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Merging and splitting eigenspace models
Peter Hall, David Marshall, Ralph Martin

Abstract—
We present new deterministic methods that given two

eigenspace models, each representing a set of n-dimensional ob-
servations will: (1) merge the models to yield a representation of
the union of the sets; (2) split one model from another to represent
the difference between the sets; as this is done, we accurately keep
track of the mean.

These methods are more efficient than computing new
eigenspace models directly from the observations when the eigen-
models are dimensionally small compared to the total number of
observations.

Such methods are important because they provide a basis for
novel techniques in machine learning, using a dynamic split-and-
merge paradigm to optimally cluster observations.

Here we present a theoretical derivation of the methods, empiri-
cal results relating to the efficiency and accuracy of the techniques,
and three general applications, including the on-line construction
of Gaussian mixture models.

Keywords: Eigenspace models, principal component analysis,
model merging, model splitting, merge-and-split.

I. INTRODUCTION

The contributions of this paper are: (1) a method for merging
eigenspace models; (2) a method for splitting eigenspace models; in
both of which we explicitly and accurately keep track of the mean of
the observations. Methods for merging (updating) or splitting (down-
dating) eigenspace models exist [1], [2], [3], [4], [5] but they generally
fail to handle a change in the mean adequately. The methods we pro-
vide do update the mean properly, which is of crucial importance in
classification problems — in such problems the mean represents the
centre of a cluster of observations in a given class. Such classification
problems were our original reason for investigating eigenspace model
updating.

Eigenspace models have a wide variety of applications, for exam-
ple: classification for recognition systems [6], characterising normal
modes of vibration for dynamic models, such as the heart [7], mo-
tion sequence analysis [8], and the temporal tracking of signals [4].
Our motivation for this work arose in the context of building models
of blood vessels for x-ray interpretation [9], and building eigenspace
models for many images [10]. As an example, an image database of
employees may require frequent changes to its records: our methods
permit both the addition and deletion of new images, without the need
to recompute the eigenspace model ab initio.

We would also like to incrementally build Gaussian mixture mod-
els [11], [12], which use separate Gaussian distributions to describe
data falling into several clusters or classes. Updating the means is a
prerequisite in this case, as the mean represents the centre of the dis-
tribution for each class; classification is based on the Mahalanobis dis-
tance, which measures the distance from the mean in units of standard
deviation. Building such models dynamically is, perhaps, the most sig-
nificant application of our methods. (Currently the EM Algorithm [13]
is used for building such models.)

This paper is primarily concerned with deriving a new theoretical
framework for merging and splitting eigenspaces, and an empirical
evaluation of these new techniques, rather than their particular applica-
tion in any area. However, we demonstrate our methods in three ways:
building a database from many images; a security application; and the
dynamic construction of Gaussian-mixture models.

All authors are with the Department of Computer Science, University of
Wales, Cardiff, PO Box 916, Cardiff CF2 3XF, Wales UK: peter@cs.cf.ac.uk

An eigenspace model is a statistical description of a set of N ob-
servations in n-dimensional space; such a model may be regarded as
a multi-dimensional Gaussian distribution. From a geometric point
of view, an eigenspace model can be thought of as a hyperellipsoid
that characterises a set of observations: its centre is the mean of the
observations; its axes point in directions along which the spread of ob-
servations is maximised, subject to them being orthogonal; the surface
of the hyperellipsoid is a contour that lies at one standard deviation
from the mean. Often, the hyperellipsoid is almost flat along certain
directions, and thus can be modelled as having lower dimension than
the space in which it is embedded.

Eigenspace models are computed using either eigenvalue decompo-
sition (EVD) (also called principal component analysis) or singular-
value decomposition (SVD). We wish to distinguish between batch
and incremental computation. In batch computation all observations
are used simultaneously to compute the eigenspace model. In an in-
cremental computation, an existing eigenspace model is updated using
new observations.

Previous research in incremental computation of eigenspace mod-
els has only considered adding exactly one new observation at a time
to an eigenspace model [1], [2], [3], [4], [5], [14]. A common theme
of these methods is that none require the original observations to be
retained. Rather, a description of the hyperellipsoid is sufficient in-
formation for incremental computation of the new eigenspace model.
Each of these previous approaches allows for a change in dimension-
ality of the hyperellipsoid, so that a single additional axis is added if
necessary. Only our previous work allows for a shift of the centre of
the hyperellipsoid [14], other methods keep it fixed at the origin. This
proves crucial if the eigenspace model is to be used for classification,
as demonstrated in [14]: a set of observations whose mean is far from
the origin is clearly not well modelled by a hyperellipsoid centred at
the origin.

When using incremental methods previous observations need not
be kept — thus reducing storage requirements and making large prob-
lems computationally feasible. Incremental methods must be used if
not all observations are available simultaneously. For example, a com-
puter may lack the memory resources required to store all observa-
tions. This is true even if low-dimensional methods are used to com-
pute the eigenspace [5], [15]. (We will mention low-dimensional meth-
ods later, in Section II-B, but they give an advantage when the number
of observations is less than the dimensionality of the space, N < n,
which is often true when observations are images.) Even if all obser-
vations are available, it is usually faster to compute a new eigenspace
model by incrementally updating an existing one rather than by using
batch computation [3]. This is because the incremental methods typi-
cally compute p eigenvectors, with p ≤ min(n, N). The disadvantage
of incremental methods is their accuracy compared to batch methods.
When only a few incremental updates are made the inaccuracy is small,
and is probably acceptable for the great majority of applications [14].
When many thousands of updates are made, as when eigenspace mod-
els are incremented with a single observation at a time, the inaccura-
cies build up, although methods exist to circumvent this problem [4].
In contrast, our methods allow a whole new set of observations to be
added in a single step, thus reducing the total number of updates to an
existing model.

Section II defines eigenspace models in detail, standard methods for
computing them, and how they are used for representing and classify-
ing observations. Section III discusses merging of eigenspace mod-
els, while Section IV addresses splitting. Section V presents empirical
results, and Section VI presents some applications of the work. Sec-
tion VII gives our conclusions.
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II. EIGENSPACE MODELS

In this section, we describe what we mean by eigenspace models,
briefly discuss standard methods for their batch computation, and how
observations can be represented using them. Firstly, we establish our
notation for the rest of the paper.

Vectors are columns, and denoted by a single underline. Matrices
are denoted by a double underline. The size of a vector, or matrix,
is often important, and where we wish to emphasise this size, it is
denoted by subscripts. Particular column vectors within a matrix are
denoted by a superscript, and a superscript on a vector denotes a par-
ticular observation from a set of observations, so we treat observations
as column vectors of a matrix. As an example, Ai

mn
is the ith column

vector in an (m× n) matrix. We denote matrices formed by concate-
nation using square brackets. Thus [A

mn
b] is an (m×(n+1)) matrix,

with vector b appended to A
mn

as a last column.

