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AIdisorder 

AIdisorder – protein disorder prediction using machine learning and trivial features 

L.P. Kozlowski
1 

and J.M. Bujnicki
1
 

1
 - Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular 

and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland 

 

AIdisorder is an experiment to check whether adding trivial features, easy to extract or predict 

form amino acid sequence (e.g. secondary structure, homology information, etc.) to state-of-the-

art disorder predictor can improve disorder prediction accuracy.    

 

Methods 
AIdisorder is a combination of two methods. The first is sDisPred protocol (described in more 

details in other abstract in CASP10) and the second is GSmetaDisorderMD
1
 server. In brief, 

sDisPred is a simple predictor of disorder based on easy to predict features like the existence of 

similar structures in PDB
2
 and DISPROT

3
 databases, secondary structure, some statistical 

functions and finaly the consensus from already available disorder predictors. On the other hand, 

GSmetaDisorder is a sophisticated machine learning metapredictor which uses information from 

over 20 primary disorder predictores, secondary structure and fold recognition programs. The 

two parts were combined using genetic algorithm.   

 

Results 
Our internal benchmark made by using CASP8 and CASP9 targets shows that the combination 

of sDisPred and GSmetaDisorder gives an added value to the disorder prediction. 

 

Availability 
The method will be publicly available in the form of a web service if it proves to be valuable in 

terms of disorder prediction in current CASP.  

 

1. Kozlowski,L.P. & Bujnicki,J.M. (2012). MetaDisorder: a meta-server for the prediction of 

intrinsic disorder in proteins. BMC Bioinformatics 13, 111. 

2. Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N., Weissig,H., Shindyalov,I.N. & 

Bourne,P.E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 235-42. 

3. Vucetic,S., Obradovic,Z., Vacic,V., Radivojac,P., Peng,K., Iakoucheva,L.M., Cortese,M.S., 

Lawson,J.D., Brown,C.J., Sikes,J.G., Newton,C.D. & Dunker,A.K. (2004). DisProt: a 

database of protein disorder. Bioinformatics. 
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Algorithmic_code 

Prediction of Disordered Regions of Proteins Using Code of Alpha-Helical Structure 

B.V. Shestopalov 
Institute of Cytology of Russian Academy of Sciences 

bvshest@mail.cytspb.rssi.ru 

 

The method used for prediction of disordered regions in proteins is developed using results of 

researches aimed to discover a code of protein structure
1-5

.  It is postulated that such code is 

algorithmic one.  

 

Methods 

It is proposed that disordered regions in proteins are regions where alpha-helices can not be 

formed.   

 A code of the alpha-helical structure is developed and alpha-helical domains are predicted 

using this code. All the regions outside these domains are disordered ones.  

 All the predictions were done by the same method but little correction, resulted in more 

length of some disordered regions, was made for predictions submitted from 2012-06-27 (T0704, 

T0705, T0707, T0713, T0717, T0719, T0721-T0758).  

 Mixed, manual and computer, calculations were done but in manual case strict 

programmable rules were used.  

  

 

Availability 

Detailed description of the method, illustrated by results of its application in the CASP10 

experiment will be published.  

 

1. Shestopalov,B.V. (1990). Predictioon of protein secondary structure by  doublet code method. 

Mol. Biol. 24, 1117-1125. 

2. Shestopalov,B.V. (2003). Amino acid code of protein secondary structure. Tsitologiya.  45, 

702-706.   

3. Shestopalov,B.V. (2003). Statistical model of amino acid code of protein secondary structure. 

Tsitologiya.  45, 707-713.   

4. Shestopalov,B.V. (2007). The code-based physics of formation of -helices and -hairpins in 

water-soluble proteins. Doklady Biochemistry and Biophysics. 416, 245-247. 

5. Shestopalov,B.V. (2007). Simulation of formation of -helices and -hairpins in water-

soluble proteins by the code-based physics. Cell and Tissue Biology. 1, 420-426.  
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Multiplayer Online Game-Based Homology and Ab-Initio Modeling 
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1
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1
, T. Husain

1
, K. Xu

1
, Z. Popović
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, D. Baker

1
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1
 - University of Washington, Seattle, WA 

2
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Models were constructed using Foldit, the online multiplayer game at http://fold.it. CASP10 

targets shorter than 170 residues were given to Foldit players as puzzles to solve.  Foldit allows 

players to form groups for cooperative gameplay; in this case predictions were selected from and 

by members of the Foldit group Anthropic Dreams. 

 

Methods 

Foldit uses the Rosetta protein modeling software package
1
 and allows players to modify and 

visualize protein structures in real time
2
. Foldit players are provided with tools that allow them to 

move the protein structure manually, such as directly pulling on any part of the protein. They are 

also able to rotate helices and rewire beta-sheet connectivity. Players are able to guide moves by 

introducing soft constraints and fixing degrees of freedom, and have the ability to change the 

strength of the repulsion term to allow more freedom of movement. Available automatic 

moves—combinatorial side-chain rotamer packing, gradient-based minimization, fragment 

insertion—are Rosetta optimizations modified to suit direct protein interaction and simplified to 

run at interactive speeds.  Each CASP10 puzzle was typically accessible to Foldit players for 8-9 

days. 

For CASP10 targets shorter than 170 residues in the “All Groups” category, two different 

Foldit puzzles were given to the players. One puzzle started from an extended chain, with 

alignments to known templates taken from the RAPTOR
3
, SPARKS

4
, and HHsearch

5
 servers 

provided. Foldit players were able to modify alignments between the query and template 

sequences within the game. They could then build models based on these alignments by 

threading the query sequence onto the templates and refining these models using the in-game 

tools listed above. For the second puzzle, models were constructed using the QUARK
6
 and 

Zhang-Server
7
 predictions. These server models were initially minimized using Rosetta and then 

given as starting points for the Foldit players to refine. This same protocol was used for CASP10 

targets in the “Refinement" category, where server models were first minimized with Rosetta 

before being given to the Foldit players. Foldit players were provided with secondary structure 

predictions, generated by the SAM-T08 server
8
, in the form of a sequence logo for all CASP10 

puzzles. 

Quality and ranking of individual models was determined initially by the Rosetta full-

atom energy.  Submissions were then selected from high- and medium-ranking Anthropic 

Dreams predictions based on the fit between actual difference (RMSD or GDT_TS) of the 

prediction from the starting model and expected difference of a good solution from the starting 

model.  Additional selection criteria included conformational diversity among submissions and 

diversity of players represented. 

 

Availability 

http://fold.it/


13 

Foldit is available through the Rosetta Commons at http://tinyurl.com/academic-foldit   
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& Bradley,P. (2010) ROSETTA3.0: An Object-Oriented Software Suite for the Simulation 

and Design of Macromolecules. Methods in Enzymology 487, 545-74. 

2. Cooper,S., Khatib,F., Treuille,A., Barbero,J., Lee,J., Beenen,M., Leaver-Fay,A., Baker,D., 

Popović,Z. & Foldit Players (2010) Predicting protein structures with a multiplayer online 

game. Nature 466, 756-760.  

3. Peng,J. & Xu,J. (2009) Boosting Protein Threading Accuracy. Research in Computational 

Molecular Biology (RECOMB) 5541, 31-45.  

4. Yang,Y., Faraggi,E., Zhao, H. & Zhou,Y. (2011) Improving protein fold recognition and 

template-based modeling by employing probabilistic-based matching between predicted one-

dimensional structural properties of the query and corresponding native properties of 
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5. Söding,J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 

21(7), 951-60. 

6. Xu,D. & Zhang,Y. (2012) Ab initio protein structure assembly using continuous structure 
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8. Karplus,K. (2009) SAM-T08: HMM-based Protein Structure Prediction. Nucleic Acids 
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http://tinyurl.com/academic-foldit
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AOBA-server 

Protein structure modeling guided by homology and hydrophobic residue interactions 

Matsuyuki Shirota 

Tohoku University 

mshirota@hgc.jp 

 

AOBA-server is an automated server for protein structure modeling. For targets with significant 

homologues, the models were made using comparative modeling. In cases with no homologous 

templates the models were made to form hydrophobic contacts between local segments.  

 

Methods 
We downloaded target amino acid sequences from the CASP website. For each of the sequences, 

homology search was performed in PDB using HH search program
1
. If significant hits for the 

entire sequence were found, 3D models were made using MODELLER program
2
 based on the 

alignments and the top five models determined by the alignment scores were submitted. If the 

sequence included some regions which did not have homologous template structures, we first 

modeled the aligned segments based on the template structure and then modeled the unaligned 

regions. These regions were assumed to take secondary structures as predicted by PSIPRED
3
, 

and to form hydrophobic contacts with the aligned domain with its exposed hydrophobic 

residues. About 100~1,000 models were generated by MODELLER under the constraints of 

secondary structures and distance restraints between hydrophobic residues. These models were 

evaluated by a scoring function, which includes median TM-score
4
 to all the other models and 

Verify3D
5
 score and 3D-1D stability score

6
, and the top five structures were submitted. If there 

were no significant hit for the target sequence, models were generated using weakly homologous 

local templates found by HH search. These local templates, together with secondary structure 

predictions, were used as restraints to model the protein structure. We generated about 1,000 

structures for each target and they were evaluated as the same method as described above.  

 

 

1. Soding,J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics, 

21(7):951-960.  

2. Sali,A. & Blundel,T.L. (1993). Comparative protein modeling by satisfaction of spatial 

restraints. J. Mol. Biol. 234, 779-815 

3. Jones,D.T. (1999) Protein secondary structure prediction based on position-specific scoring 

matrices. J. Mol. Biol. 292, 195-202.  

4. Zhang,Y., &Skolnick,J. (2004). Scoring function for automated assessment of protein 

structure template quality. Proteins. 57, 702-710 

5. Bowie,J.U., Luthy,R., & Eisenberg,D. (1991). A method to identify protein sequences that 

fold into a known three-dimensional structure. Science 253, 164-170.  

6. Ota,M. & Nishikawa,K. (1997). Assessment of pseudo-energy potentials by the best-five test: 

a new use of the three-dimensional profiles of protein. Protein Eng. 10, 339-351.  
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Meta-methods for model quality assessment 

M. J. Skwark
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1 – Department of Biochemistry and Biophysics, Stockholm University,  
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Ariadne and ConQ are model quality assessment methods, that combine multiple MQAP 

approaches in order to avoid method biases and consequently provide more impartial ranking of 

predicted models. 

