Alice’s mind) from the believes about the B-lottery to the A-lottery
and another is so to say straightforward subjective probability based on the
square root transform of the initial probabilities (Qj).

Process 4:
Finally, we analyze the most complicated counterpart of the process

of decision making corresponding to the comparison term ∆2. This term
compares the utilities of transitions B → A and A → B when Alice ap-
peals to the counterparts of her state representing believes about these tran-
sitions. This process is characterized by ambiguity and intensive fluctu-
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ations of Alice’s mind in both directions; the intensity of these fluctua-
tions is given by the transition probabilities p(na|jb) = p(jb → na) and
p(mb|ia) = p(ia → mb). Correlations between outcomes of lotteries are en-
coded in the phases θjb→na , θia→mb

= −θmb→ia . Since the general form of
dependence of ∆2 on the phases is very complex, we again assume that

∆2 =
∑
ij;nm

δnm

√
p(mb|ia)p(na|jb)PiQj cos Γ, (27)

where Γ = θjb→na − θia→mb
+ γna→mb

+ θbj − θai. Now, as in the previous pro-
cesses, we can represent this comparison term as difference of two expected
utilities with respect to the subjective probabilities (P̃i;B) and (tildeQj;A) :

∆2∑
ij;nm

√
p(mb|ia)p(na|jb)PiQj

cos Γ

=
[∑

n

u(xn)

∑
i

√
p(n|j)Qj∑

jn

√
p(n|j)Qj

−
∑
m

u(ym)

∑
i

√
p(m|i)Pi∑

im

√
p(m|i)Pi

]
cos Γ =

[〈u〉Q̃A
− 〈u〉P̃B

] cos Γ.

To finalize this the most complex counterpart of the process of compari-
son of the lotteries, Alice takes into account the signs of difference between
subjective expected utilities and and of the interference cos-term.

Complete process of lottery selection. Under the simplification as-
sumption about phases, we can write the average of the comparison operator
as

〈D〉Ψ = c1[〈u〉P̃ − 〈u〉Q̃] cos Θ + c2[〈u〉P̃ − 〈u〉Q̃A
] cos ΘA (28)

+c3[〈u〉P̃B
− 〈u〉P̃ ] cos ΘB + c4[〈u〉Q̃A

− 〈u〉P̃B
] cos Γ.

where the weights cj > 0, j = 1, 2, 3, 4, can be found in the above considera-
tions for the subprocesses 1-4.

In the accordance with the decision rule, if 〈D〉Ψ ≥ 0, Alice selects the
A-lottery.

8 Example: lotteries with two outcomes

Consider two lotteries, A and B, having two outcomes (x1, x2) and (y1, y2)
and the utilities, ui = u(xi) and vj = u(yj). The probabilities Pi, Qj will be
specified later. We start with calculation of the matrix of the comparison
operator D in the basis |1a〉, |2a〉. By definition we have

D = (u1 − v1)[|1a〉〈1b|+ |1b〉〈1a|] + (u1 − v2)[|1a〉〈2b|+ |2b〉〈1a|]
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+(u2 − v1)[|2a〉〈1b|+ |1b〉〈2a|] + (u2 − v2)[|2a〉〈2b|+ |2b〉〈2a|].

Consider in the qubit space two bases

|1a〉 =

(
1
0

)
, |2a〉 =

(
0
1

)
. (29)

and

|1b〉 = (|1a〉+|2a〉)/
√

2 =
1√
2

(
1
1

)
, |2b〉 = (|1a〉−|2a〉)/

√
2 =

1√
2

(
1
−1

)
.

(30)
We no find the matrix of D in the basis |1a〉, |2a〉. We have 〈1a|1a〉〈1b|1a〉 =
1/
√

2, 〈1a|1a〉〈1b|2a〉 = 1/
√

2, 〈2a|1a〉〈1b|1a〉 = 0, 〈2a|1a〉〈1b|2a〉 = 0.