A. Theoretical background
Consider N observations, each a column vector xi ∈ <n. We com-

pute an eigenspace model as follows:
The mean of the observations is

x̄ =
1

N

N
∑

i=1

xi (1)

and their covariance is

C
nn

=
1

N

N
∑

i=1

(xi − x̄)(xi − x̄)T

=

(

1

N

N
∑

i=1

xi(xi)T

)

− x̄x̄T (2)

Note that C
nn

is real and symmetric.
The axes of the hyperellipsoid, and the spread of observations over

each axis are the eigenvectors and eigenvalues of the eigenproblem

C
nn

U
nn

= U
nn

Λ
nn

(3)

or, equivalently, the eigenvalue decomposition of C
nn

is

C
nn

= U
nn

Λ
nn

UT

nn
(4)

where the columns of U
nn

are eigenvectors, and Λ
nn

is a diago-
nal matrix of eigenvalues. The eigenvectors are orthonormal, so that
UT

nn
U

nn
= I

nn
, the (n× n) identity matrix.

The ith eigenvector U i and ith eigenvalue Λii

nn
are associated; the

eigenvalue is the length of the eigenvector, which is the ith axis of
the hyperellipsoid. Typically, only p ≤ min(n, N) of the eigenvec-
tors have significant eigenvalues, and hence only p of the n eigen-
vectors need be retained. This is because the observations are corre-
lated so that the covariance matrix is, to a good approximation, rank-
degenerate: small eigenvalues are presumed to be negligible. Thus
an eigenspace model often spans a p-dimensional subspace of the n-
dimensional space in which it is embedded.

Different criteria for discarding eigenvectors and eigenvalues exist,
and these suit different applications and different methods of compu-
tation. Three common methods are: (1) stipulate p as a fixed integer,
and so keep the p largest eigenvectors [5]; (2) keep those p eigenvec-
tors whose size is larger than an absolute threshold [3]; (3) keep the p
eigenvectors such that a specified fraction of energy in the eigenspec-
trum (computed as the sum of eigenvalues) is retained.

Having chosen to discard certain eigenvectors and eigenvalues, we
can recast Equation 4 using block form matrices and vectors. With-
out loss of generality, we can permute the eigenvectors and eigenval-
ues such that U

np
are those eigenvectors that are kept, and Λ

pp
their

eigenvalues. If d = n− p, then U
nd

and Λ
dd

are those discarded. We
may rewrite Equation 4 as:

C
nn

= U
nn

Λ
nn

UT

nn

= [U
np

U
nd

]

[

Λ
pp

0
pd

0
dp

Λ
dd

]

[U
np

U
nd

]T

= U
np

Λ
pp

UT

np
+ U

nd
Λ

dd
UT

nd
(5)

Hence

C
nn

≈ U
np

Λ
pp

UT

np
(6)

with error U
nd

Λ
dd

UT

nd
, which is small if Λ

dd
≈ 0

dd
.

Thus, we define an eigenspace model, Ω, as the mean, a (reduced)
set of eigenvectors, their eigenvalues, and the number of observations:

Ω = (x̄, U
np

, Λ
pp

, N) (7)

B. Low-dimensional computation of eigenspace models
Low-dimensional batch methods are often used to compute

eigenspace models, and are especially important when the dimension-
ality of the observations is very large compared to their number. Thus,
they may be used to compute eigenspace models that would other-
wise be infeasible. Incremental methods also use a low dimensional
approach.

In principle, computing an eigenspace model requires that we con-
struct an (n×n) matrix, where n is the dimension of each observation.
In practice, the model can be computed by using an (N ×N) matrix,
where N is the number of observations. This is an advantage in appli-
cations like image processing where, typically, N � n.

We show how this can be done by first considering the relationship
between eigenvalue decomposition and singular value decomposition.
This leads to a simple derivation for a low-dimensional batch method
for computing the eigenspace model. The same results were obtained,
at greater length, by [5], see also [15].

Let Y
nN

be the set of observations shifted to the mean, so that

Y i = xi − x̄. Then a SVD of Y
nN

is:

Y
nN

= U
nn

Σ
nN

V T

NN
(8)

where U
nn

are the left singular vectors, which are identical to the
eigenvectors previously given; Σ

nN
is a matrix with singular values

on its leading diagonal, with Λ
nn

= Σ
nN

ΣT

nN
/N ; and V

NN
are

right singular vectors. Both U
nn

and V
NN

are orthonormal matrices.
This can now be used to compute eigenspace models in a low-

dimensional way, as follows:

Y T

nN
Y

nN
= V

NN
ΣT

nN
Σ

nN
V T

NN

= V
NN

S
NN

V T

NN
(9)

is an (N ×N) eigenproblem. S
NN

is the same as Λ
nn

/N , except for
the presence of extra trailing zeros on the main diagonal of Λ

nn
. If we

discard the small singular values, and their singular vectors, following
the above, then remaining eigenvectors vectors are

U
np

= Y
nN

V
Np

Σ−1

pp
. (10)

This result formed the basis of the incremental technique developed
by Murakami and Kumar [5] but they did not allow for a change in
origin, nor does their approach readily generalise to merging and split-
ting. Chandrasekaran et. al. [3] observe that a solution based on the
matrix product Y T

nN
Y

nN
, as above, is likely to lead to inaccurate re-

sults because of conditioning problems, and they develop a method for
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incrementally updating SVD solutions with a single observation. SVD
methods have proven more accurate (see [14]) and can be generalised
for block updating, with a change of mean, provided all right singular
vectors are maintained. We have not seen this published by others, but
do have a derivation which is too long to include in this paper.

We can also perform downdating of the SVD, but only via EVD,
in which a reduced set of left singular vectors is computed first. We
allow for a shift of mean and block downdating. Again a deriva-
tion is too long for this paper, but here we provide a brief expla-
nation of the difficulty. Given SVD for three data sets such that
[APBT , CQDT ] = ERFT , the problem is to compute the SVD

APBT . This requires that terms on the left hand side be sepa-
rated, which is difficult. Our approach follows that of Bunch et.
al [2], who are the only authors we know to address the problem,
and multiply on the right by the transpose of the matrices, hence tak-
ing an inner product and converting the problem to EVD, as follows:
[APBT , CQDT ][APBT , CQDT ]T = ERFT (ERF T )T leading

to AP 2AT + CQ2CT = ER2ET . We conclude that a general dy-

namic change of SVD is not possible directly; this is not the case for
EVD.

SVD methods were actually proposed quite early in the develop-
ment of incremental eigenproblem analysis [2]. This early work in-
cluded a proposal to delete single observations, but did not extend to
merging and splitting. SVD also formed the basis of a proposal to
incrementally update an eigenspace with several observations at one
step [8]. However, contrary to our method, a possible change in the di-
mension of the solution eigenspace was not considered. Furthermore,
none of these methods considered a change in origin.