 

Methods: Ariadne 
Ariadne as a model quality assessment method aims to identify most accurate models in the 

model ensemble by performing structural comparison of all the models to a putatively selected 

set of models of good quality.  The comparison set is chosen by scoring the model ensemble in 

question by multiple quality assessment approaches: Pcons1 ProQ22, PconsD and dDFIRE3. For 

each of the compound methods 5 highest ranking models are chosen to be included in the 

comparison set. Afterwards all the models in the ensemble are compared by means of TM-score 

to the models in comparison set.  

The final score is a mean of the superposition scores, discarding 20% of outlier results. 

 

Methods: ConQ 
ConQ as a model quality assessment method aims to incorporate sequence-based contact 

prediction into the model scoring framework. Using the same MQAP methods as Ariadne 

(Pcons1, ProQ22, PconsD and dDFIRE3,4) models are assigned ordinal rank-based scores (for n 

models the top ranked model gets score n, the next one score n-1 etc.) for each MQAP method.  

Additionally models are ranked based on the agreement of detected inter-residue contacts in the 

model with the predicted contact maps. Contact maps are predicted using DCA5 and Psicov6 

methods, based on JackHMMer7 alignments to a UniRef100 database.  

Final score is then normalized for the highest ranked model to get score 1 and lowest ranked – 

score 0.  

Models submitted by Ariadne and ConQ as a manual structure prediction methods are the ones 

which earn the highest score for respective MQAP methods 

 

1. Larsson P., Skwark MJ, Wallner B and Elofssson A (2009) Assessment of global and local 

model quality in CASP8 using Pcons and ProQ2 Proteins 77 (S9): 167-172 

2. Ray A., Lindahl E. and Wallner B. (2012) Improved model quality assessment using ProQ2 

BMC Bioinformatics 13, 224- 

3. Yang Y. and Zhou Y. (2008) Specific interactions for ab initio folding of protein terminal 

regions with secondary structures Proteins (72) 798-803 

4. Yang Y. and Zhou Y. (2008) Ab initio folding of terminal segments with secondary structures 

reveals the fine difference between two closely-related all-atom statistical energy functions. 

Protein Science (17) 1212-1219 

5. Morcos F. et al. (2011) Direct-coupling analysis of residue coevolution captures native 
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contacts across many protein families PNAS (108) E1293-E1301 

6. Jones DT, Buchan DWA, Cozzetto D and Pontil M. (2012) PSICOV: precise structural 

contact prediction using sparse inverse covariance estimation on large multiple sequence 

alignments Bioinformatics (28) 184-190 
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Atome2_CBS 

@TOME-2: a pipeline for comparative modeling of protein-ligand complexes 

Jean-Luc Pons, Jérome Gracy, Gilles Labesse 

Centre de Biochimie Structurale, MONTPELLIER France  

 

@TOME 2.1(1) is a web pipeline dedicated to protein structure modeling and small ligand 

docking based on comparative analyses. @TOME 2.1 allows fold recognition, template 

selection, structural alignment editing, structure comparisons, 3D-model building and evaluation. 

These tasks are routinely used in sequence analyses for structure prediction.  In our pipeline the 

necessary bioinformatic tools were efficiently interconnected in an original manner to accelerate 

all the processes. Furthermore, we have connected the comparative docking of small ligands 

which is performed using protein–protein superposition. The input is a simple protein sequence 

in one-letter code with no comment. The resulting 3D model, protein–ligand complexes and 

structural alignments can be visualized through dedicated Web interfaces or can be downloaded 

for further studies.  

The sequences submitted to CASP10 were automatically treated as follows: 

The best structural alignments (SA) are extracted from each fold recognition software 

result: Psiblast (2), Hhsearch (3), Fugue (4), Sp3 (5). For each SA, a 3D common core is 

generated by TITO software (6). 

From the overall results, the 20 best SA are selected according a global score (@TOME-2 

Score) based on a set of quality descriptors: composite fold recognition score, sequence identity 

between query and template, alignment accuracy (T-coffee, 7), compatibility between amino acid 

sequence and 3D template (TITO), Verify3D (8) & QMean (9) evaluation scores of model after 

side chains calculation with Scwrl software (10). Structural clusters are calculated (Maxcluster, 

11) and all SA outside the main cluster are rejected. 

In a second step, 24 multi-template models were computed by MODELLER 9.0 (12). For 

each model to construct, 2, 3 and 4 templates have been selected according the best scores from 

@TOME-2, Verify3D, TITO and Qmean. Each model is calculated with and without conserved 

3D restraints calculated by the FCT tool from the PAT software (13). The restraints correspond to 

the most frequent atomic contacts observed in the superimposed structures. Among the  24  

obtained models, the 5 best QMean scores have been proposed to CASP10. 

Moreover, comparative docking has been used for the the automated detection of active 

sites. 

 

Availability: http://atome.cbs.cnrs.fr 

 

1. Pons,JL. & Labesse,G. (2009). @TOME-2: a new pipeline for comparative modeling of 

protein-ligand complexes. Nucleic Acids Research, Web Server Issue 2009 - doi: 

10.1093/nar/gkp368. 

2. Altschul et al (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database 

search programs, Nucleic Acids Res. 25(17): 33100-3402 

3. Soding,J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics, 

Bioinformatics. 21(7): 951-60.  

4. Shi et al (2001). FUGUE: sequence-structure homology recognition using environment-

specific substitution tables and structure- dependent gap penalties. J. Mol. Biol., 310, 243-
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5. Zhou,H. & Zhou,Y. (2005). Fold recognition by combining sequence profiles derived from 

evolution and from depth-dependent structural alignment of fragments, PROTEINS: 

Structure, Function, and Bioinformatics 58:321–328  

6. Labesse,G. and Mornon,J-P. (1998). Incremental threading optimization (TITO) to help 

alignment and modelling of remote homologues. Bioinformatics, 14, 206-350 

7. Notredame,C. Higgins,DG. Heringa,J. (2000). T-Coffee: A novel method for fast and 

accurate multiple sequence alignment. J Mol Biol ,302(1):205-17. 

8. Eisenberg,D. Lüthy,R. Bowie,JU (1997). VERIFY3D: assessment of protein models with 

three-dimensional profiles. Methods Enzymol. 277:396-404. 

9. Benkert,P. Tosatto,S.C.E. and Schomburg,D. (2008).  "QMEAN: A comprehensive scoring 

function for model quality assessment." Proteins: Structure, Function, and Bioinformatics, 

71(1):261-277. 

10. Canutescu,A.  Shelenkov,A. and Dunbrack,R. L. (2003).  A graph theory algorithm for 

protein side-chain prediction. Protein Science 12, 2001-2014. 

11. Ortiz,A.R., Strauss,C.E. and Olmea,O. (2002). MAMMOTH (matching molecular models 

obtained from theory): an automated method for model comparison. Protein Sci, 11, 2606-21. 

12. Eswar,N. Eramian,D.  Webb,B. Shen,M. Sali,A. (2006). Protein Structure Modeling With 

MODELLER.  Methods in Molecular Biology, 2008, Volume 426, 1, 145-159. 

13. Gracy,J. Chiche,L. (2005). « PAT: a protein analysis toolkit for integrated biocomputing on 

the web », Nucleic Acids Res 33 (Web Server issu) W65-71 
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Modeling of Protein Structures Using Rosetta in CASP 10 

 

T. Brunette*, R. Wang*, D.E. Kim*, F. DiMaio, S. Ovchinnikov, K. Jung, H. Kamichetty, 

Y. Song, F. Khatib, C. Miles, J. Thompson, D. Baker 

 
University of Washington, Seattle, WA 

dbaker@uw.edu 

 

In CASP 10, the BAKER human group evaluated new protocols in the template-based modeling, 

refinement and contact assisted categories. For comparative modeling we used a new template 

hybridization method described in the BAKER-ROSETTASERVER abstract, but added 

alignments from servers and domain parsing based on human inspection. For assisted structure 

prediction targets, we identified sub-alignments, fragments, and de novo models that satisfied the 

provided contacts and used them as input for our hybridization protocol.  For refinement we used 

a new search procedure that found much lower full-atom energy structures by quickly building 

loops and batch minimizing the energy of structures.  

 

Methods 
Template Identification and Domain Parsing  

For Baker human group, templates were identified both by the a suite of locally-installed 

threading programs (HHSearch
2
, Sparks-X

3
, RaptorX

4
) and by searching through the protein data 

bank for proteins that best match servers models using TMalign
5
. Using these alignments each 

target was parsed into domains. When no obvious template was available domain parsing was 

done automatically using GINZU
6
.  For some cases (for example, T0651 and T0674), domain 

predictions were made by human inspection of alignments and results from the NCBI conserved 

domain database. 

 

Structure Assembly  

When templates were available, our new template hybridization protocol was used for modeling. 

For multi-domain targets, individual domains were folded separately and then assembled by 

energy-guided rigid docking followed by loop closure within the hybridization protocol. 

 

Free Modeling and CASP Roll 

In cases with no clear similarity to known structures we used the standard Rosetta de novo 

fragment-assembly approach. Fragment selection was improved through the incorporation of 

predicted torsion angles and solvent accessibility using Spine X
7
, and fragment based structure 

profiles
8
.  For each target both the original sequence and several homologous sequences were 

modeled generating approximately 100k-300k decoys. The lowest energy 4000 decoys were 

structurally clustered, and the lowest scoring full-atom decoy from each cluster was returned as 

the final prediction. 

 

Contact Assisted  

For assisted structure prediction targets, we identified putative templates that best satisfied the 

provided contacts for inputs to the hybridization protocol from (a) sub-alignments from the top 

1000 Sparks alignments, (b) PDB fragments from fragment libraries used for de novo modeling, 

and (c) models generated with the de novo structure prediction protocol using the provided 
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contacts as constraints during sampling.   Final models from the hybridization and de novo 

structure prediction protocols were selected based on satisfied contacts and Rosetta energy.   

 

Refinement 

The refinement procedure used a new sampling strategy called loophash
9
 to produce decoys with 

very low full-atom energy. Models were selected based on the criteria that they were low energy, 

structurally diverse and fell close but above the given starting GDT.  Initial results suggest our 

refinement method produced structures closer to native than our other sampling approaches, but 

the selection procedure chose decoys too far from native. 