D11,b→a =
1√
2

(
1 1
0 0

)
;D11,a→b =

1√
2

(
1 0
1 0

)
;D11 =

1√
2

(
2 1
1 0

)
(31)

In the same way we obtain

D21,b→a =
1√
2

(
1 −1
0 0

)
;D21,a→b =

1√
2

(
1 0
−1 0

)
;D21 =

1√
2

(
2 −1
−1 0

)
(32)

D12,b→a =
1√
2

(
0 0
1 1

)
;D12,a→b =

1√
2

(
0 1
0 1

)
;D12 =

1√
2

(
0 1
1 2

)
(33)

D22,b→a =
1√
2

(
0 0
1 −1

)
;D22,a→b =

1√
2

(
0 1
0 −1

)
;D22 =

1√
2

(
0 1
1 −2

)
(34)

Hence,

D =
1√
2

[
(u1−v1)

(
2 1
1 0

)
+(u1−v2)

(
2 −1
−1 0

)
+(u2−v1)

(
0 1
1 2

)
+(u2−v2)

(
0 1
1 −2

)]
D =

1√
2

(
4u1 − 2v1 − 2v2 2u2 − 2v1

2u2 − 2v1 2v2 − 2v1

)

8.1 Starting with the uniform probability distributions

Let now P1 = P2 = Q1 = Q2 = 1/2, i.e.,

|ψA〉 = = (|1a〉+|2a〉)/
√

2 =
1√
2

(
1
1

)
, |ψB〉 = (|1b〉+|2b〉)/

√
2 =

(
1
0

)
.

(35)
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|ψ〉 =
|ψA〉+ |ψB〉
‖|ψA〉+ |ψB〉‖

=
1√

(1 +
√

2)2 + 1

(
1 +
√

2
1

)
. (36)

By we obtain the following inequality determining selection of lotteries: 〈ψ|D|ψ〉

= C2
(

(1+
√

2)2u1+(1+
√

2+1)u2−((1+
√

2)2+2(1+
√

2)+1)v1−((1+
√

2)2−1)v2

)
=

= C ′
(

[(1 +
√

2)u1 + u2]− [(1 +
√

2)v1 + v2]
)
≥ 0, (37)

where C,C ′ are positive factors.
The main point is that the weights of utilities for both lotteries coincide

with the coefficients (up to normalization) in the expansions of the state
|ψ〉 (which combines Alice’s believes about the lotteries) with respect to
the corresponding bases. We can rewrite the expectation of the comparison
operator as

〈ψ|D|ψ〉 = C̃
(

[u1P̃1 + u2P̃2]− [v1Q̃1 + v2Q̃2]
)
≥ 0, (38)

where C ′ is a positive factor and the subjective probabilities are given by the
expressions:

P̃1 = Q̃1 =
(1 +

√
2)

2 +
√

2
=

1√
2
,

P̃2 = Q̃2 =
1

2 +
√

2
.

Thus by using the state expansion with respect to the A-basis, see (36),
and by treating amplitudes (the coefficients with respect to the A-basis) as
subjective probabilities, Alice calculates SEU for the A-lottery. We stress
that she uses the subjective probabilities encoded in the state |ψ〉 combining
believes about both lotteries and not probabilities (objective or subjective)
encoded in the state |ψA〉 representing solely believes about the A-lottery.
Now we remark that the complete belief state |ψ〉 can be represented as well
in the form:

|ψ〉 =
1 +
√

2√
(1 +

√
2)2 + 1

|1b〉+
1√

(1 +
√

2)2 + 1
|2b〉. (39)

Alice uses this representation to calculate SEU for the B-lottery.
How can one explain, e.g., the increase of probability of the outcome x1

comparing with the outcome x2? In the state |ψA〉 both these outcomes are
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equally possible. Now Alice started to combine (by using the rules of quan-
tum logics)16 the believes about the two lotteries and she founds that some
believes about the B-lottery encoded in the state |ψB〉 can be interpreted as
the believes in favor of the outcomes x1 and x2, but the additional weight
assigned to x1 is higher than the weight assigned additionally to x2. (In our
example the latter is zero.) This is a kind of constructive and destructive
interference for probabilities assigned to believes in favor of the outcomes x1

and x2, respectively. We recall that

|ψB〉 = (|1b〉+ |2b〉)/
√

2 =
1

2
[(|1a〉+ |2a〉) + (|1a〉 − |2a〉)]. (40)

The believes in favor of x1 which are present in the states |1b〉, |2b〉 interfere
constructively and believes in favor of x2 interfere destructively.

This process of comparison of the lotteries can be decomposed in the
four processes, see section 7, describing reflections of Alice in the process of
decision making. And this is the right way to represent mathematically the
process of comparison of lotteries. The above simple and heuristically clear
picture with the straightforward identification of subjective probabilities with
the coefficients in the expansions of the belief-state with respect to lotteries’
bases does not work in the general case. The reason is simple: the coefficients
need not be positive, see appendix 2, where we consider the case of lotteries
with arbitrary objective probabilities P1, P2 and Q1, Q2.