Our incremental method is based on the matrix product C
nn

=

Y
nN

Y T

nN
, and specifically its approximation as in Equation 6. It is

a generalisation of our earlier work [14], which now appears naturally
as the special case of adding a single observation.

C. Representing and classifying observations
High-dimensional observations may be approximated by a low-

dimensional vector using an eigenspace model. Eigenspace models
may also be used for classification. We briefly discuss both ideas here,
prior to using them in our results section.

An n-dimensional observation xn is represented using an
eigenspace model Ω = (x̄, U

np
, Λ

pp
, N) as a p-dimensional vector

g
p
:

g
p

= UT

np
(xn − x̄) (11)

This shifts the observation to the mean, and then represents it by com-
ponents along each eigenvector. This is called the Karhunen-Loève
transform [16].

The n-dimensional residue vector is defined by:

hn = xn − U
np

g
p

= xn − U
np

(UT

np
(xn − x̄)) (12)

and hn is orthogonal to every vector in U
np

. Thus, |hn| is the residue

error in the representation of xn with respect Ω.
The likelihood associated with the same observation is given by:

P (x|Ω) =
exp(− 1

2
(x− x̄)T C−1

nn
(x− x̄))

(2π)n/2det(C
nn

)1/2

=
exp(− 1

2
(x− x̄)T U

nn
Λ−1

nn
UT

nn
(x− x̄))

(2π)n/2det(Λ
nn

)1/2
(13)

Clearly, the above definition cannot be used directly in cases where
N ≤ n, as C

nn
is then rank degenerate. In such cases we use an

alternative definition due to Moghaddam and Pentland [6] which is
beyond the scope of this paper.

III. MERGING EIGENSPACE MODELS

We now turn our attention to one of the two main contributions of
this paper, merging eigenspace models.

We derive a solution to the following problem. Let X
nN

and
Y

nM
be two sets of observations. Let their eigenspace models be

Ω = (x̄, U
np

, Λ
pp

, N) and Ψ = (ȳ, V
nq

, ∆
qq

, M) respectively. The

problem is to compute the eigenspace model Φ = (z̄, W
nr

, Π
rr

, P ),
for Z

n(N+M)
= [X

nN
Y

nM
] using only Ω and Ψ.

Clearly, the total number of new observations is P = N + M .
The combined mean is:

z̄ =
1

(N + M)

(

Nx̄ + Mȳ
)

(14)

The combined covariance matrix is:

E
nn

=
1

(N + M)

(

N+M
∑

i=1

(z − z̄)(z − z̄)T

)

=
1

(N + M)

(

N
∑

i=1

xi(xi)T +

M
∑

i=1

yi(yi)T

)

− zzT

=
1

(N + M)
(NC

nn
+ Nx̄x̄T + MD

nn
+ MȳȳT )− zzT

=
N

(N + M)
C

nn
+

M

(N + M)
D

nn
+

NM

(N + M)2
(x̄− ȳ)(x̄− ȳ)T (15)

where C
nn

and D
nn

are the covariance matrices for X
nN

and Y
nM

,
respectively.

We wish to compute the s eigenvectors and eigenvalues that satisfy:

E
nn

= W
ns

Π
ss

WT

ns
(16)

where some eigenvalues are subsequently discarded to give r non-
negligible eigenvectors and eigenvalues. The problem to be solved
is of size s, and this is necessarily bounded by

max(p, q) ≤ s ≤ p + q + 1 (17)

We explain the perhaps surprising additional 1 in the upper limit later
(Section III-A.1), but briefly, it is needed to allow for the vector dif-
ference between the means, x̄− ȳ.

A. Method of solution

This problem may be solved in three steps:
1) Construct an orthonormal basis set, Υ

ns
, that spans both

eigenspace models and x̄ − ȳ. This basis differs from the re-
quired eigenvectors, W

ns
, by a rotation, R

ss
, so that:

W
ns

= Υ
ns

R
ss

(18)

2) Use Υ
ns

to derive an intermediate eigenproblem. The solution
of this problem provides the eigenvalues, Π

ss
, needed for the

merged eigenmodel. The eigenvectors, R
ss

, comprise the linear
transform that rotates the basis set Υ

ns
.

3) Compute the eigenvectors W
ns

, as above, and discard any
eigenvectors and eigenvalues using the chosen criteria (as dis-
cussed above) to yield W

nr
and Π

rr
.

We now give details of each step.
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1) Construct an orthonormal basis set: To construct an or-
thonormal basis for the combined eigenmodels we must choose a set
of orthonormal vectors that span three subspaces: (1) the subspace
spanned by eigenvectors U

np
; (2): the subspace spanned by eigenvec-

tors V
nq

;(3) the subspace spanned by (x̄ − ȳ). The last of these is

a single vector. It is necessary because the vector joining the centre
of the two eigenspace models need not belong to either eigenspace.
This accounts for the additional 1 in the upper limit of the bounds
of s in Equation 17. To see this consider a pair of two-dimensional
eigenspaces which are embedded in a three-dimensional space. The
eigenvectors for each eigenspace could define parallel planes that are
separated by a vector perpendicular to each of them. Clearly, a merged
model should be a 3D ellipse, and the vector between the origins of the
models must contain a component perpendicular to both eigenspaces.

A sufficient spanning set is:

Υ
ns

= [U
np

, ν
nt

] (19)

where ν
nt

is an orthonormal basis set for that component of the
eigenspace of Ψ which is orthogonal to the eigenspace of Ω, and in
addition accounts for that component of (x̄ − ȳ) orthogonal to both
eigenspaces; t = s− p.

To construct ν
nt

we start by computing the residues of each of the
eigenvectors in V

nq
with respect to the eigenspace of Ω:

G
pq

= UT

np
V

nq
(20)

H
nq

= V
nq
− U

np
G

pq
(21)

The H
nq

are all orthogonal to U
np

in the sense that (Hi)T U j = 0 for

all i, j. In general, however, some of the H
nq

are zero vectors, because

such vectors represent the intersection of the two eigenspaces. These
zero vectors are removed to leave H

nq′
. We also compute the residue

h of ȳ − x̄ with respect to the eigenspace of Ω, using Equation 12.
ν

nt
can now be computed by finding an orthonormal basis for

[H
nq′

, h], which is sufficient to ensure that Υ
ns

is orthonormal.