 

Results 
Most of the targets where our human group significantly outperformed our server are in the hard 

regime, for example T0651 and T0724.  In the hard regime accuracy is largely determined by the 

quality of templates identified, indicating the human group was using better 

templates.  Modeling failures resulted from inclusion of inaccurate templates, poor model 

selection and incomplete sampling of the rugged Rosetta full-atom energy landscape.  For 

contact guided targets, our sampling strategies produced models that satisfied all provided 

contacts and generally improved over our server and human predictions.    

 

Availability 
The automated portion of the methods described here are available from the Rosetta Commons, 

at http://www.rosettacommons.org.  
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In CASP10, we evaluated a new protocol for comparative modeling that assembles models 

through recombination of structural elements present in multiple templates. This approach 

improves upon the LoopRelax method used in previous CASP experiments by (1) leveraging 

orthogonal information present in multiple templates within a single trajectory and (2) replacing 

cyclic coordinate descent loop closure with a combination of fragment insertion and mixed 

torsion-Cartesian space minimization. Both operations are carried out using a centroid level 

representation of the polypeptide chain, with the best-scoring models relaxed in Rosetta's full-

atom forcefield. Benchmarks performed prior to CASP10 suggested that this new method of 

model building produced more accurate results for targets in the Easy and Medium difficulty 

regimes. In the Hard regime, results are less sensitive to model building, since accuracy is largely 

determined by the quality of templates identified. 

 

Methods 

Template Identification. Impressed by the progress in template identification demonstrated in 

CASP9, we employed a suite of locally-installed threading programs (HHSearch
1
, Sparks-X

2
, 

RaptorX
3
) to generate alignments. From the sets of alignments produced by these methods, we 

identified domain boundaries and assessed target difficulty based on the degree of structural 

consensus among each methods' top predictions. The threading models were then clustered to 

identify distinct topologies, which were ranked based on the likelihood of the constituent 

alignments. Spatial restraints were generated separately for each cluster
4
. Symmetry information 

was inferred from the top predictions from each method. 

 

Structure Assembly. The template hybridization protocol operates in three distinct phases. 

Beginning from a randomly selected template in the alignment cluster, the first phase samples 

alternative global topologies by inserting continuous chunks excised from the partial threading 

models. Unaligned loop regions are rebuilt de novo. Both operations are performed under 

Rosetta's low-resolution energy function using novel, broken-chain kinematics, which limit the 

extent of conformational propagation. In the second phase of the protocol, chunk insertions 

alternate with Cartesian-space minimization to refine local geometry, particularly backbone 

hydrogen bonding networks. In the final phase, the predicted structure is refined using Rosetta's 

full-atom energy function. For difficult targets, models generated by the template hybridization 

protocol are supplemented with models generated using Rosetta's ab initio protocol
5
. The 

number of models generated for each topological alignment cluster increases with predicted 

target difficulty. All structures were generated on Rosetta@Home. 
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Model Selection. Robetta employs a hierarchical model selection procedure: final models are 

chosen by combining individual selections performed on each topologically distinct alignment 

cluster. After performing an initial energy cut, selection proceeds by repeatedly selecting the 

model that minimizes the Rosetta full-atom energy and distance to the remaining models in the 

cluster. After that model is selected, the most structurally similar 10% of the remaining models 

are also removed from consideration. The order of final models is determined by the summed 

likelihood of the alignment cluster to which they belonged. The decision to submit symmetric 

models is determined based on the ΔΔG of the complex normalized by the number of subunits. 

 

Results 
Using the template hybridization protocol, we produced models for several targets that were 

clear improvements over the best starting template identified, notably T0662, T0667, and T0714. 

Modeling failures resulted from selection of incorrect alignments in building models, inclusion 

of inaccurate templates in building spatial restraints, over-ordering of disordered regions, and 

incomplete sampling of the rugged Rosetta full-atom energy landscape. 

 

Availability 
Robetta is available for non-commercial use at http://robetta.bakerlab.org. Source code for the 

template hybridization protocol is included in the upcoming Rosetta 3.5 release, which can be 

downloaded from http://www.rosettacommons.org. 
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Our objective is to find the global energy minimum for native protein structures by blending 

diverse sets of models, created by several different means. We have developed a number of 

refinement operators (the move-set) to search restricted region of conformational space.  These 

operators are embedded within a genetic algorithm (GA) that reshuffles and repacks structural 

components1-2. The most recent addition to our methodology is to add a torsion angle 

optimisation method to pack protein fragments and domains. 

 

Methods 

For CASP10 we entered a fully automated server, 3D-JIGSAW_V5-0, employs our GA 

approach, and our new refinement algorithm call, SwarmLoop, in the manual intervention 

section.  Potential templates and fragments are first identified using the HHpred package3. 

All templates are modelled to the target sequence using the side-chain replacement 

program SCWRL4. Insertions and deletions are modelled by our in-house loop modelling and 

closure method2 a modified version of the cyclic coordinate descent algorithm5. 

The initial population of models is ranked with our coarse-grain energy function2 before 

being fed into rounds of GA optimization.  Rounds of GA optimization employ the principles of 

crossover, mutation and model selection as previously described1-2. 

For manual and refinement predictions we employed our new algorithm, SwarmLoop.  

The basic ideas for this algorithm have been translated from our approach for docking proteins6.  

SwarmLoop, is a memetic optimisation algorithm in which parameters are 

simultaneously optimised using the Particle Swarm optimisation (PSO) metaheuristic7. 

In SwarmLoop, the PSO optimises: 

1. The phi and chi torsion angles of selected residues (loop residues linking fragments or 

domains) 

2. The chi1 and chi2 side-chain torsion angles of residues on the surface of the fragments. 

3. The coefficients in the linear combination of the five lowest frequency normal modes of 

each fragment; the normal modes are Calculated prior to the optimisation using ElNemo 

software8. 

Backbone torsion angles are selected from a statistical distribution obtained from the 

structural database. The distribution was calculated by clustering a non-redundant set of 

structures. The probability of emission of torsion angles in the PSO matches that of the 

Ramachandran plot. 

The energy function is an optimised reimplementation of the Dfire9 pair potential. Missing 

loops between fragments are built ab-initio with random torsion angles and then optimised with 

the SwarmLoop algorithm. 

To check to see if our repacked structures were likely to be functional, we performed 

mailto:paul.bates@cancer.org.uk
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numerous literature searches on closely homologous proteins.  

 

Availability 

 

Http://bmm.cancerresearchuk.org/~populus/ 

 

1. Offman M.N., Fitzjohn P.W. & Bates P.A. (2006) Developing a move-set for protein model 

refinement. Bioinformatics. 22, 1838-1845. 

2. Offman M.N., Tournier, A.L. & Bates, P.A. (2008) Alternating evolutionary pressure in a 

genetic algorithm facilitates protein model selection. BMC Struct. Biol. 8:34. 

3. Soding, J., Biegert, A. & Lupas A.N. (2005) The HHpred interactive server for protein 

homology detection and structure prediction. Nucleic Acids Res., 33, W244-W248. 

4. Canutescu, A.A., Shelenkov, A.A. & Dunbrack R.L.Jr. (2003) A graph-theory algorithm for 

rapid protein side-chain prediction. Protein Sci., 12 , 2001-2014. 

5. Canutescu, A.A. & Dunbrack R.L.Jr. (2003) Cyclic coordinate descent: a robotics algorithm 

for protein loop closure. Protein Sci.,12, 963-972. 

6. Moal I.H. & Bates P.A. (2010). SwarmDock and the use of normal modes in flexible protein-

protein docking. Int. J. Mol. Sci.,11, 3623-3648. 

7. Kennedy, J. & Eberhart, R.C. Partical Swarm Optimization. In Proceedings of the IEEE 

International Conference on Neural, Peth, Australia, 1995; 4,1942-1948. 

8. Suhre, K. & Sanejouand, Y.H., ElNemo: a normal mode web-server for protein movement 

analysis and the generation of templates for molecular replacement. Nucleic Acids Research, 

32, W610-W614, 2004.  

9. Y. Yang and Y. Zhou, ``Specific interactions for ab initio folding of protein terminal regions 

with secondary structures.'', Proteins 72, 793-803 (2008) 
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Protein folding, considered to be a grand challenge problem in modern science and a holy grail 

of molecular biology, remains intractable even after six decades since the report of the first 

crystal structure. The advent of human genome sequencing project has led to an explosion in the 

number of protein sequences in databanks. Despite the availability of over 80,000 X-ray and 

NMR structures in the RCSB protein data bank, there is a diverging gap between available 

sequences and structures, which calls for an immediate in silico solution. Computational methods 

such as homology modeling which rely on extracting information from the known structures in 

PDB have proved to be successful in predicting tertiary structures of sequences which share high 

sequence similarities. With dwindling similarities of query sequence with databases, newer ab 

initio / homology hybrid approaches are being explored to solve the structure prediction problem. 

In an effort to drive the prediction accuracies beyond the current limit, we have developed 

Bhageerath-H (www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp) a homology/ ab initio 

hybrid software for predicting tertiary structures of soluble monomeric proteins.  

 

Methods 
Bhageerath-H is a homology/ab initio hybrid method for protein tertiary structure prediction. It 

takes input amino acid sequence and provides as an output five candidate structures for the 

native. The software initially predicts secondary structure of the input query sequence and 

searches the PDB, Pfam and SCOP databases for sequence and family based homologs. It then 

uses softwares such as pGenthreader
1
, HHSearch

2 
and ffas

3 
for finding templates and generates 

target-template alignments. Each of the selected templates and target-template alignments are 

used for generating a library of 3D protein structural models of varying length, sizes and folds. 

Missing residue stretches are searched in the modeled patches and generated using Bhageerath
4-7 

ab initio 3D modeling software and the top five Bhageerath ab initio energy ranked structures are 

incorporated in the growing library. The incomplete protein patches in the protein model library 

are patched in all possible combinations with the remaining protein patches to put forth complete 

models, which then undergo few cycles of energy minimization. Using pcSM
8
 a physico-

chemical scoring metric, which comprises parameters such as intra molecular energy, accessible 

surface area, euclidean distance and secondary structure propensity for detecting native and non-

native like structures in the decoy pool, top 100 complete structures are selected. These selected 

structures are later optimized using Bhageerath ab initio loop modeling and the pcSM selected 

top five structures are finally processed via Monte Carlo based side chain modeling and short 

MD simulations. 

