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Abstract

We give an algorithm to find the number Tcvx(n) of convex topolo-
gies on a totally ordered set X with n elements, and present these
numbers for n ≤ 10.
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1 Introduction

A subset B of poset (X,≤) is increasing if x ∈ B and y ≥ x imply y ∈ B, and
is convex if x, z ∈ B and x ≤ y ≤ z imply y ∈ B. An n-point totally ordered
set X may be labeled X = {1, 2, . . . , n} where 1 < 2 < · · · < n. This set
will be denoted [1, n], and in general, [a, b] will denote {a, a + 1, . . . , b} ⊂ N
with the natural order from N. A topology on (X,≤) is convex if it has a
base of convex sets, or equivalently, if each point has a neighborhood base of
convex sets. Because of these equivalent characterizations, convex topologies
are often called locally convex topologies. (See Nachbin [5]). For finite sets,
every point j has a minimal neighborhood MN(j) which is the intersection
of all neighborhoods of j. It is convenient to identify a topology on [1, n]
with its base {MN(j) : j ∈ [1, n]} of minimal neighborhoods of each point.
Finite topological spaces are used in computer graphics, where the Euclidean
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plane is modeled by a topology on a finite set of pixels. If a < b < c in a
finite poset with a topology, if c is “near” a and there is any compatibility
between the topology and order, we would expect b to also be near a. This
is the convexity condition, which is a natural, weak compatibility condition
between a topology and order assumed in most applications. We will consider
the number of convex topologies on a finite totally ordered set [1, n].

An excellent reference on finding the number T (n) of topologies on an
n-element set is Erné and Stege [3]. Currently, T (n) is known for n ≤ 18. A
standard approach to counting topologies on a finite set X is to employ the
one-to-one correspondence between a topology τ on X and the associated
specialization quasiorder defined by x ≤ y if and only if x is in the closure of
y. This correspondence dates back to Alexandroff [1]. (See Richmond [6] for
a survey of this connection.) One approach to counting the convex topologies
would be to find a (bi-ordered) characterization of convex topologies using
some compatibility between the specialization order and the given total order.
Fruitful results in this direction have not been found.

For j ∈ [1, n], a convex subset N(j) of [1, n] containing j has form [a, b]
where 1 ≤ a ≤ j ≤ b ≤ n. There are j choices for a and n−j+1 choices for b,
and thus j(n+j−1) choices for N(j). Since a base of minimal neighborhoods
for a locally convex topology on [1, n] consists of one convex subset N(j) for
each j ∈ [1, n], we see that

n∏
j=1

(j)(n+ j − 1) = (n!)2

gives an upper bound on Tcvx(n). Of course, arbitrarily selecting a convex set
N(j) containing j for each j ∈ [1, n] is unlikely to give a base for a topology,
so this upper bound is not sharp.

2 Nested Convex Topologies

Stephen [8] gives a recursive formula for the number of nested topologies (or
equivalently, ordered partitions) on an n-point set X, generating the sequence
1, 3, 13, 75, 541, 4683, 47293, . . ., which is A000670 in Sloane [7]. If X = [1, n]
is totally ordered set with n-elements, let TNest(n) be the number of nested
convex topologies on X, and let TNest(n, k) be the number of those convex
topologies consisting of k nested non-empty open sets U1, U2, . . . , Uk where
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X = U1 ⊃ U2 ⊃ · · · ⊃ Uk 6= ∅. Since the indiscrete topology is the only
nested topology with one non-empty open set, TNest(n, 1) = 1. Suppose we
have found TNest(m, j) for all m ≤ n and j ≤ k. To find TNest(n, k+ 1), note
that X = U1 ⊃ U2 ⊃ U3 ⊃ · · · ⊃ Uk+1 6= ∅ implies that U2 must contain at
least k elements and at most n− 1 elements. If |U2| = j, there are n− j + 1
ways to choose U2 as a convex subset of X, and TNest(j, k) ways to complete
the nested convex topology {U2, . . . , Uk+1} on the j-point totally ordered set
U2. Thus, we have

TNest(n, k + 1) =
n−1∑
j=k

(n− j + 1)TNest(j, k) =
n−k+1∑
m=2

m · TNest(n−m+ 1, k),

where the second equality follows from the substitution m = n − j + 1. In
Table 1 we tabulate the values of TNest(n, k) for n, k ≤ 10.

@
@
@

n
k

1 2 3 4 5 6 7 8 9 10

1 1
2 1 2
3 1 5 4
4 1 9 16 8
5 1 14 41 44 16
6 1 20 85 146 112 32
7 1 27 155 377 456 272 64
8 1 35 259 833 1, 408 1, 312 640 128
9 1 44 406 1, 652 3, 649 4, 712 3, 568 1, 472 256

10 1 54 606 3, 024 8, 361 14, 002 14, 608 9, 312 3, 328 512

Table 1: TNest(n, k), the number of topologies on a totally ordered n-point
set consisting of k nested convex sets.