Gramm-Schmidt orthonormalisation [17] may be used to do this:

ν
nt

= Orthonormalise([H
nq′

, h]) (22)

2) Forming a intermediate eigenproblem: We now form a new
eigenproblem by substituting Equation 19 into Equation 18, and the
result together with Equation 15 into Equation 16 to obtain:

N

(N + M)
C

nn
+

M

(N + M)
D

nn
+

NM

(N + M)
(x̄− ȳ)(x̄− ȳ)T =

[U
np

ν
nt

]R
ss

Π
ss

RT

ss
[U

np
ν

nt
]T (23)

Multiplying both sides on the left by [U
np

, ν
nt

]T , on the right by

[U
np

, ν
nt

] and using the fact that [U
np

, ν
nt

]T is a left inverse of

[U
np

, ν
nt

] we obtain:

[U
np

ν
nt

]T (
N

(N + M)
C

nn
+

M

(N + M)
D

nn
+

NM

(N + M)2
(x̄− ȳ)(x̄− ȳ)T )[U

np
, ν

nt
] = R

ss
Π

ss
RT

ss
(24)

which is a new eigenproblem whose solution eigenvectors constitute
the R

ss
we seek, and whose eigenvalues provide eigenvalues for the

combined eigenspace model. We do not know the covariance matrices
C

nn
or D

nn
, but these can be eliminated as follows:

The first term in Equation 24 is proportional to:

[U
np

ν
nt

]T C
nn

[U
np

ν] =

[

UT

np
C

nn
U

np
UT

np
C

nn
ν

nt

νT

nt
C

nn
U

np
νT

nt
C

nn
ν

nt

]

(25)

By Equation 6, UT

np
C

nn
U

np
≈ Λ

pp
. Also, UT

np
ν

nt
= 0

pt
by con-

struction, and again, using Equation 6 we conclude:

[U
np

ν
nt

]T C
nn

[U
np

, ν
nt

] ≈

[

Λ
pp

0
pt

0
tp

0
tt

]

(26)

The second term in Equation 24 is proportional to:

[U
np

ν
nt

]T D
nn

[U
np

ν
nt

] =

[

UT

np
D

nn
U

np
UT

np
D

nn
ν

nt

νT

nt
D

nn
, U

np
νT

nt
D

nn
ν

nt

]

.

(27)

We have D
nn
≈ V

nq
∆

qq
V T

nq
, which on substitution gives the right

hand side as

[

UT

np
V

nq
∆

qq
V T

nq
U

np
UT

np
V

nq
∆

qq
V T

nq
ν

nt

νT

nt
V

nq
∆

qq
V T

nq
U

p
νT

nt
V

nq
∆

qq
V T

nq
ν

nt

]

From Equation 20 we have G
pq

= UT

np
V

nq
. Set Γ

tq
= νT

nt
V

nq
. We

obtain:

[U
np

ν
nt

]T D[U
np

ν
nt

] =

[

G
pq

∆
qq

GT

pq
G

pq
∆

qq
ΓT

tq

Γ
tq

∆
qq

GT

pq
Γ

tq
∆

qq
ΓT

tq

]

(28)

Now consider the final term in Equation 24:

[U
np

ν
nt

]T (x̄− ȳ)(x̄− ȳ)T [U
np

, ν
nt

] =
[

UT

np
(x̄− ȳ)(x̄− ȳ)T U

np
UT

np
(x̄− ȳ)(x̄− ȳ)T ν

nt

νT

nt
(x̄− ȳ)(x̄− ȳ)T U

np
νT

nt
(x̄− ȳ)(x̄− ȳ)T ν

nt

]

(29)

Setting g
p

= UT

np
(x̄− ȳ), and γ

t
= νT

nt
(x̄− ȳ), this becomes:

[

g
p
gT

p
g

p
γT

t

γ
t
gT

p
γ

t
γT

t

]

(30)

So, the new eigenproblem to be solved may be approximated by

N

(N + M)

[

Λ
pp

0
pt

0
tp

0
tt

]

+

M

(N + M)

[

G
pq

∆
qq

GT

pq
G

pq
∆

qq
ΓT

tq

Γ
tq

∆
qq

GT

pq
Γ

tq
∆

qq
ΓT

tq

]

+

NM

(N + M)2

[

g
p
gT

p
g

p
γT

t

γ
t
gT

p
γ

t
γT

t

]

= R
ss

Π
ss

RT

ss
(31)

Each matrix is of size s×s, where s = p+t ≤ p+q+1 ≤ min(n, M+
N). Thus we have eliminated the need for the original covariance
matrices. Note this also reduces the size of the central matrix on the
left hand side. This is of crucial computational importance because
it makes the eigenproblem tractable in cases where the dimension of
each datum is large, as is the case for image data.
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3) Computing the eigenvectors: The matrix Π
ss

is the eigen-
value matrix we set out to compute. The eigenvectors R

ss
comprise a

rotation for Υ
ns

. Hence, we use Equation 18 to compute the eigenvec-
tors for Π

ss
. However, not all eigenvectors and eigenvalues need be

kept, and some (s − r of them) may be discarded using a criterion as
previously discussed in Section II. This discarding of eigenvectors and
eigenvalues will usually be carried out each time a pair of eigenspace
models is merged.

Notice that there are two sources of error. The first is rounding er-
ror introduced because of finite machine precision. The second source
of error is introduced by truncation of the eigenmodel, i.e. the dis-
carding of eigenvectors and eigenvalues. This is the dominant source,
and its precise behaviour deserves further investigation, both theoreti-
cally and empirically. However, our experience backs up our intuition:
discarding more eigenvectors and eigenvalues worsens the approxima-
tion. (Furthermore, note that we require no lower bound on the number
of eigenvectors, which is in contrast to SVD methods where all right
singular vectors must be kept to block update while shifting the mean.)

B. Discussion on the form of the solution
We now briefly justify that the solution obtained is of the correct

form by considering several special cases.
First, suppose that both eigenspace models are null, that is each is

specified by (0, 0, 0, 0). Then the system is clearly degenerate and null
eigenvectors and zero eigenvalues are computed.

If exactly one eigenspace model is null, then the non-null
eigenspace model is computed and returned by this process. To see
this, suppose that Ψ is null. Then, the second and third matrices on the
left-hand side of Equation 31 both disappear. The first matrix reduces
to Λ

pp
exactly (t = 0), and hence the eigenvalues remain unchanged.

In this case, the rotation R
ss

is the identity matrix, and the eigenvec-
tors are also unchanged. If instead Ω is a null model, then only the
second matrix will remain (as N = 0). Also ν

nt
and V

nq
will be

related by a rotation (or else identical). The solution to the eigenprob-
lem then computes the inverse of any such rotation, and the eigenspace
model remain unchanged.