 

 

 

Results 

http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp
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The two main issues involved in the success of a protein tertiary structure prediction algorithm 

are sampling and scoring. Are we sampling the conformational space enough to generate native-

like structures? How best can we distinguish a native-like structure from a non-native-like 

structure? To answer these questions we have tested the ability of Bhageerath- Strgen
9
 method 

for generating native like decoys on the benchmark CASP9 dataset of 116 targets. In 93% of the 

cases, a structure with TM-score ≥ 0.5 is generated in the pool of decoys. pcSM scoring method 

was tested on a dataset of 415 systems and 142698 decoys and is able to detect native or native 

like structures in the top five with 93% accuracy from an ensemble of candidate structures.   

Bhageerath-H has been fielded in CASP10 in the server category. Native structures of 38 

targets have been released so far. Bhageerath-H is able to generate a native like structure to 

within 3 Å in 20 cases, the best server count being 23. Several improvements are being 

considered for implementation in the near future to push the accuracies even higher. 

  

Availability 
The protocol has been web enabled and is freely accessible at www.scfbio-

iitd.res.in/bhageerath/bhageerath_h.jsp.  

   

1. Lobley,A., Sadowski,M.I. & Jones,D.T. (2009). pGenTHREADER and 

pDomTHREADER: New Methods For Improved Protein Fold Recognition and 

Superfamily Discrimination. Bioinformatics 25, 1761-1767. 

2. Soding,J. (2005) Protein homology detection by HMM-HMM comparison. 

Bioinformatics 21, 951-960. 

3. Jaroszewski,L., Rychlewski,L., Li,Z., Li,W. & Godzik,A. (2005) FFAS03: a server for 

profile--profile sequence alignments. Nucleic Acids Res. 33, W284-288. 

4. Narang,P., Bhushan,K., Bose,S. & Jayaram B. (2005) A computational pathway for 

bracketing native-like structures for small alpha helical globular proteins. Phys Chem 

Chem Phys. 7, 2364-2375.  

5. Jayaram,B., Bhushan,K., Shenoy,S.R., Narang,P., Bose,S., Agrawal,P., Sahu,D. 

& Pandey,V. (2006) Bhageerath : An energy based web enabled computer software suite 

for limiting the search space of tertiary structures of small globular proteins. Nucleic 

Acids Res. 34, 6195-6204. 
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all-atom energy based empirical scoring function. J Biomol Struct Dyn. 45A, 1834-1837. 
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Impossible: Pushing the Frontiers of Atomic Models for Protein Tertiary Structure 

Prediction. Journal of Chemical Sciences 124, 83-91. 

8. Mishra,A., Rao,S., Mittal,A. & Jayaram,B. Capturing Native/Native like protein 

structures with a physico chemical metric-(pcSM) (manuscript submitted) 

9. Dhingra,P., Lakhani,B. & Jayaram,B. Generating native-like structures of soluble 

monomeric proteins via Bhageerath-H a homology/ ab initio hybrid method. (manuscript 

submitted) 
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and Semi-automated Quaternary Structure Prediction from Monomer Structure 
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Bilab-ENABLE is a fully-automated prediction server and Bilab is a human prediction group 

which generated a quaternary structure model from a server model. 

 

Methods 
Overview of the procedure of our ENABLE server is as follows: 1) Template search by PDB-

BLAST and HHpred
1
 combined with T-COFFEE

2
. 2) Generation of the 1st set of models by 

using MODELLER
3
 from a variety of template-alignment combinations. 3) Fragment assembly 

called IDDD/ABLE
4
 developed in our laboratory using fragments from models of the 1st set and 

structures in PDB. Target function including burial of hydrophobic residues, contacts between 

residues, average distance between hydrophobic residues, hydrogen bonds between mainchains, 

and exclusive volume to avoid overlap of residues was minimized by simulated annealing with 

5000-20000 steps. Generated models were added to the 1st set. 4) Top 500 models were selected 

according to Verify3D
5
 scores. Qualities of the models were then assessed by our developed QA 

predictor based on consensus method and five best models were selected for submission. 5) 

Predicted quaternary structures were generated using the similar procedure as group Bilab 

described below using the first monomer model.  

Group Bilab picked up the most probable model from server models and generate quaternary 

structure model by a template-based method. In this method, templates for quaternary prediction 

based on HHpred were selected according to score calculated by alignments. Predicted monomer 

structure was then superimposed to the template quaternary structure. Finally, generated 

quaternary models were evaluated and best scored quaternary models were submitted. 

 

1. Soding,J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 

951-960. 

2. Notredame,C., Higgins,D.G. & Heringa,J. (2000) T-Coffee: A novel method for fast and 

accurate multiple sequence alignment. J. Mol. Biol. 302, 205-17. 

3. Sali,A. & Blundell,T.L. (1993) Comparative protein modeling by satisfaction of spatial 

restraints. J. Mol. Biol. 234, 779-815. 

4. Ishida,T., Nishimura,T., Nozaki,M., Inoue,T., Terada,T., Nakamura,S. & Shimizu,K. (2003) 

Development of an ab initio protein structure prediction system ABLE. Genome Inform. 14, 228-

237. 

5. Luthy,R., Bowie,J.U. & Eisenberg,D. (1992) Assessment of protein models with three-

dimensional profiles. Nature 356, 83-85. 
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In CASP10, we designed a new integrative method based on our in-house software and two 

publicly available web servers, all of which were developed previously in our group. They are 

structure based ligand binding residue prediction tool SiteHunter and sequence based function 

prediction methods Protein Function Prediction (PFP)
1
 and the Extended Similarity Group 

(ESG)
2
.  

 

Methods 
We developed an integrative method to predict ligand binding sites. SiteHunter is constructed 

based on the observation that homologous proteins tend to bind ligands at similar binding 

residues. Firstly, a query (also called target here) protein sequence was submitted to the Pfam 

database to identify homologous proteins in the same Pfam family. Homologous proteins were 

checked whether they have known structures in PDB with bound ligands. Then, the homologous 

proteins with bound ligands were aligned with the query protein using MUSCLE. Finally, the 

ligand binding locations on homologous structures were transferred to the corresponding location 

in the query structure by the alignment result.  

 In order to identify ligand binding residues based on sequence similarity, we used our in-

house tools PFP and ESG, both of which are sequence similarity based automated function 

prediction (AFP) methods. The strength of PFP is its coverage of a large number of sequences, 

by including weakly similar sequences into consideration. On the other hand, ESG assigns higher 

weight on the consensus sequences that have strong similarity with the query protein among all 

the sequences it encounters along multiple iterations. Based on the PFP and ESG predictions of a 

target binding to a significant ligand, we found the template sequences (ranked according to the 

sequence similarity with the target protein) that have been retrieved by the PFP and ESG to make 

the prediction in question. Then we found the ligand binding residues for the top template 

sequences from Uniprot and found the corresponding binding residues of the target from multiple 

sequence alignment using MUSCLE. For some top hit sequences that did not have the binding 

residues listed in Uniprot, we used some ligand specific servers such as PredZinc, ATPsite, 

NADbinder to identify the ligand binding residues. 

 On the query sequence, the binding sites predicted from the individual homologous 

proteins were integrated  by majority voting.  

 

 

 

 

Results 
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Our integrated method made predictions of ligand binding sites on a total of 110 targets in 

CASP10, which are categorized as 'All groups' or 'Server only'. We predicted 83 (75.5%) of these 

110 targets with bound ligand.  

 

Availability 
http://kiharalab.org/pfp.php 

http://kiharalab.org/esg.php 
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In CASP10 we applied three predictors that were inspired by our MFDp method
1
. These meta-

predictors are trained on an updated and larger dataset and include more base disorder predictors. 

Most importantly, we incorporate two novel ideas, including a new class of input features that 

are based on alignment to native disorder segments, and a novel set of inputs derived from 

predicted 3D structure models; the latter are utilized in the biomine_DR_mixed predictor. 

 

Methods 

Our predictors work in two steps, where the input chain is first converted into a set of custom-

designed numerical features, which are inputted into a logistic regression-based predictor. The 

design of input features, features selection and training procedure were adopted from the original 

MFDp method
1
. The source information used to derive the features was extended to include 

more disorder predictors, including DISOPRED2
2
, IUPred

3
, MD

4
, Norsnet

5
, Ucon

6
, SPINE-D

7
, 

GlobPlot
8
, DisEMBL

9
, and PreDisorder

10
, and also sequence alignment into a comprehensive 

dataset of native disordered segments. In the case of the biomine_DR_mixed method we also 

include structural information derived from 3D models computed with HHPred
11

. 

Each of the three predictors was trained on a different dataset. The biomine_DR_pdb was 

trained on the dataset that was used to build ESpritz
12

, which annotates NMR-derived disorder; 

the biomine_DR_pdb_c uses a training dataset with REMARK 465-derived disorder annotations 

that has low sequence similarity to the CASP9 dataset; the biomine_DR_mixed uses a subset of 

the latter set.  

Unlike a number of other consensus-based disorder predictors, our methods also include 

other input information sources, such as evolutionary profiles and predicted secondary structure, 

solvent accessibility, and dihedral angles. The input features include raw values as well as 

various aggregated values. The biomine_DR_mixed method also uses features generated from 

the HHpred outputs including evolutionary information from HMM-based substitution matrix, 

predicted secondary structure, solvent accessibility and predicted B-factor. We empirically 

evaluated several classifiers, such as logistic regression, linear kernel-based SVM, and RBF 

network. The best results were obtained using logistic regression, which was adopted in the three 

predictors.  

We also perform post-processing of the predictions from the logistic regression, which is 

similar as the post-processing that we used during CASP9. Instead of reporting raw predicted 

probability values for each residue, we aggregate probabilities using the mean value over 5-

residues window, and we remove short, up to 2 residues, disordered or/and ordered segments. 

The optimal size of the removed segments was empirically determined on our training datasets. 

Finally we optimize thresholds on probabilities to maximize the value of the MCC on the 

corresponding training datasets. In rare cases where HHpred fails to generate predictions, we 

replace the corresponding predictions with the predictions from the biomine_DR_pdb_c method. 
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Results 

We evaluated our methods on two datasets, the CASP9 dataset and a PDB-derived dataset that 

contains all proteins with annotated disorder released after the date when training dataset was 

obtained; see Table 1. The biomine_DR_mixed method provides the best performing predictions, 

which suggests that addition of features extracted from the predicted 3D models is helpful. The 

biomine_DR_pdb method achieves the worst results. This is not surprising as this predictor was 

trained only on the NMR-derived disorder, which accounts for only about 10% of the CASP9 

dataset. Results on the CASP9 dataset are in general lower than for the PDB-derived dataset, and 

this may be due to lower sequence similarity between our REMARK 465-derived training 

datasets and the CASP9 set. 