8.2 Starting with deterministic lotteries and violation
of Cromwell’s rule

Now we consider more interesting features of our model. Consider the degen-
erate case P1 = Q1 = 1 and P2 = Q2 = 0. Thus |ψA〉 = |1a〉 and |ψB〉 = |1b〉.
Here

|ψ〉 =
|1a〉+ |1b〉
‖|1a〉+ |1b〉‖

.

Surprisingly this state coincides with the state (36) corresponding to the
lotteries with probabilities P1 = P2 = Q1 = Q2 = 1/2. How can it happen?

The state |ψA〉 = |1a〉 corresponds to the clear picture of the A-lottery
(in Alice’s brain): the probability of the outcome x1 equals to one. In the
same way the state |ψB〉 = |1b〉 corresponds to the clear picture of the B-
lottery: the probability of the outcome y1 equals to one. In these two (sepa-
rate) pictures the possibilities of the outcomes x2 and y2 are simply ignored.

16These rules are formally represented by linear algebra in complex Hilbert space. So,
Alice expands ψB〉 with respect to the A-basis.
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Then Alice starts to combine these two pictures in one, by using the rules
of quantum logics. By analyzing believes corresponding to the outcome x1

she founds that some of these believes can be interpreted as believes in favor
of the outcome y2 of the B-lottery as well. (Since the state |ψA〉 = |1a〉 can
be represented as |ψA〉 = 1√

2
(|1b〉 + |2b〉).) So, she cannot more belive that

the outcome y2 would never possible and she assigns to it nonzero subjective
probability; in this way the utility v2 = u(y2) comes into the game. In the
same way by analyzing her believes about the outcome y1 (encoded in the
state |ψB〉 = |1b〉 she founds that some of these believes can be interpreted
as believes in favor of the outcome x2 of the A-lottery as well. (Since the
state |ψB〉 = |1b〉 can be represented as |ψB〉 = 1√

2
(|1a〉+ |2a〉).)

In fact, such assignment of nonzero probabilities by starting from zero pri-
ors is one of the most intriguing features of the quantum update of probabili-
ties and quantum Bayesian inference. As we know well, the classical Bayesian
update of probabilities cannot generate nonzero probability from zero prior
probability. This feature of Bayesian inference is sometimes referred as the
Cromwell rule []. As was shown in ??, in quantum Bayesian inference the
the Cromwell rule can be violated. Moreover, this work presents design of a
psychological experiment and the corresponding experimental statistical data
demonstrating violation of the Cromwell rule and, hence, inapplicability of
classical Bayesian inference.

9 Classical expected utility model from quantum-

like model

The quantum-like model developed in this paper has very rich structure and
it is natural to expect that the classical VNM model of lottery selection can
be reproduced as its counterpart. Before to proceed in this direction we shall
consider one special class of orthonormal bases in Hilbert state spaces.

9.1 Mutually unbiased bases

The bases (29), (30) considered in the above example of comparison of lot-
teries are very special. These are so-called mutually unbiased bases (MUB).
We recall that in quantum theory of information two orthonormal bases (ei)
and (fj) are called mutually unbiased if

|〈ei|fj〉|2 =
1

d
, (41)
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where d is the dimension of the Hilbert state space. MUBs play very im-
portant role in the variety of problems of quantum information. In terms of
transition probabilities the equality (41) has the following meaning: all tran-
sition probabilities from the states (ei) to the states (fj) are equal. In the
process of comparison of lotteries Alice considers possible transitions from a
state |ia〉 to all states of the B-basis and vice versa, see section 7, processes
2-4. If the lotteries are represented by MUBs, then by being in the state |ia〉
Alice assigns equal probability for transition to any state |jb〉 and vice versa.
On one hand, such a comparison process is more complicated than a pro-
cess for mutually biased bases. Uniformity of transition probabilities induces
more uncertainty. However, the use of MUBs has also the important ad-
vantage: Alice need not analyze the structure of transition probabilities, she
uses the uniform distribution for transitions. This strategy can be profitable
in the absence of information about probabilities of transitions. Therefore
MUBs might be really preferred by agents processing information by using
the rules of quantum information theory.