Suppose Ψ has exactly one observation, then it is specified by
(y, 0, 0, 1). Hence, the middle term on the left of Equation 31 dis-
appears, and ν

nt
is the unit vector in the direction y − x̄. Hence

γ
t
= |y − x̄| is a scalar, and the eigenproblem becomes

N

(N + 1)

[

Λ
pp

0
p1

0
1p

0

]

+
N

(N + 1)2

[

g
p
gT

p
g

p
γ

γgT

p
γ2

]

(32)

which is exactly the form obtained when one observation is explic-
itly added, as we have proven elsewhere [14]. This special case has
interesting properties too: if the new observation lies within the sub-
space spanned by U

np
, then γ = 0 and any change in the eigenvec-

tors and eigenvalues can be explained by rotation and scaling caused
by g

p
gT

p
. Furthermore, in the unlikely event that x̄ = ȳ, then the

right matrix disappears altogether, in which case the eigenvalues are
scaled by N/(N + 1), but the eigenvectors are unchanged. Finally, as
N → ∞, then N/(N + 1) → 1 and N/(N + 1)2 → 0, indicating a
stable model in the limit.

If Ω has exactly one observation, then it is specified by (x, 0, 0, 1).
Thus the first matrix on the left of Equation 31 disappears. Then G

pq

is a zero matrix, and ν
nt

= [V
nq

h], where h is the component of ȳ−x̄

which is orthogonal to the eigenspace of Ψ. Hence the eigenproblem
is:

M

(M + 1)

[

0 0
0T Γ

tq
∆

qq
ΓT

tq

]

+

M

(1 + M)2

[

0 0
0 γ

t
γT

t

]

(33)

Given that in this case Γ
tq

= [V
nq

h]T V
nq

, then Γ
tq

∆
qq

ΓT

tq
has the

form of ∆
qq

, but with a row and column of zeros appended. Also,

γ
t

= [V
nq

h]T (x̄ − ȳ). Substitution of these terms shows that in this

case too, the solution reduces to the special case of adding a single new
observation: Equation 33 is of the same form as Equation 32, as can
readily be shown.

If the Ω and Ψ models are identical, then x̄ = ȳ. In this case the
third term on the left of Equation 31 disappears. Furthermore, Γ

tq
is a

zero matrix, and G
pq

= UT

np
U

np
is the identity matrix, with p = q.

Hence, the first and second matrices on the left of Equation 31 are
identical, with N = M , and they reduce to the matrices of eigenval-
ues. Hence, adding two identical eigenmodels yields a third which is
identical in every respect, except for a change in the number of obser-
vations.

Finally, notice that for fixed M , as N → ∞ so the solution tends
to the Ω model. Conversely, for fixed N as M → ∞ so the solution
tends to the Ψ model. If M and N tend to∞ simultaneously, then the
final term loses its significance.

C. Algorithm
Here, for completeness, we now express the mathematical results

obtained above, for merging models, in the form of an algorithm for
direct computer implementation; see Figure 1.

Function Merge( x̄, U, Λ, N, ȳ, V, ∆, M )
returns (z̄, W, Π, P )

BEGIN
P = N + M

z̄ = (Nx̄ + Mȳ)/P
difforg = x̄ - ȳ

G = UT V

H = V − UG

for each column vector of H

discard this column,
if it is of small magnitude.

endfor
g = UT difforg
h = difforg - Ug

ν = orthonormalbasis for [H, h]
γ = νT difforg
Γ = νT V
p = size of Λ
q = size of ∆
t = number of basis vectors in ν

A = construct LHS of Equation 31
Π = eigenvalues of A

R = eigenvectors of A

W = [Uν]R
discard small eigensolutions, as appropriate

END

Fig. 1. Algorithm for merging two eigenspace models.

D. Complexity
Computing an eigenspace model of size N as a single batch may

incur a computational cost O(N3). Our experimental results bear this
out, though there are faster methods available using SVD [18]. Ex-
amination of our merging algorithm shows that it also requires an in-
termediate eigenvalue problem to be solved, as well as other steps;
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again overall giving cubic computational requirements. Nevertheless,
let us suppose that Ω, with N observations, can be represented by p
eigenvectors, and that Ψ, with M observations, can be represented by
q eigenvectors. Typically p and q are (much) less than N and M , re-
spectively.

To compute an overall model with the batch method requires
O((N + M)3) operations. Assuming that both models to be merged
are already known, our merging method requires at most O((p + q +
1)3) operations; the problem to be solved becomes smaller the greater
the amount of overlap between the eigenspaces of Ω and Ψ. (In fact,
the number of operations required is O(s3): see the end of Section III-
A.1.)

If one, or both, of the models to be merged are unknown initially,
then we incur an extra cost of O(N3), O(M3), or O(N3 + M3),
which reduces any advantage. Nevertheless, in one typical scenario,
we might expect Ω to be known (an existing large database of N ob-
servations), while Ψ is a relatively small batch of M observations to
be added to it. In this case, the extra penalty, of O(M 3), is of little
significance compared to O((N + M)3).

Overall, while an exact analysis is complicated and indeed data de-
pendent, we expect efficiency gains in both time and memory resources
in practice.

Furthermore, if computer memory is limited, subdivision of the ini-
tial set may be unavoidable in order to reduce eigenspace model com-
putation to a tractable problem.

IV. SPLITTING EIGENSPACE MODELS

Here we show how to split two eigenspace models. Given
an eigenspace model Φ = (z, W nr, Πrr, P ) we remove
Ψ = (y, V nq, ∆qq , M) from it to give a third model Ω =

(x, Unp, Λpp, N). We use Π
rr

, because Π
ss

is not available in gen-
eral. We ask the reader to carefully note that splitting means removing
a subset of observations; the method is the inverse of merging in this
sense. However, it is impossible to regenerate information which was
discarded when the overall model was created (whether by batch meth-
ods or otherwise). Thus, if we split one eigenspace model from a larger
one, the eigenvectors of the remnant must still form some subspace of
the larger.

The derivation (and algorithm) for splitting follow in a very straight-
forward way by analogy from those of merging. Therefore we state the
results for splitting without proof. Clearly, N = P −M . The new
mean is:

x̄ =
P

N
z̄ −

M

N
ȳ (34)

As in the case of merging, new eigenvalues and eigenvectors are com-
puted via an intermediate eigenproblem. In this case it is:

P

N
Πrr −

M

N
G

rp
∆ppGT

rp
−

M

P
g

r
gT

r
= R

rr
ΛrrR

T

rr
(35)

where G
rp

= W T
nrV nq and g

r
= WT

nr(ȳ − x̄).
The eigenvalues we seek are the q non-zero elements on the diago-

nal of Λrr. Thus we can permute R
rr

and Λrr, and write without loss
of generality:

R
rr

ΛrrR
T

rr
= [R

rp
R

rt
]

[

Λ
pp

0
pt

0
tp

0
tt

]

[R
rp

R
rt

]T

= R
rp

Λ
pp

RT

rp
(36)

where p = r − q.
Hence we need only identify the eigenvectors in R

rr
with non-zero

eigenvalues, and compute the Unp as:

U
np

= W
nr

R
rp

(37)

In terms of complexity, splitting must always involve the solution
of an eigenproblem of size r. An algorithm for splitting may readily
be written out using a similar approach to that for merging.