 

Table 1. Results of the evaluation on two test datasets. 

Method 
CASP9 dataset PDB-derived dataset 

MCC ACC AUC MCC ACC AUC 

biomine_DR_mixed 0.513 0.697 0.879 0.651 0.819 0.952 

biomine_DR_pdb_c 0.454 0.671 0.850 0.638 0.824 0.938 

biomine_DR_pdb 0.346 0.669 0.813 0.449 0.835 0.910 

prdos2
*
 0.418 0.754 0.855 N/A N/A N/A 

DisoPred3C
 **

 0.506 0.670 0.854 N/A N/A N/A 
* 
  – method that achieved the highest ACC and AUC on CASP9 

**
 – method that achieved the highest MCC on CASP9 

 

Availability 

The MFDp predictor, which is the precursor for these three predictors, is freely available on-line 

as a web server and a standalone application at http://biomine.ece.ualberta.ca/MFDp.html. 
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BITS server is based on the simple premise that the functional sites in protein are more 

conserved than their global structure, and local structure quality of predicted models can be used 

as a representative of their structural quality. Models are ranked based on the structural quality of 

predicted binding site residues. When no binding site is identified, global structural comparisons 

with a model predicted using multiple templates and scoring with a knowledge-based potential is 

done to judge the model quality.  

 

Methods 
We have a developed a novel computational protocol for model quality assessment using binding 

site comparisons to judge the quality of the models. The binding site residues in the CASP server 

models were predicted using the COFACTOR algorithm
1; 2

. COFACTOR scans the query 3D 

structure against the template library, first based on global structure similarity, followed by a 

local similarity refinement search on selected templates, with the purpose of filtering out 

template proteins that do not share binding site similarity with the query protein. During the local 

structure similarity search, template proteins are scored against the query protein using an 

innovative structure-sequence similarity measure (BS-score), which is designed to capture both 

chemical and structural similarity between the query and the template proteins. The template 

protein, which shared the highest local similarity with the CASP models, was finally used to rank 

all the models based on their local similarity score (BS-score).  

For cases where no confident binding sites was predicted by COFACTOR, we first 

determined the difficulty of the target (“easy”, “medium” and “hard”) based on the threading Z-

score cutoffs.  For “easy” and “medium” targets, global structural similarity
3
 to the models 

predicted by our STRINGS server was used for the ranking. For “hard” cases, template protein 

which was identified by multiple different threading programs was structurally aligned with the 

CASP models and global structural similarity score to this template was used for the ranking
4
. 

When no single template was identified from the consensus, we ranked the models by scoring 

them with our knowledge-based potential
5,6

. 

 

Availability 
BITS is available as a web sever at http://cando.compbio.washington.edu/casp/bits/. 
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In CASP10 my participation was mostly focused on refinement. It concerned both refinement of 

CASP10 server models, sent as regular tertiary structure predictions, and refinement category 

targets. In case of regular tertiary structure prediction category, the assumption that server 

models are sufficient approximation of the real target structures was made. Models were 

evaluated, searched for regions that required refinement and modeled with restraints or, in case 

of lack of homology, entire structures were subjected for refinement. Refinement was performed 

using REFINER1 and MODELLER2 programs. 

 

Methods 

In regular tertiary prediction category CASP10 server models were downloaded and evaluated 

using MQAPII method3. Best scoring models were selected. Manual inspection of templates and 

alignments that have been used for creation of the models was done. Sets of potential alignments 

for subsequent targets were taken from Genesilico MetaServer4. Further path was similar both 

for regular TS category and REFINEMENT category. In both cases regions for modeling and 

restraints were established. It was done by inspecting similarity of the models to their templates, 

MQAPII's local score and additional organizers' suggestions (if provided). Regions close to the 

template and well conserved were restrained. In case of non-homology CASP10 server models 

unrestrained refinement was performed. 

 Refinement was done using REFINER program, which is an intermediate resolution 

refinement method based on simplified representation of polypeptide chain, statistical potential 

and Monte Carlo methods.  REFINER represents polypeptide chain as a chain of C-alpha atoms, 

while the side chains are represented by one or two pseudo-atoms, depending on the size of the 

side group. REFINER uses quasichemical, orientation dependent contact potential derived from 

a database of protein crystal structures. Besides regular pair-wise interactions recent version of 

the program was enriched with terms controlling composition of side group atoms in the vicinity 

of a given side group atom, which is a step towards multi-body potential terms. Sampling of 

conformational space was accomplished by usage of asymmetric Metropolis scheme, controlled 

by Replica Exchange Monte Carlo method. REFINER uses set of moves that allow for 

conformational change. The recent version was enriched with option of modeling protein 

oligomers that allows for maintaining symmetry of the system during the entire simulation run. 

This option was employed for modeling of refinement homo-dimers, where symmetry was 

derived from the template or provided as organizers' suggestion. 

 After the simulation run data were subjected for clustering. The lowest energy and most 

populated conformations were processed further. Full atomic reconstruction was accomplished 

using REBUILD program from MMTSB package5. The last stage of modeling (removal of atom 

clashes) was done using Modeller. Decoys were clustered and evaluated using MQAPII. Final 

models were selected based on MQAPII score. 
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Results 

A semi-automated pipeline for protein modeling was created. The method requires a set of 

structures that approximate the final structure as an input. It also requires alignments and 

templates that have been used for the generation of input models. Human intervention is mostly 

needed in the stage of formulating restraints and establishing fragments for refinement. 

 

Availability 

REFINER is available publicly (albeit with limited capacity) as a part of the GeneSilico protein 

modeling toolkit at https://genesilico.pl/toolkit/ . 
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Protein structures prediction starting from a primary sequence is a very challenging task, as 

demonstrated by almost two decades of CASP 1 competition. Generating new structures using 

template based strategies can result in putative structures, especially in side chain placement. The 

backbone structure prediction is, nowadays, more treated than prediction of the side chains 

conformations, as tools developed for previous CASP sessions demonstrated. Evaluating the 

accuracy of the side chains placement can be a crucial point in a homology procedure.  In this 

prediction session, we used the RING2 (Residue Interaction Network Generator) networks in 

order to assess the side chain placement and the chemical interactions of our predicted models.  

The RING server generates a network for each model, constituted by nodes and edges 

representing interactions. The represented interactions are Simple Interactions (pairs of C-alpha 

atoms and close atoms), van der Waals interactions, hydrogen bonds, salt bridges, π-cation and π-

π interactions, disulfide bridges and peptide bonds. The output of the RING server is completely 

compatible with the Cytoscape3 format. Hence, the generated networks could be visualized and 

evaluated through this software, and compared with the 3D model structures for a better and 

comprehensive assessment of the model.   

 

 

Methods 
All models were built using crystal structures available at www.pdb.org database as templates. 

All the templates were found manually, evaluating each crystal structure by resolution index and 

visual inspection.  

 The template search was carried out by means of PDBBlast4, using the target fasta 

sequence as input and then choosing the top ranking templates resulting from the resulting 

alignment. The ranking was based on identity percentage and query coverage percentage. The 

query sequence was then evaluated by Phyre and Phyre 2 servers5. This step was based upon 

secondary structure evaluation and comparison between the query sequence and the structure 

database.   

 The sequence alignment between the target and template fasta files was carried out with 

ClustalW6, using blosum matrices and trying to avoid gaps larger than five residues. This was 

done, where it was possible, in order to avoid poorly guessed coordinates on uncorresponding 

residues backbone and to maintain the highest rate of secondary structure features of the 

template. 

 Once the template was selected and the two sequences were aligned, the models were 

built through the usage of the HOMER-M7 server. The side chain placement was performed by 

SCWRL8. The final model was then minimized, in order to remove any van deer Waals and 
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charge clashes over the generated structure. The energy minimization step was carried out by 

means of 100ps of molecular dynamics simulation with NAMD9 as molecular dynamics engine 

and using the CHARMM 27 force field10. The backbone atoms were kept fixed during the 

minimization step, in order to minimize the loss of secondary structure features. At the end of 

this step, models were superimposed to templates and were then evaluated by RMSD index to 

check the secondary structure conservation between template and model.  

 The final models assessment was achieved by the Ramachandran plot evaluation, 

verifying that the number of outliers was low. Finally we evaluated the intramolecular 

interactions with a network representing the model. This was achieved by means of RING, which 

generated a network for each submitted structure. The network was made by nodes, which 

represented residues, and edges representing interactions between residues. The RING tool 

evaluates both the 3D structure and the linear sequence of the target, and provides immediately a 

wide overview of the residue-residue interactions.  

 

Results 
The possibility to evaluate the chemical interactions occurring between the residues of the model 

in a fast and objective way was short time consuming. It turned out to be a very useful tool, 

helping us in focusing on key residues and on chemical reliability of the generated models. 

Visualizing a protein as a network of interactions can highlight structure features that are often 

not so clear when visualizing just the 3D structure. The residue-residue interactions were both 

visualized in UCSF Chimera11 as 3D structure and in Cytoscape as network. Compared to the 

classical 3D structure evaluation, the simplicity of the RING representation greatly increased our 

ability to detect unlikely interactions.  

 

Availability 
The RING server is available at protein.bio.unipd.it/ring, and the generated output can be opened 

with Cytoscape. The RINalyzer tool allows to see the pdb 3D structure in UCSF Chimera, 

simultaneously with the network visualization in Cytoscape.  
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CASPITAv2 is a meta predictor based on (1) CSpritz1 (see abstract at this CASP), (2) ESpritz2 

(see abstract at this CASP) and (3) PreDisorder (MULTICOM-REFINE in CASP9)3 4.  

  

Methods 

The output probabilities produced by each predictor are simply averaged.  

 

Results 

No results were calculated for this method, we are using this round of CASP as a performance 

evaluator.  

 

Availability 

CASPITAv2 is not available. 
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The chunk-TASSER server participated in the  CASP structure prediction experiment. For Easy 

targets (see below), it is a fasrt version of the TASSER-VMT
1
 server and for Medium/Hard 

targets, it is an updated version of the original chunk-TASSER
2
. Chunk-TASSER is much faster 

than TASSER-VMT, especially for Easy targets. 