This table (sequence A056242 in Sloane [7]) is also used by Hwang and
Mallow [4] to count the number of order consecutive partitions of X =
{1, 2, . . . , n}, which they define as follows: An ordered list S1, S2, . . . , Sm

of subsets of X is an order consecutive partition of X if {S1, . . . , Sm} is a
partition of X and each of the sets

⋃k
j=1 Sj (1 ≤ k ≤ m) is a consecu-

tive set of integers. If {S1, . . . , Sm} is an order consecutive partition, clearly
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{S1, S1 ∪ S2, S1 ∪ S2 ∪ S3, . . . , X} is a nested convex topology on X. Con-
versely, any nested convex topology τ = {U1, U2, . . . , Uk} on X = {1, 2, . . . n}
generates the order consecutive partition U1, U2 \ U1, U3 \ U2, . . . , Uk \ Uk−1.

It is easy to confirm from our formula for TNest(n, k) that TNest(n, n) =
2n−1 and TNest(n, 2) = ∆n − 1 where ∆n is the nth triangular number.

Now, we note that

TNest(n) =
n∑

k=1

TNest(n, k).

This sequence (TNest(n))10n=1 = (1, 3, 10, 34, 116, 396, 1352, 4616, 15760, 53808)
appears as A007052 in Sloane [7], where it is noted that Tnest(n) = 4Tnest(n−
1) − 2Tnest(n − 2) for n > 2. Solving this recurrence relation by standard
techniques gives

Tnest(n) =
(2 +

√
2)n + (2−

√
2)n

4
.

Nested convex topologies have as much inclusion as possible. Not only are
they totally ordered by inclusion, but they maximize “overlap.” The other
extreme would be to have as little inclusion and overlap as possible. This
suggests considering mutually disjoint collections. A collection D of mutually
disjoint convex subsets of X is not a basis for a topology if

⋃
D 6= X, but

D ∪ {X} is always a basis for a convex topology on X. The authors [2]
have shown that the number of topologies on an n-element totally ordered
set having a base consisting of a mutually disjoint collection D of convex
sets, or such a collection D together with X, is F2n+1 − 1, where Fk is the
kth Fibonacci number.

3 An Algorithm for Tcvx(n)

We now present a recursive algorithm to find the number Tcvx(n) of convex
topologies on a totally ordered set [1, n]. It is easy to check that Tcvx(1) =
1 = T (1) and Tcvx(2) = 4 = T (2). That is, the only topology on a 1-point
set is convex, as are all four topologies on a 2-point set.

Suppose Tcvx(n) is known. To find Tcvx(n + 1), note that each convex
topology on [1, n+1], when restricted to [1, n], gives a unique convex topology
on [1, n]. Thus, we may count Tcvx(n) by looping through each topology τ
counted in Tcvx(n), adding n+1 as the greatest point, adjusting the minimal
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neighborhoods of j ∈ [1, n], and defining the minimal neighborhood of n+ 1
so that the subspace topology on [1, n] is still τ . That is, considering how
each topology on [1, n] may be appropriately expanded to [1, n + 1] gives a
complete, unduplicated count of the convex topologies on [1, n+ 1].

Step 1: Re-defining minimal neighborhoods of j ∈ [1, n]. We loop through
all convex topologies τ on [1, n]. The simplest way to extend τ to [1, n +
1] so that the restriction of the extension is still τ would be to keep the
minimum neighborhoods of each j ∈ [1, n] unchanged. However, we may
also expand some of the minimal neighborhoods of points j ∈ [1, n] to include
n+1. To maintain convexity and to guarantee a topology on [1, n+1] whose
restriction to [1, n] agrees with τ , the minimal neighborhood MN(j) of j can
be expanded to include n + 1 if and only if MN(j) already includes n. If
n ∈MN(j) ⊆MN(k) and MN(j) is expanded to include n+ 1, then MN(k)
must also be expanded to include n + 1, for otherwise, MN(k) would be a
neighborhood of j not including n + 1, contrary to the hypothesis that the
minimal neighborhood of j was to include n+ 1.

As an immediate consequence, if n ∈ MN(j) = MN(k), then MN(j) is
expanded to include n + 1 if and only if MN(k) is. That is, a single basis
element which happens to be the minimal neighborhood of distinct points j
and k is still treated as a single entity in the expansion process.

Thus, if B = {MN(1),MN(2), . . . ,MN(n)} has m distinct sets containing
n, we expand the outermost k of these to include n + 1, looping as k goes
from 1 to m.