V. RESULTS

This section describes various experiments that we carried out to
compare the computational efficiency of a batch method with our new
methods for merging and splitting, and to compare the eigenspace
models produced.

We compared models in terms of Euclidean distance between the
means, mean angular deviation of corresponding eigenvectors, and
mean relative absolute difference between corresponding eigenvalues.
In doing so, we took care that both models had the same number of
dimensions.

As well as the simple measures above, other performance measures
may be more relevant when eigenspace models are used for particu-
lar applications, and thus other tests were also performed. Eigenspace
models may be used for approximating high-dimensional observations
with a low-dimensional vector; the error is the size of the residue vec-
tor. The sizes of such residue vectors can readily be compared for both
batch and incremental methods. Eigenspace models may also be used
for classifying observations, giving the likelihood that an observation
belongs to a cluster. Different eigenspace models may be compared by
relative differences in likelihoods. We average these differences over
all corresponding observations.

We used a database of 400 face images (each of 112× 92 = 10304
pixels) available on-line 1 in the tests reported here ; similar results
were obtained in tests with randomly generated data. The gray levels
in the images were scaled into the range [0, 1] by division only, but
no other preprocessing was done. We implemented all functions using
commercially available software (Matlab) on a computer with standard
configuration (Sun Sparc Ultra 10, 300 Hz, 64 Mb RAM).

The results we present used up to 300 images, as the physical re-
sources of our computer meant that heavy paging started to occur be-
yond this limit for the batch method, although such paging did not
affect the incremental method.

For all tests, the experimental procedure used was to compute
eigenspace models using a batch method [15], and compare these to
models produced by merging or splitting other models also produced
by the batch method. In each case, the largest of the three data sets
contained 300 images. These were partitioned into two data sets, each
containing a multiple of 50 images. We included the degenerate cases
when one model contained zero images. Note that we tested both
smaller models merged with larger ones, and vice-versa.

The number of eigenvectors retained in any model, including a
merged model, was set to be 100 as a maximum, for ease of comparing
results. (Initial tests using other strategies indicate that the resulting
eigenspace model is little effected.)

A. Timing
When measuring CPU time we ran the same code several times and

chose the smallest value, to minimise the effect of other concurrently
running process.

Initially we measured time taken to compute a model using the
batch methods, for data sets of different sizes. Results are presented in
Figure 2 and show cubic complexity, as predicted.

1) Merging: We then measured the time taken to merge two
previously constructed models. The results are shown in Figure 3.
This shows that time complexity is approximately symmetric about
the point N = 150, half the number of input images. This result may
be surprising because the algorithm given for merging is not symmet-
ric with respect to its inputs, despite that fact that the mathematical
solution is independent of order. The approximate symmetry in time-
complexity can be explained by assuming independent eigenspaces
with a fixed upper-bound on the number of eigenvectors: suppose the
numbers of eigenvectors in the models are N and M . Then complexi-
ties of the main steps are approximately as follows: computing a new
spanning set, ν is O(M3); solving an eigenproblem is O(N3 + M3);

rotating the new eigenvectors is O(N3 + M3). Thus the time com-
plexity, under the stated conditions, is approximately O(N3 + M3),
which is symmetric.

1The Olivetti database of faces: http://www.cam-orl.co.uk/facedatabase.html
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Fig. 2. Time to compute an eigenspace model with a batch method versus the
number of images, N . The time is approximated by the cubic: 5.3×10−4N +
8.6× 10−4N2 + 2.8× 10−6N3.
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Fig. 3. Time to merge two eigenspace models of images Φ = merge(Ω,Ψ),
versus the number of images, N , in Ω. The number of images in Φ is 300−N .
Hence, the total number of different images used to compute Φ is constant 300.

Next, the times taken to compute an eigenspace model from 300
images in total, using the batch method and our merging method, are
compared in Figure 4. The incremental time is the time needed to
compute the eigenspace model to be merged, and merge it with a pre-
computed existing one. The joint time is the time to compute both
smaller eigenmodels and then merge them. As might be expected, in-
cremental time falls as the additional number of images required falls.
The joint time is approximately constant, and very similar to the total
batch time.

While the incremental method offers no time saving in the cases
above, it does use much less memory. This could clearly be seen when
a model was computed using 400 images: paging effects set in when
a batch method was used and the time taken rose to over 800 seconds.
The time to produce an equivalent model by merging two sub-models
of size 200, however, took less than half that.

2) Splitting: Time complexity for splitting eigenspaces should
depend principally on the size of the large eigenspace which from
which the smaller space is being removed, and the size of the smaller
eigenspace should have little effect. This is because the size of the in-
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Fig. 4. Time to make a complete eigenspace model for a database of 300
images. The incremental time is the addition of the time to construct only the
eigenspace to be added. The joint time is the time to compute both eigenspace
models and merge them.

termediate eigenproblem to be solved depends on the size of the larger
space, and therefore dominates the complexity. These expectations
are borne out experimentally. We computed a large eigenmodel using
300 images, as before. We then removed smaller models of sizes be-
tween 50 and 250 images inclusive, in steps of 50 images. At most,
100 eigenvectors were kept in any model.The average time taken was
approximately constant, and ranged between 9 and 12 seconds, with
a mean time of about 11.4 seconds. These figures are much smaller
than those observed for merging because the large eigenspace contains
only 100 eigenvectors. Thus the matrices involved in the computation
were of size (100 × 100), whereas in merging the size was at least
(150 × 150), and other computations were involved (such as comput-
ing an orthonormal basis).

B. Similarity and performance

The measures used for assessing similarity and performance of
batch and incremental methods were described above.

1) Merging: We first compared the means of the models pro-
duced by each method using Euclidean distance. This distance is
greatest when the models to be merged have the same number of input
images (150 in this case), as fall smoothly to zero when either of the
models to be merged is empty. The value at maximum is typically very
small, and we measured it to be 3.5 × 10−14 units of gray level. This
compares favourably with the working precision of Matlab, which is
2.2 × 10−16.

We next compared the directions of the eigenvectors produced by
each method. The error in eigenvector direction was measured by the
mean angular deviation, as shown in Figure 5. Ignoring the degenerate
cases, when one of the models is empty, we see that angular deviation
has a single minimum when the eigenspace models were built with
about the same number of images. This may be because when a small
model is added to a large model its information tends to be swamped.

These results show angular deviation to be very small on average.
The sizes of eigenvalues from both methods were compared next.

In general we observed that the smaller eigenvalues had larger errors,
as might be expected as they contain relatively little information and so
are more susceptible to noise. In Figure 6 we give the mean absolute
difference in eigenvalue. This rises to a single peak when the number
of input images in both models is the same. Even so, the maximal
value is small, 7 × 10−3 units of gray level. The largest eigenvalue is
typically about 100.
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Fig. 5. Angular deviation between eigenvectors produced by batch and incre-
mental methods versus the number of images in the first eigenspace model.
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Fig. 6. Difference between eigenvalues produced by batch and incremental
methods versus the number of images in the first eigenspace model.