 

Method 

The Chunk-TASSER server uses an updated version of the SP
3
 threading method

3
. SP

3
 updates 

include filtering of PSIBLAST hit sequences to less than 90% and 70% sequence identity to each 

other in profile generation with PSIBLAST e-value cutoffs of 0.001 and 1, respectively.  For 

Easy targets (SP
3
 Z-score >= 6.0), the SP

3
 alternative alignment is generated by a parametric 

alignment method coupled with short TASSER refinement on models selected using knowledge-

based scores. The refined top model is structurally aligned to the template to produce the SP
3
 

alternative alignment. These template models with SP
3
 alternative alignments are then grouped 

into sets containing a variable number of template combinations. For each set, instead of using 

TASSER as in the TASSER-VMT
1
 server, we use MODELLER

 4
 multiple template modeling to 

build full-length models. The FTCOM
5
 method is used to select five models from the pool of 

structures generated by MODELLER. For Medium/Hard targets (SP
3
 Z-score < 6.0), in addition 

to threading template models, we also generated full length ab initio models by fragment 

assembly
6
 if the target size is < 200 residues.  Threading models and the ab initio models are 

ranked by FTCOM
5
 and the top 20 models are fed into TASSER

7
 for refinement. As in our 

original chunk-TASSER, for Medium/Hard targets, chunk models generated by an ab initio 

method are also included in TASSER refinement. A single TASSER run was performed for each 

target, and the top five SPICKER cluster centroid-based models were used for prediction. Ideal 

geometry backbone models are then built from the C-only cluster centroid models, followed by 

relaxation/optimization using the TASSER energy and H-bond count. An in-house template-

based side-chain building procedure was employed to build the side-chains of the submitted 

models. 

 

Result 

For structures released by Sep 20,2012, chunk-TASSER is only slightly worse than HHpredA(Q) 

and worse than TASSER-VMT by around 2.5%, results that are consistent with our prior 

benchmarking. This implies that TASSER refinement performs better than simple multiple 

template modeling using MODELLER. It is noteworthy that for target T0650, chunk-TASSER is 

much better than TASSER-VMT (GDT-TS-score: 0.93 vs. 0.73). It might be due to the fact that 

the majority of FTCOM selected models are worse than the top first model; thus, the TASSER 

refined model is worse than the top first model. 
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Availability 

The chunk-TASSER program and web service are available at http://cssb.biology.gatech.edu/ 
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Our manual group “chuo-binding-sites” attended ligand bind prediction category (FN) and 

tertiary structure prediction category (TS) in CASP10. We mainly used the software Isolated 

FAMSD which automatically executes such some BLAST type homology search programs as 

PSI-BLAST and the modeling software FAMS-Ligand
1
 which makes the protein structure 

including several ligands indicated without short contacts for distances. In the case of hard 

targets based upon various sequence alignment programs, we obtained alignments from 

homology search software SPARKS2, SP3, HHsearch and HMM_BLAST in addition to the 

alignment programs mentioned above. In order to obtain the answer of ligand binding sites in the 

ligand sites prediction category (FN), we could make the protein structures including some 

ligands, and sent the protein coordinates as the results of the tertiary structure prediction category 

(TS) in CASP10. The protein models made to find the ligand binding sites was distorted 

according to the binding ligands in family proteins with high sequence homology. Then, we 

checked the accuracy of the models made from the family proteins including the binding ligands 

in comparison with the modeling results of our “chuo-fams-server” team in the CASP10 without 

the consideration of the ligand binding. 

 

Methods 
The method used by “chuo-binding-sites” are based on the software Isolated FAMSD which uses 

sequence alignments obtained from some programs related to the BLAST such as the PSI-

BLAST against 95% non-redundant sequences of PDB, ranks alignments by PF_score
2
, and 

builds models so that the atoms of protein and those of ligands don’t overlap each other by 

FAMS-Ligand program. In the Isolated FAMSD system, the source programs are placed in the 

Linux computer machine which is controlled by the Web Program in Windows, X, Vista and 7 

machines. The representative model is selected by four evaluation scores, alignment length, 

homology, secondary structure information and the CIRCLE score
3
, which are calculated for 

each constructed models. The CIRCLE score is calculated from 3D coordinates of a protein 

model including side-chain atoms, and the score estimates the stability of the protein model from 

the free energy point of view. 

Next, the representative model selected according to the above algorithm is used as the 

reference protein superimposed by the protein including some ligand compounds with no short 

contacts. Thus, the rigidly moved ligands are searched, and the amino acid residues of the protein 

within 4Åare registered as the ligand binding sites. The representative protein model changed in 

the protein-ligand interactions by the FAMS-Ligand program is determined as the 3-dimensional 

mailto:a12.px8e@g.chuo-u.ac.jp
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protein structure proposed in the CASP10. 

Moreover, in the case of the difficult target in the sequence alignment, some alignment 

programs such as SPARKS2, SP3, HHsearch and HMM_BLAST are used. The determination of 

the ligand binding sites and the 3-dimensional structures is similarly performed with the method 

mentioned above. 

 

Results 
The number of the PDB coordinates corresponding to the answers for the target query sequences 

obtained from CASP10 organizers by September 6, 2012 are 34. The GDT_TS values for the 

models proposed by us were calculated. We compared the GDT_TS values of the “chuo-binding-

sites” team with those of our “chuo-fams-server” team. The accuracy of the models made from 

the family proteins including the binding ligands is comparable for the modeling results of our 

“chuo-fams-server” team in the CASP10 without the consideration of the ligand binding. 

Accordingly, the results in which the binding sites are searched may be reliable. 

Next, there were 27 answer PDB files including ligands out of 34 answer PDB files. 

Here, if the atoms of ligands exist within 4.0Å from the amino acid residues of the target protein, 

the amino acid residues were defined to be the ligand binding site. Thus, the value of 4.0Å was 

also used to determine the binding site for the CASP10 target models. Figure 1 and 2 show the 

number of applicable protein targets against the accuracy rates of the binding sites composed of 

amino acid residues for all the models of 27, and the models over the GDT_TS value 30, 

respectively. 

 

 
            Fig.1 All the models of 27                   Fig.2 The models over the GDT_TS value 30 

      (The number of the accuracy rate 0% is 4.)    (The number of the accuracy rate 0% is 3.) 
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Our manual group “chuo-fams” attended tertiary structure prediction category (TS) in CASP10. 

Tertiary structure prediction of “chuo-fams” team by the consensus method composed of 

GDT_TS and the sequential arrangement of the secondary structure under the check of the 

packing free energy using STAGE2 server models was performed. 

We notice that the results of our “chuo-fams” team are compared with those of the 

“Zhang-Server” (http://zhanglab.ccmb.med.umich.edu/casp10/11.html), because, as shown in the 

URL, the “Zhang-Server” ranks first in the Cumulative Score of 51 targets of CASP10 until 

September 22, 2012. The URL table is ranked by TM-score of the first model. We are very 

interesting to compare the “Zhang-Server”, because our “chuo-fams” wants to get more superior 

results than any server teams. 

 

Methods 
For the tertiary structure (TS) category, we performed our manual prediction using the following 

four scores for the selection of first ranking model in the STAGE2 files of the CASP10 site, 

which had about 150 server models.  

 

1. Cα atom consensus 

The Cα coordinates are used in the calculations of the GDT_TS value with each other team. 
The GDT_TS values are used in the consensus method for each server model. 

2. Secondary structure consensus  

The sequential arrangement of the secondary structure is compared, and it is used in the 

consensus method for each server model. The secondary structures are obtained from the 

DSSP
1
 calculations. 

3. CIRCLE
2
 

The score in the packing of amino acid residues based on physiochemical free energy is 

calculated from the CIRCLE program. 

4. ss_score
3
 

The score representing the rate of secondary structure identity between PSIPRED
4
 prediction 

of the target protein sequence and STRIDE
5
 judgment of the model protein is used. 

 

The weights of these scores depend on the difficulty of each target. For easy targets, we 

attached importance on the consensus scores, but on the other hand, we attached importance on 

the absolute scores such as CIRCLE and ss_score for hard targets.  

 

mailto:a12.px8e@g.chuo-u.ac.jp
http://zhanglab.ccmb.med.umich.edu/casp10/11.html
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Results 
The number of the PDB codes corresponding to the answers for the target query sequences 

obtained from CASP10 organizers by September 6, 2012 are 34. The GDT_TS values for the 

models proposed by us were calculated. We compared the GDT_TS values of the “chuo-fams” 

team with those of the “Zhang-Server” team. Figure 1 shows the plot of the “Zhang-Server” team 

against the “chuo-fams” team. This figure indicates that the consensus method of the “chuo-

fams” team is useful. Accordingly, the results in which our consensus method in the “chuo-fams” 

may be reliable are obtained. 

 

 
Fig.1 The GDT_TS plot of the “Zhang-Server” against the “chuo-fams”. 

 

Here, the superior result of the “chuo-fams” is described by the circle, and that of the 

“Zhang-Server” is described by the cross. The triangle means the same GDT_TS values. There 

was one careless miss in the “chuo-fams” team, though we didn’t have such a careless miss for 

any other targets. If we have selected according to the model written in the note, the result would 

change to the place where the arrow indicates in this figure. 
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Our human team "chuo-fams-consensus" attended TS(3D atomic coordinates prediction) 

category in CASP10. For attending the CASP10, we use three kinds of consensus methods based 

on the experiences of past CASPs. 

 We use three information of the sequential arrangement of secondary structure, the 3-

dimensional arrangement for the conserved regions of the secondary structure, and the 

conservation of 3-dimensional structure based upon the positions of Cα in the models. 

 

Methods 
First consensus method is performed among many server models in the STAGE2 using the score 

in the sequential arrangement of the secondary structure for other server models. We used the 

DSSP program to determine the secondary structure of each amino acid residue for all the server 

models in the STAGE2. 

We count the number of the amino acid residue in relation to the agreement of the secondary 

structure in the subject alignment, and calculate the protein score based upon the number of the 

agreement of the secondary structure. The ratio of the secondary structure agreement within one 

region of the secondary structure is defined to be over 60%.  

Secondly, we determine the 3-dimensional arrangement of the secondary structure in a server 

model, and the consensus method is applied in the calculation of the difference of the 3-

dimensional arrangement between two server models. The secondary structure consists of amino 

acid residues over 4 for the same secondary structure. The ratio of the secondary structure 

agreement of two corresponding amino acid residues should be over 60% in the sequence 

alignment between the subject two protein models. 

The equation to calculate the similarity for the 3-dimensional arrangement of the secondary 

structures is as follows, 

Score = 10 ＾ (- RMSD) × 1000 

 

Thirdly, the conservation of 3-dimensional structure based upon the positions of Cα in the two 

server models is noticed. The GDT_TS value is used as the indication of the conservation of 3-

dimensional structure based upon the positions of Cα. Although we use the regions of only 

alpha-helix and beta-sheet structure in the first and second consensus process, other regions such 

as loops against the above two secondary structures are included in the third consensus process. 