9.2 Derivation of VNM-model of lottery selection

In this section we consider special pairs of MUBs such that

〈ei|fj〉 =
1√
d
, (42)

i.e., transition amplitudes do not have phases. The basis (29), (30) is precisely
of this type. So, let (|ia〉) and (|jb〉) be MUBs of this type. We remark that
for two lotteries A = {(xi, Pi)} and B = {(yi, Qi)} we can always assume (by
selecting some additional zero probabilities) that the sets of their outcomes
coincide:

{xi} = {yi} (43)

Consider now the comparison operator D corresponding to these bases,
see (16), and having no phases:

D =
∑
nm

(u(xn)− u(ym))
[
|na〉〈mb|+ |mb〉〈na|

]
, (44)

where the bases satisfy (42). We have

〈ia|D|ia〉 =
∑
nm

(u(xn)− u(ym))
[
〈ia|na〉〈mb|ia〉+ 〈ia|mb〉〈na|ia〉

]
= 2

∑
m

(u(xi)− u(ym)).
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For the B-basis, we have 〈ib|D|ib〉 = 2
∑

n(u(xn)− u(yi)).
Now suppose that Alice combines her images about the lotteries in the

classical manner, i.e., she does not form superposition of the form (15), but
she forms the mixtures of the states σA and σB, i.e.,

σ =
1

2
(σA + σB) (45)

By using previously calculated averages for the basis vectors we obtain

trDσA = 2
∑

i

Pi

∑
m

(u(xi)− u(ym)) = 2[d
∑

i

u(xi)Pi −
∑

m

u(ym)]

= 2[d〈u〉P −
∑
m

u(ym)].

In the same way

trDσB = 2
∑

i

Qi

∑
n

(u(xn)− u(yi)) = 2[
∑

n

(u(xn)− d
∑

i

Qiu(yi)]

= 2[
∑
n

(u(xn)− d〈u〉Q].

Thus
1

d
trDσ = 〈u〉P − 〈u〉Q.

Hence, if Alice combines uncertainties about lotteries in the classical manner,
by using the mixed states, instead of superposition (so, by such a combina-
tion she does not increase uncertainty), then she, in fact, acts by comparing
two (objective) expected utilities. Such a process of the lottery selection is
described by VNM-model.

Appendix 1: calculations of quantum averages

We start with calculation of average trDB→AσA.

trDB→AσA = tr
(∑

nm

δnmeiγmb→na |na〉〈mb|
)(∑

ij

√
PiPje

i(θai−θaj)|ia〉〈ja|
)

=
∑
ij;nm

δnm
√
PiPje

i(θai−θaj+γmb→na )〈ja|na〉〈mb|ia〉
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By using the definition of quantum transition (conditional) probabilities, see
(3), (4), we obtain:

trDB→AσA =
∑
ij;m

δjm

√
p(mb|ia)PiPje

i(θia→mb
+γmb→ja+θai−θaj)

In the same way we obtain

trDA→BσA = −tr
(∑

nm

δnmeiγna→mb |mb〉〈na|
)(∑

ij

√
PiPje

i(θai−θaj)|ia〉〈ja|
)

= −
∑
ij;nm

δnm
√
PiPje

i(θai−θaj+γna→mb
)〈na|ia〉〈ja|mb〉

= −
∑
ij;m

δim

√
p(ja|mb)PiPje

i(θmb→ia+γia→mb
+θai−θaj)

This gives us expression (18) for trDσA. The calculations leading to expres-
sion (19) for trDσB just repeat the previous ones.

Now we find traces for comparison operators and “transition states”:

trDB→AσB→A = tr
(∑

nm

δnmeiγmb→na |na〉〈mb|
)(∑

ij

√
PiQje

i(θai−θbj)|ia〉〈jb|
)

∑
ij;nm

δnm
√
PiQje

i(θai−θbj+γna→mb
)〈jb|na〉〈mb|ia〉

=
∑
ij;nm

δnm

√
p(na|jb)p(mb|ia)PiQje

i(θia→mb
−θjb→na+γna→mb

+θai−θbj).

trDA→BσB→A = −tr
(∑

nm

δnmeiγna→mb |mb〉〈na|
)(∑

ij

√
PiQje

i(θai−θbj)|ia〉〈jb|
)

= −
∑
ij;nm

δnm
√
PiQje

i(θai−θbj+γna→mb
)〈jb|mb〉〈na|ia〉

= −
∑
ij

δij
√
PiQje

i(θai−θbj+γia→jb
).

In the same way

trDA→BσA→B = −
∑
ij;nm

δnm

√
p(mb|ia)p(na|jb)PiQje

i(θjb→na−θia→mb
+γmb→na+θbj−θai)
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and

trDB→AσA→B = tr
(∑

nm

δnmeiγmb→na |na〉〈mb|
)(∑

ij

√
PiQje

i(θbj−θai)|jb〉〈ia|
)

=

∑
ij

δij
√
PiQje

i(θbj−θai+γjb→ia ).