We now turn to performance measures. The merged eigenspaces
represent the image data with little loss in accuracy, as measured by the
mean difference in residue error, Figure 7. This performance measure
is typically small, about 10−6 units of gray level per pixel, clearly
below any noticeable effect.

Finally we compared differences in likelihood values (Equation 13)
produced by the two methods. This difference is again small, typically
of the order 10−59 , as Figure 8 shows; this should be compared with
a mean likelihood over all observations of the order 10−55 . Again
the differences in classifications that would be made by these models
would be very small.

2) Splitting: Similar measures for splitting were computed using
exactly those conditions described for testing the timing of splitting,
and for exactly those characteristics described for merging. In each
case a model to be subtracted was computed by a batch method, and
removed from the overall model by our splitting procedure. Also, a
batch model was made for purposes of comparison with the residual
data set. In all that follows the phrase “size of the removed eigenspace”
means the number of images used to construct the eigenspace removed
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Fig. 7. Difference in reconstruction errors per pixel produced by batch and
incremental methods versus the number of images in the first eigenspace model.
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Fig. 8. Difference in likelihoods produced by batch and incremental methods
versus the number of images in the first eigenspace model.

from the eigenspace built from 300 images.
The Euclidean distance between the means of the models pro-

duced by each method grows monotonically as the size of the removed
eigenspace falls, and never exceeds about 1.5×10−13 gray-level units.
Splitting is slightly less accurate in this respect than merging.

The mean angular deviation between corresponding eigenvector di-
rections rises in similar fashion, from about 0.6 degrees when the size
of the removed eigenspace is 250, to about 1.1 when the removed
eigenmodel is of size 100. This represented a maximum in the de-
viation error, because an error of about 1 degree was obtained when
the removed model is of size 50. Again, these angular deviations are
somewhat larger than those for merging.

The mean difference in eigenvalues shows the same general trend.
Its maximum is about 0.5 units of gray level, when the size of the
removed eigenspace is 50. This is a much larger error than in the
case of merging, but is still relatively small compared to a maximum
eigenvalue of about 100. As in the case of merging, the deviation in
eigenvalue grows larger as the size (importance) of the eigenvalue falls.
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Difference in reconstruction error rises as the size of the removed
eigenspace falls. Its size is of the order 10−4 units of gray level per
pixel, which again is negligible.

The difference in likelihoods is significant, the relative difference in
some cases being factors of 10 or more. After conducting further ex-
periments, we found that this relative difference is sensitive to the er-
rors introduced when eigenvectors and eigenvalues are discarded. This
is not a surprise, given that likelihood differences are magnified expo-
nentially. We found that changing the criteria for discarding eigenvec-
tors very much reduced: relative difference in likelihood of the order
10−14 were achieved in some cases. We conclude that should an ap-
plication require not only splitting, but also require classification, then
eigenvectors and eigenvalues must be discarded with care. We sug-
gest keeping eigenvectors whose corresponding eigenvalues exceed a
threshold.

Overall the trend is clear; accuracy and performance grew worse,
against any measure we used, as the size of the eigenmodel being re-
moved falls.

VI. APPLICATIONS

We now turn to applications of our methods. We have experi-
mented with building point distribution models [19] of three dimen-
sional blood vessels and texture classification, while others have used
similar methods for updating image motion parameters [8], selecting
salient views [3], and building large image databases [3]. In this paper
we feel it is appropriate to discuss applications that are more general
in nature; the intention is to furnish the reader with a practically use-
ful appreciation of the characteristics of our methods, and avoid the
particular diversions of any specific application. We chose, therefore,
building large databases of images, a security application, and the dy-
namic construction of Gaussian mixture models.

A. Building a large database
An obvious application of our methods is to build an eigenspace for

many images, when there are too many to store in memory at once.
This might arise in the case of very large databases, and has been pre-
viously suggested [3]. Intuition suggests that images in the database
will be better represented by the model is if all of them are used in its
construction; EVD (and SVD) fits a hyperplane to the data in the least
squares sense.

To test this we built eigenmodels using all images and a subset of
images, using both batch and incremental methods, using a small test
set to allow comparisons to the ideal case. As might be expected from
the experiments above, the batch and incremental eigenspaces turned
out to be very similar, when comparing either the models built from
a subset of images, or else those models built from them all. In both
cases, the models built from a subset of images represented those im-
ages used in construction very well — they had a very low residue
error. However, those images not used in construction were badly rep-
resented — having a high residue error. When all images were used to
make the eigenmodel the overall fit was much improved: those images
in the previous subset were slightly less well represented — but those
not in that subset were much better represented.

This result confirms that EVD (and SVD) models do not generalise
well. Classification results follow a similar trend: each image is bet-
ter classified by an eigenspace that uses all images. We conclude that
eigenmodels should always be constructed from as much data as pos-
sible, and in some cases incremental methods provide the only option
for this.

We now turn our attention to applications of a more substantive na-
ture.

B. A security application
Here we aim to show that our methods are useful in classification

applications. This is because we update the mean, and many statistical
computations that are commonly used in classification (such as the
Mahalanobis distance) require an accurate mean.

We consider a security application based on identification. The sce-
nario is that of a company wishing to efficiently store photographs of
its thousands of employees for security reasons, such as admitting en-
try to a given building or a laboratory. We chose to the store the data
using an eigenmodel — the images can be projected into the eigen-
model and stored with tens rather than thousands of numbers. Conven-
tional batch methods cannot be used to make the eigenmodel because
not all images can fit into memory at once. Additionally, the database
requires changing each year, as employees come and go.

Our methods allow the eigenspace to be constructed and main-
tained. An initial eigenmodel is constructed by building several
eigenspaces, each as large as possible, and merging them: the data
is too large to do otherwise. Thereafter, the eigenmodel can be main-
tained by simply merging or splitting eigenmodels as required. (Note
that splitting means removal of images from the database.)

We illustrate this with the data base of faces used previously. We
constructed an eigenmodel from a selection of 21 people, there be-
ing 10 photographs for each person. To recognise an individual a new
photograph was given a “weight of evidence” between 0 (not in the
database) and 1 (in the database). To compute this weight we used the
maximum Mahalanobis distance (using Moghaddam and Pentland’s
method [6]) of all photographs used to construct the eigenmodel. Each
new photograph was then judged as in if its Mahalanobis distance was
less than this maximum. Since each person has 10 photographs asso-
ciated with them, we can then compute a weight for each person as the
fraction of their photographs classified as in.

We recognise this as a rather crude measure, but its merits are two
fold: first it provides an economic alternative to extensive image pro-
cessing (aligning faces, segmenting shape from texture, and so on);
second this measure is sufficient for use to demonstrate that we can
update image databases for classification using some measure — and
this is our aim here.