We used the score which we linearly added the consensus scores of above three methods as the 

final consensus score of the model. 

 

Results 

We notice that the results of our “chuo-fams-consensus” team are compared with those of the 

Zhang-Server (http://zhanglab.ccmb.med.umich.edu/casp10/11.html), because, as shown in the 

URL(Uniform Resource Locator), the Zhang-Server ranks first in the Cumulative Score of 51 

mailto:a12.4eh8@g.chuo-u.ac.jp
http://zhanglab.ccmb.med.umich.edu/casp10/11.html
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targets of CASP10 until September 22, 2012, though our chuo-fams-server ranks 24. The URL 

table is ranked by TM-score of the first model. We are very interesting to compare the Zhang-

Server, because our “chuo-fams-consensus” team want to get more superior results than any 

server teams. 

The number of the PDB coordinates corresponding to the answers for the target query 

sequences sent from CASP10 organizers are 34 until September 6, 2012. The GDT_TS values 

for the models sent to the organizer by us were calculated. We compared the GDT_TS values of 

the “chuo-fams-consensus” team with those of the “Zhang server” team. The plot of the “Zhang 

server” team against the “chuo-fams-consensus” team was described. A little bit superior results 

of the “chuo-fams-consensus” are described in the above plot. Thus, it is indicated that the 

consensus method of the “chuo-fams-consensus” team is useful. 

Accordingly, the results in which our consensus method in the “chuo-fams-consensus” team may 

be reliable may be obtained. 

 

Availability 

1.  DSSP：Kabsch W, Sander C., Biopolymers. Dec;22(12):2577-637. (1983)  

2.  PSIPRED：Jones, D.T., J. Mol. Biol. 292:195-202 (1999)  

3.  FAMS : Ogata K, and Umeyama H., J Mol Graph Model. Jun;18(3):258-72,305-6.(2000) 
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chuo-fams-server 

3-Dimensional models created by Chuo-fams-server team using the FAMS program and 

some consensus methods 

 

Wataru Sato, Hideaki Umeyama, Mitsuo Iwadate 

Graduate School of Science and Engineering, Chuo University 

a12.4eh8@g.chuo-u.ac.jp 

 

Our server team, "chuo-fams-server", attended TS(3D atomic coordinates prediction) category in 

CASP10. We constructed consensus methods and scoreA(score of model accuracy) which 

consists of the sequence alignment length, the genetic similarity score among 20 amino acid 

residues obtained from the table of pair points in the BLOSUM62 matrix, the ratio of the 

agreement of the secondary structure between the predicted secondary structure of the target 

protein and the secondary structure of the referred PDB protein in the sequence alignment . We 

used the FAMS as the homology modeling program and PSI-BLAST, HHsearch, SPARKS2, 

SP3, HMMER and HHM_BLAST as the sequence alignment programs. 

In order to increase the accuracy, the GDT_TS value, of the model sent to the CASP10 

organizer as the predicted model, we devised the scoring function for the models made in our 

laboratory. We used also the equation made from the scoreA developed in the CASP9, and some 

consensus methods mentioned in the Method are applied. 

 

Methods 
From the secondary structure point of view, first, the consensus method is applied to the server 

models in the STAGE2 step. The conservation of the secondary structure among server models 

from different teams is noticed, and the ratio of the conservation is calculated for pair protein 

models in the STAGE2 to calculate the consensus score. We used the DSSP program to 

determine the secondary structure. 

From the 3-dimensional structure point of view, secondly, the consensus method is 

applied to the server models in the STAGE2 step. The 3-dimensional agreement of C alpha 

atoms among the STAGE2 server models is noticed, and the GDT_TS value indicating the 

agreement of C alpha atoms is used in the consensus method. Thus, the consensus score of the 

whole shape of the modeled protein is obtained. 

From the sequence alignment point of view, thirdly, we made the score of the sequence 

similarity which is called "scoreA". The scoreA for one server model consists of the length of 

sequence alignment using alignment programs, the sum of pair points from BLOSUM62 for the 

corresponding amino acid residues in the sequence alignment, and the sequential sum of the 

score for the agreement of the secondary structures between two server models. 

Thus, we explain the homology modeling system, in which we incorporated some 

methods mentioned above. As the first step, we get credible sequence alignments between the 

target protein and the PDB protein using various alignment programs. 

As the second step, we create the 3-dimensional structure model for each alignment using 

the FAMS program. As the third step, we screen the candidate models using the CIRCLE 

program calculating the packing free energy in the solution and the length of the sequence 

alignment. As the 4-th step, we calculate some consensus scores and the score for the scoreA. As 

the 5-th step, in order to get the final conclusion for the model sent to the organizer, the final 

mailto:a12.4eh8@g.chuo-u.ac.jp
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score is calculated using the equation obtained from the training for the CASP8 targets using the 

maximization of the sum of the Z-score. 

 

Results 
We notice that the results of our “chuo-fams-server” team are compared with those of the Zhang-

Server(http://zhanglab.ccmb.med.umich.edu/casp10/11.html), because, as shown in the 

URL(Uniform Resource Locator), the Zhang-Server ranks first in the Cumulative Score of 51 

targets of CASP10 until September 22, 2012, though our "chuo-fams-server" ranks 24. The URL 

table is ranked by TM-score of the first model.  

We are very interesting to compare the Zhang-Server, because our “chuo-fams-server” team 

want to get corresponding results to the "Zhang-Server" team.  The number of the PDB 

coordinates corresponding to the answers for the target query sequences sent from CASP10 

organizers is 34 until September 6, 2012. The GDT_TS values for the models proposed by us 

were calculated. We compared the GDT_TS values of the “chuo-fams-server” team with those of 

the “Zhang server” team. The plot of the “Zhang server” team against the “chuo-fams-server” 

team indicates that the results of the “Zhang server” are superior to our ones. However, the plot 

indicates that the “chuo-fams-server” team is useful and reliable to create the protein model. 

 

1.  Ogata K, and Umeyama H. FAMS . J Mol Graph Model. Jun;18(3):258-72,305-6.(2000) 

2.  Arai M. Construction of the Function for Protein Structure Prediction and the Homology 

Modeling, Chuo University (2011) 

http://zhanglab.ccmb.med.umich.edu/casp10/11.html
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chuo-repack, chuo-repack-server 

Study on 3-Dimensiional repacking between such secondary structures as alpha helix and 

beta sheet in the homology modeling process 

 

Takahiro Miyashita, Wataru Sato, Koutarou Yoshiyama, Hideaki Umeyama, and Mitsuo Iwadate 

  School of Science and Engineering, Chuo University 

a12.hbag@g.chuo-u.ac.jp 

 

In a little bit hard homology modeling, generally, the ratio of sequence similarity is under 20% 

between the modeling target protein and the 3-dimensionally analyzed reference protein. Even if 

the whole protein structure seems to be similar, the 3-dimensional arrangement among 

neighboring secondary structures will be positionally misaligned between the target protein and 

the reference protein because of the low sequence similarity which brings the change of the 

shape of the secondary structure. In the FAMS program, which we are using as the homology 

modeling soft, the positions of the secondary structures do not move or misalign largely due to 

the constraint energy not to move from the referred main chain positions according to the 

training research among the family proteins over the sequence similarity of about 35%. We are 

thinking that the introduction of the misalignment of the secondary structure is very important to 

create a homology model of the low sequence similarity. In the CASP10 contest, thus, we 

attended the competition as the teams of “chuo-repack-server” and “chuo-repack” in order to 

resolve the misaligned problem of the secondary structure in the hard homology modeling. In 

order to select the subject model proteins, we used the server models and the manual ones. As the 

former models, we used some models from "chuo-fams-server" and "chuo-binding-sites" teams. 

And, as the latter models, we used some models from "chuo-fams" and "chuo-fams-consensus" 

teams. 

 

Methods 

Let's explain how to select the repack protein. First, we identified the regions of the secondary 

structures such as alpha helix and beta sheet using the program called "ksdssp". Since we need to 

misalign only the secondary regions defined by us, we deleted the regions including the loops in 

the model. . From the visual point of view, we selected the pair secondary structures, which seem 

to be weak in the interaction with a slightly large distance. And we moved the relative positions 

of the secondary structures in the calculations of the docking score. In order to reattach the loop 

regions excluded in the process of the 3-dimensional misalignment, we executed the FAMS 

program, which reforms the whole protein structure using the repacked secondary structure 

regions and the loop regions corresponding to the reference protein in the homology modeling. 

Explanation of docking program between two secondary structures. We define each of all 

the secondary structures about whether the secondary structure should be subject or not. The 

rigidly transferred and rotated secondary structure is named to be "str1" and, the fixed secondary 

structure is named to be "str2". For the atoms composing the "str2", each distance between two 

grid places around the "str2"are determined to be about 1 Å, and the zero value is given to those 

grid places. And the grid places within 3Å from the atoms of the "str2" obtain minus fifteen 

points. After that, for the grid places having the zero value in the edge of zero regions between 

the zero regions and the minus fifteen region of grid places, the points are changed and reset to 

be one point from the zero point. Next, the gravity center of the "str1" is fitted to a grid place 

belonging to the "str2", and the points corresponding to the grid places contained within 3Å from 
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the atoms in the "str1" are added. And this total score is defined as an index for the surface area 

of the contact region between the "str1" and the "str2". Then, we change the corresponding grid 

place. The gravity center of the "str1" is fitted to other grid place belonging to the "str2", and the 

points corresponding to the grid places contained within 3Å from the atoms in the "str1" are 

added again. On the other hand, the Euler’s three angles around the gravity center of the "str1" 

are changed in turn less than 15 degrees. Again, similarly the maximum score is calculated for 

many small rotations of the "str1". Thus, the top score in the two processes of the gravity center 

of the "str1" fitting to the "str2" grid place and the rotation of the Euler’s three angles around the 

gravity center of the "str1" is calculated to determine the interacting structure between two 

secondary structures.  

 

Results 

In the CASP10 contest, the repacking calculations were performed for the 25 target in the “chuo-

repack-server" and the 24 targets in the "chuo-repack". Using the PDB coordinates published 

until September 12, 2012, the GDT_TS value were calculated to compare with the GDT_TS 

values of the models used as the starting structure. The results are shown in Figures 1 and 2. Two 

figures are based upon the “chuo-repack-server" and "chuo-repack" teams, respectively. For 

almost models, the repacking process does not work to improve the accuracy of the starting 

models. Conclusively, we should revise the docking program between two secondary structures 

to become more accurate. 