Thus

∆1 =
1

2
tr(DB→AσA→B −DA→BσB→A) =

∑
ij

δij

√
PiQj cos(θbj − θai + γjb→ia).

(46)
Then

∆2 =
1

2
tr(DB→AσB→A −DA→BσA→B) =

1

2

∑
ij;nm

δnm

√
p(na|jb)p(mb|ia)PiQje

i(θia→mb
−θjb→na+γna→mb

+θai−θbj)

−1

2

∑
ij;nm

δnm

√
p(mb|ia)p(na|jb)PiQje

i(θjb→na−θia→mb
−γna→mb

+θbj−θai).

Finally, we get

∆2 =
∑
ij;nm

δnm

√
p(mb|ia)p(na|jb)PiQj cos(θjb→na−θia→mb

+γna→mb
+θbj−θai).

(47)

Appendix 2: lotteries with two outcomes and

arbitrary probabilities

We consider the same bases for the lotteries as in section 8, see (29), (30),
but now the probabilities P1, P2 and Q1, Q2 are arbitrary.

|ψA〉 =
√
P1|1a〉+

√
P2|2a〉, |ψB〉 =

√
Q1|1b〉+

√
Q2|2b〉. (48)

The complete belief-state can be written as

|ψ〉 =
c1|1a〉+ c2|2a〉
‖c1|1a〉+ c2|2a〉‖

, (49)

where

c1 =
√
P1 +

√
Q1 +

√
Q2√

2
, c2 =

√
P2 +

√
Q1 −

√
Q2√

2
. (50)
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Hence, the decision inequality has the form (with some factor C > 0) :

〈ψ|D|ψ〉 = C
(

[2c2
1u1 + 2c1c2u2]− [(c1 + c2)2v1 + (c2

1 − c2
2)v2]

)
≥ 0. (51)

It can be rewritten as

〈ψ|D|ψ〉 ∼ 2c1[c1u1 + c2u2]− (c1 + c2)[(c1 + c2)v1 + (c1 − c2)v2]
)
≥ 0. (52)

Thus Alice assigns to the outcomes of the lotteries the weights c1, c2 and
d1 = c1+c2, d2 = c1−c2. As we have seen in (49), the weights c1, c2 correspond
to the coefficients in the expansion of the complete state |ψ〉 with respect to
the A-basis. It is easy to see that

|ψ〉 =
d1|1b〉+ d2|2b〉
‖d1|1b〉+ d2|2b〉‖

. (53)

The comparison inequality (52) can be written as comparison of two subjec-
tive utilities with respect to the probabilities:

P̃1 =
c1

c1 + c2

=

√
P1 +

√
Q1+

√
Q2√

2√
P1 +

√
P2 +

√
2Q1

, (54)

P̃2 =
c2

c1 + c2

=

√
P2 +

√
Q1−

√
Q2√

2√
P1 +

√
P2 +

√
2Q1

(55)

Q̃1 =
c1 + c2

2c1

=

√
P1 +

√
P2 +

√
2Q1

2[
√
P1 +

√
Q1+

√
Q2√

2
]

(56)

Q̃2 =
c1 − c2

2c1

=

√
P1 −

√
P2 +

√
2Q2

2[
√
P1 +

√
Q1+

√
Q2√

2
]
. (57)

Thus, for some C̃ > 0,

〈ψ|D|ψ〉 = C̃
(

(c1 + c2)[u1P̃1 + u2P̃2]− 2c1[v1Q̃1 + v2Q̃2]
)
≥ 0. (58)

However, as was emphasized in section 8, generally the quantities P̃1, P̃2 and
Q̃1, Q̃2 cannot be interpreted as probabilities since P̃2 and Q̃2 can become
negative (and, hence, P̃1 and Q̃1 can become larger than 1). Therefore to
keep to the probabilistic reasoning, we have to split the process of comparison
of the lotteries in the four components (see section 7); each of this component
can be interpreted as comparison of two subjective utilities.
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At the same time appearance of negative and even complex “probabili-
ties” is rather common in quantum theory, starting with works of Dirac []
and Wigner [], see also []. One can proceed formally with such signed or
complex distributions and develop sufficiently advanced mathematical for-
malism, including analogs of the central limit theorem and the law of large
numbers []. Recently signed “probabilities” were actively used to model the
proces of decision making []. One can consider the calculus of signed (or even
complex) distributions as an alternative to the quantum probability calculus.
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