We initialised the eigenmodel with the first twenty-one people (200
images). We then made a change by adding the twenty-second person
and removing the first — arbitrary but convenient choices. Figure 9
show the “weight of evidence” measured after this change. The upper
plot shows the measure for the images against a batch model. The
lower plot shows the same measure for the same images. We notice
that both models produce some false positives in the sense that some
people who should not be classified as in have a weight larger than
zero. We notice too that the incrementally computed eigenspace gives
rise to more false positives than the eigenmodel computed via batch
methods — in line with earlier observations on subtraction. However,
the weight-of-evidence factor is less than one in every case, no matter
how the eigenmodel was computed, and this fact (or some other more
sophisticated test and pre-processing) could be used to eliminate false
positives — but the point here is not to develop a fully operational
and robust security application but to demonstrate the potential of our
methods in classification.

We conclude that additive incremental eigenanalysis is safe for clas-
sification metrics, but that subtractive incremental eigenanalysis needs
a greater degree of caution.

C. Dynamic Gaussian mixture models
We are interested in using our methods to construct dynamic Gaus-

sian mixture models (GMM’s). Such models are increasingly common
in the vision literature, and a method for their dynamic construction
would be useful. The methods presented in this paper make this pos-
sible. We note that block updating and maintainance of the mean are
prerequisites for dynamic GMMs.

Here we focus on merging existing GMMs, and show how to con-
struct a dynamic GMM from a library of photographs. Our aim here is
not to discuss the issues surrounding dynamic GMMs in full, for that
would unduly extend this paper, but instead we seek to demonstrate
that dynamic GMMs are feasible using our methods.

We partition data into sets, and for each set construct a GMM as
follows: first use all the data in a set to build an eigenmodel (using
incremental methods if necessary). Second project each datum in the
set into the eigenmodel. Thirdly, construct a GMM from the projected
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Fig. 9. Weight of evidence measures after a change: batch (top), incremental
(below).

data, using the EM algorithm for this [13]. Finally, represent each
Gaussian in the mixture using an eigenmodel. Hence, each GMM is
a hierarchy of eigenspace models. In this regard they are similar to a
hierarchy of models proposed to improve the specificity of eigenmod-
els [11]. No two Gaussians need have the same dimension.

To merge GMMs we first merged their base eigenspaces. Second
we transformed all dependent eigenmodels from each previous model
into the new basis eigenspace. Finally we merged those new depen-
dent eigenspaces that were sufficiently close. We found that a simple
volume measure to be adequate for most cases. The volume of a hy-
perellipse with semi-axes A (each element the square root of an eigen-
value), of dimension M , and at characteristic radius s (square root of
the Mahalanobis distance) is

sM |A|πM/2

Γ(M
2

+ 1)

We permanently merged a pair of eigenmodels in the GMM if the
sum of their individual volumes was greater than their volume when
merged. We found this works well enough, dimensionality problems
notwithstanding.

As an example, we used photographs of two distinct toys, each pho-
tographed at 5 degree angles on a turntable. Hence we had 144 pho-
tographs. Examples of these photographs can be seen in Figure 10.

The photographs were input in four groups of thirty-six photographs.
For each group we made an eigenmodel, projected the photographs
into the eigenmodel, and used these projections to construct a GMM
of eighteen clusters. The Gaussians making up the mixture were rep-
resented by an eigenmodel. Hence we had four GMMs, which we
wanted to merge into a large GMM.

Fig. 10. Example images of each toy.

To merge the GMMs we first added added together the four
eigenspaces to make a complete eigenspace. Next we transformed
each of the GMM clusters into this space, thus bringing the ensemble
of clusters into a common space. Each Gaussian cluster in the mixture
model in the new space was represented by an eigenmodel. We then
merged the cluster, pairwise, using our volume criterion. Hence we
were able to reduce the number of Gaussians in the mixture to twenty-
two.

These clusters tend to model different parts of the cylindrical tra-
jectories of the original data projected into the large eigenspace. Ex-
amples of cluster centres are shown in Figure 11, where the two toys
can be clearly seen in different positions. These clusters may be used
to identify the toy and its pose, for example. (Murase and Nayar [20],
and Borotschnig et. al [21] recognise pose using eigenmodels.) In
addition, we found a few clusters occupying the space “in between”
the two toys — an example of which is seen in Figure 11. This ar-
tifact of clustering appears to derive from the high dimensionality of
the space that the clusters are in, rather than being a side-effect of our
method. Notice that these clusters might in future be removed because
no picture matches well against them.

We conclude from these experiments that dynamic GMMs are a
feasible proposition using our methods. We note that the ability to
merge complete spaces while updating the mean are prerequisites of
dynamic GMMs. Also, dynamic GMMs are likely to be an important
application and deserve further attention.

VII. CONCLUSION

We have shown that merging and splitting eigenspace models is pos-
sible, allowing sets of new observations to be processed as a whole.
The theoretical results are novel, and our experimental results show
that the methods are wholly practical, computation times are feasible
and often advantageous compared to batch methods. Batch and in-
cremental eigenspaces are very similar so performance characteristics,
such as residue error, differ little. Our methods are useful in many
applications, and we have illustrated a few of a general nature.

We have concluded that the merging of eigenspaces is stable and
reliable, but advise caution when splitting. Thus splitting is the prin-
ciple weakness of our methods and it is interesting to ask whether the
process can be made more reliable.

We should point to several omissions from this work, each provid-
ing an avenue for further work. We have not performed analytic error
analysis, relying instead on experiment. Most of the errors arise from
discarding eigenvectors and eigenvalues. To the best of our knowledge
the work in unique, and so we have been not compared our method
to others. However, in a previous paper we considered the inclusion



11

Fig. 11. Dynamic Gaussian Mixture Models. The top line shows 2 examples
of the original 144 photographs. Below are 5 examples of the 22 cluster centres.
These are arranged to show clusters for each toy, and the space between them.

of a single new datum, and were able to make comparisons [14]. The
conclusion there was that SVD tends to be more accurate, but that up-
dating the mean is crucial for classification applications. We note in
this paper we have demonstrated that adding one datum each time is
much less accurate than adding complete spaces. We have omitted our
derivation for block update/downdate of SVD, with change of mean,
for want of space. However, we have indicated that downdating SVD
seems to require an EVD step. We have presented general applications
rather than become embroiled in any particular application, which al-
lows us to highlight important generic applications.

We would expect our methods to find much wider applicability than
those we have mentioned; updating image motion parameters [8], se-
lecting salient views [3], and building large image databases [3] are
two applications that exist already. We now use our methods routinely
to construct eigenmodels that would be impossible by any other means,
and this has allowed us to experiment with image compression meth-
ods. Also, we have experimented with image segmentation, building
models of three-dimensional blood vessels, and texture classification.
We believe that dynamic Gaussian mixture models provide a very in-
teresting future path.
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