For example, consider the convex topology τ on [1, 8] having a base of
minimal neighborhoods B = {{1}, [2, 8], [3, 4], {5}, [5, 8], {8}}, as shown in
Figure 1.
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Figure 1: Example. A sample topology on [1, 8]

We may add 9 to this topology without changing any of the minimal
neighborhoods of j for j ∈ [1, 8], or since MN(2),MN(6) = MN(7), and
MN(8) include the right endpoint 8, they may be extended to include the
added point 9. Since 8 ∈ MN(8) ⊂ MN(7) = MN(6) ⊂ MN(2), we note
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that MN(6) is expanded if and only if MN(7) is expanded, so we do not
need to treat MN(6) and MN(7) as distinct basis elements and we may
effectively ignore the duplicate MN(7). Also, if MN(6) is expanded, then
MN(6) ⊂ MN(2) implies that MN(2) would also have to be expanded. Re-
peating this idea, we may expand nothing, only the outermost (i.e., longest)
minimal neighborhood containing 8, namely MN(2), the outermost two min-
imal neighborhoods containing 8, namely MN(2) and MN(6), or the outer-
most three, MN(2),MN(6), and MN(8). See Figure 2.
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Figure 2: Example. Possible expansions of minimal neighborhoods contain-
ing previous right endpoint: None, outermost one, outermost two, outermost
three.

Step 2: Defining the minimal neighborhood of the added point. Having
determined the expansion of minimal neighborhoods of j ∈ [1, n], it remains
to define the minimal neighborhood MN(n + 1) of n + 1. Clearly we must
have n+1 ∈MN(n+1). The convexity condition and our need to retain the
original topology τ on [1, n] as a subspace imply that MN(n+ 1) must be of
form {n + 1} ∪ I where I is increasing and open in τ . The final condition
is the minimality of the neighborhood MN(n + 1). In Step 1, we may have
expanded some neighborhoods of n to contain n + 1 and, if so, the minimal
neighborhood of n+ 1 must be contained in each of these previously defined
neighborhoods of n+1. Thus, MN(n+1) must be of the form {n+1}∪I where
I is increasing and τ -open, and I is contained in the innermost (shortest)
neighborhood MN(j) which was expanded in Step 1.

Continuing the example presented above, we may expand none of the
original minimal neighborhoods of j ∈ [1, 8] to include 9, and then the min-
imal neighborhood MN(9) of 9 may be defined as {9} ∪ I where I is an
increasing τ -open set in any of the six ways suggested in Figure 3.

Figure 4 shows the three possible choices for the minimal neighborhood
MN(9) if the outermost two minimal neighborhoods containing 8, namely
MN(2) and MN(6) have been expanded to include 9.

A computer implementation of this algorithm yields the values for Tcvx(n)
shown in Table 2 below. With the Tcvx(2) = 4 convex topologies on [1, 2] as
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Figure 3: Example. Possible choices for MN(9) if no minimal neighborhoods
MN(j) are expanded for j ∈ [1, 8].
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Figure 4: Example. Possible choices for MN(9) if MN(2) and MN(6) are
expanded to include 9.

input, the computer implementation loops through all the topologies τ on
[1, n], adds n+1, determines the numberm of distinct minimal neighborhoods
of j ∈ [1, n] containing n, expands the outermost k of these to contain n+ 1
(as k goes from 0 to m), determines the increasing τ -open sets, defines the
minimal neighborhood MN(n+1) of n+1 as {n+1}∪I where I is one of the
increasing τ -open sets contained in the smallest MN(j) previously expanded
to include n + 1, and, at each selection of an option above, increments the
Tcvx(n + 1) counter and records the data for this new topology on [1, n + 1]
required for the next iteration.

The efficiency of this algorithm can be improved by eliminating du-
plication of computations. For example, if p is the largest integer with
MN(p) = X for two topologies s and t which agree to the right of p, then
the computation for s duplicates that for t, as noted by a helpful referee.

The numbers Tcvx(n) in Table 2 were also verified for n ≤ 8 without the
algorithm using an exhaustive generation scheme. For comparison, we also
include the number TNest(n) of nested convex topologies and the number
T (n) of topologies on n points in the table.
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n TNest(n) Tcvx(n) T (n)
1 1 1 1
2 3 4 4
3 10 21 29
4 34 129 355
5 116 876 6,942
6 396 6,376 209,527
7 1,352 48,829 9,535,241
8 4,616 388,771 642,779,354
9 15,760 3,191,849 63,260,289,423
10 53,808 26,864,936 8,977,053,873,043

Table 2: The numbers TNest(n) and Tcvx(n) of nested convex topologies and
convex topologies on an n-point totally ordered set, and the number T (n) of
topologies on an n-point set.
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