1. Ogata K, and Umeyama H., J Mol Graph Model. Jun;18(3):258-72, 305-6. (2000). 

2. Arai M, Construction of the Prediction Function of Protein Structure and the Homology 

Modeling System, Chuo University, (2011). 

 
Figure 1. Show the GDT_TS plot of the 

“template” against the “chuo-repack-server”. 

The superior results of the “chuo-repack-

server” are described by the circle, and that of 

the “template” is described by the cross. The 

triangle means the same GDT_TS values. 

 Figure 2. Show the GDT_TS plot of the 

“template” against the “chuo-repack”. The 

superior results of the “chuo-repack” are 

described by the circle, and that of the 

“template” is described by the cross. The 

triangle means the same GDT_TS values. 
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Here we describe the protocols used by the CNIO group for the 3D structure prediction, contact 

prediction and function prediction experiments during the 10
th

 edition of CASP. The 3D structure 

predictions were based on our contact predictions, while the human function prediction method 

combined the predictions of two servers, firestar
1
 and 3DLigandSite

2
. 

 

Methods 

 

Structure and contact prediction 

We have shown that the information contained in predicted residue–residue contacts can aid 3D 

model prediction
3
. The power of predicted contacts to help in 3D structure prediction was 

surprising because the residue–residue contact prediction methods used in the study had very 

poor accuracy.  

Recent work
4
 has suggested that contact predictions can be drastically improved given 

the right conditions. Unfortunately these conditions are rarely met, in particular for CASP 

targets. However, we have recently developed a similar contact prediction method that requires 

alignments with fewer sequences to make predictions. 

Our methodology follows the rational of ContextMirror, an approach intended to detect 

pairs and groups of co-evolving proteins in which covariation remains significant after removing 

the  contribution of others proteins in the alignment
5
. This idea has been adapted to contact 

prediction starting from the correlated mutations between every pair of residues as calculated by 

Göbel et al
6
. We use the correlation matrix to define the co-evolutionary profile of each position 

as a vector containing the correlation values of its position with every other position of the 

alignment. The similarities between every pair of co-evolutionary profiles are quantified as their 

Pearson’s correlation coefficient. In order to evaluate inter-position specific co-evolution, partial 

correlation coefficients are calculated for pairs of positions and every possible third position.  

Contact pairs were generated by ContextMirror, from the server models and from the 

binding sites predicted by firestar and were used to discriminate between the decoys generated 

by server groups and generated in house. In CASP10 we predicted all human targets.  

 

Function prediction 

For the function prediction experiment we combined the predictions of 3DLigandSite and 

firestar. Although 3DLigandSite had made predictions for all targets (as a structure-based 

function prediction method), the automatic firestar server was only able to detect the required 

homology in 44 targets. However, evidence from the extended firestar alignments and 

confirmatory evidence from 3DLigandSite allowed us to add a further 16 confident predictions. 

In almost all cases these were substrate binding sites. 

 

1. Lopez, G, Maietta, P, Rodriguez, JM, Valencia, A and Tress, ML (2011). firestar – 

mailto:mtress@cnio.es
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advances in the prediction of functionally important residues. Nucleic Acids Res., 39 

W235-241. 

2. Wass, MN, Kelley, LA and Sternberg MJ (2010). 3DLigandSite: predicting ligand-

binding sites using similar structures. Nucleic Acids Res., 38 W469-473. 

3. Tress, ML and Valencia, A (2010). Predicted residue-residue contacts can help the scoring 

of 3D models. Proteins, 78, 1980-1991 

4. Morcos, F, Pagnani, A, Lunt, B, Bertolino, A, Marks, DS, Sander, C, Zecchina, R, 

Onuchic, JN, Hwa, T and Weigt M (2011). Direct-coupling analysis of residue 

coevolution captures native contacts across many protein families. Proc Natl Acad Sci U 

S A, 108 E1293-E1301. 

5. Juan, D, Pazos, F and Valencia, A (2008). High-confidence prediction of global 

interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci U S A, 

105, 934–939. 

6. Göbel, U, Sander, C, Schneider, R and Valencia, A (1994). Correlated mutations and 

residue contacts in proteins. Proteins, 18, 309–317. 
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Protein-ligand binding sites prediction using COFACTOR 

Ambrish Roy 

Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, Ann 

Arbor, MI 48109, USA 

ambyroy@uw.edu 

 

During CASP10, both our automated server (as “COFACTOR”) and human group (as 

“COFACTOR_HUMAN”) used the COFACTOR
1
 algorithm and BioLiP database

2
, for ligand 

binding site residue predictions. Both the groups used the I-TASSER 3D models which were 

built using multiple templates as well as single template models. In addition to the 3D structure 

predictions, COFACTOR algorithm consists of two key steps for binding site identifications: (a) 

template identification; (b) local similarity refinement search on selected templates. 

 

Template identification 

Template proteins were identified by matching the 3D models with a template proteins in the 

BioLiP database using the structural alignment program TM-align
3
. All the template proteins 

having non-random structural similarity, i.e. TM-score >0.3
4
, to query structure were used as an 

input for the next step of local similarity refinement search for binding site residue identification. 

 

Local structural refinement 

A binding site refinement search is performed on the selected templates, with the purpose of 

filtering out templates that even though are globally similar, they do not share binding site 

similarity with the query protein. This local similarity refinement involves the following steps: 

a. Generation of candidate binding site motifs in query: Conserved residues in query protein are 

identified based on Z-score of Jensen–Shannon divergence score
5
 and residues with Z-score > 

-0.2 are marked as potential binding site locations. The structures of all combined sets of 

marked residues are excised from the predicted model and are used as candidate binding site 

motifs.  

b. Superposition of candidate binding site motifs onto template binding site: These local 3D 

candidate motifs of query protein are superimposed onto the template’s binding site residues. 

For each residue i, the coordinates of two neighboring residues, i.e. i-1 and i+1th residues, are 

also used for increasing the reliability of structural superimposition. The rotation and 

translation matrix acquired from this superimposition is used for superposing the complete 

structure of query and template proteins. A putative binding site region in query’s predicted 

structure is then defined using a sphere of radius r, where r is the maximum distance of the 

template residues from the geometric center of template binding site. 

c. Alignment of putative and template binding site: The best alignment between the query and 

template binding sites, i.e. the region defined within the sphere of radius r, is identified using 

an iterative Needleman-Wunsch dynamic programming
6
 similar to that used in TM-align

3
, 

where the score for aligning ith residue in query and jth residue in template is given by the 

sum of BLOSUM-62 residue similarity and reciprocal distance between the residues. For each 

alignment, the final raw alignment score is calculated as the sum of structure and sequence 

match over all the aligned residue pairs, normalized by the number of residues present in the 

template’s binding site. 
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d. Identification of binding site: Step (a) to (c) is repeated for all candidate binding site motifs, 

and finally the region which gives the best binding site score (BS-score) is selected as the 

identified binding site in the query and the residues aligned with known binding site residues 

in the template as binding site residues. 

e. Clustering of binding sites: Predicted binding sites are clustered based on their spatial distance 

and chemical similarity of template ligand to generate the final predictions. 

 

Availability 

The algorithm is implemented on both I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-

TASSER) and COFACTOR (http://zhanglab.ccmb.med.umich.edu/COFACTOR) servers, where 

the I-TASSER server starts from a target sequence and the COFACTOR server from a 3D 

structure model of the target. 

 

1. Roy, A. & Zhang, Y. (2012). Recognizing protein-ligand binding sites by global structural 

alignment and local geometry refinement. Structure 20, 987-97. 

2. Yang, J., Roy, A. & Zhang, Y. (2012). BioLiP: a semi-manually curated database for 

biologically relevant ligand-protein interactions. Nucleic Acids Res, (submitted). 

3. Zhang, Y. & Skolnick, J. (2005). TM-align: a protein structure alignment algorithm based 

on the TM-score. Nucleic Acids Res 33, 2302-9. 

4. Xu, J. & Zhang, Y. (2010). How significant is a protein structure similarity with TM-

score = 0.5? Bioinformatics 26, 889-95. 

5. Capra, J. A. & Singh, M. (2007). Predicting functionally important residues from 

sequence conservation. Bioinformatics 23, 1875-82. 

6. Needleman, S. B. & Wunsch, C. D. (1970). A general method applicable to the search for 

similarities in the amino acid sequence of two proteins. J Mol Biol 48, 443-53. 

 

 

http://zhanglab.ccmb.med.umich.edu/I-TASSER
http://zhanglab.ccmb.med.umich.edu/I-TASSER
http://zhanglab.ccmb.med.umich.edu/COFACTOR
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This method tests a novel, fully automated predictor of protein-ligand contacts based on fold 

recognition recently developed by the Bioinformatics Group at UCL. This was recently made 

available as part of the PSIPRED webserver. 

 

Methods 

The method is an automated strategy for the prediction of binding site residues, which utilises the 

consensus of contact residues between homologous protein structure templates and their 

biologically relevant ligands. Initially, we calculate high confidence template structures and 

alignments to the CASP target sequences using pGenTHREADER [1]. We then identify each 

template structure's ligand-interacting residues using the annotations from PDBSum [2] and the 

Catalytic Site Atlas [3]. Using the annotations in SwissProt/Uniprot [4], in the Binding MOAD 

database [5]  we identified the set of biologically valid ligands bound to each template and we 

discard any “non-valid” ligands from each template structure. 

 

With the valid ligand contacts and the initial pair-wise alignments in hand, interacting residue 

coordinates were mapped from each template onto the target sequence to build a pseudo-

alignment of contacts .Contact positions are predicted in the target sequence using a Support 

Vector Machine approach. Each residue is analysed in turn by taking in to account the number of 

consensus contacts for the residues (contact propensity) and some additionaly contact metrics 

within a window of plus and minus 5 residues (these including average number of contacts per 

position in the window and maximum number of contacts in that window). The SVM was 

previously trained and benchmarked using a large set of known PDB enzymes and shown to have 

good ability to discriminate ligand and non-ligand binding residues and modest performance 

correctly assigning contacts. The CASP10 entry would constitute a “real-world” test of 

sequences without prior knowledge of the target's status as enzymes. 

 

Results 

We submitted predictions for all targets that could find a sufficient number of homologues by 

fold recognition, without attempts to recognise if the target sequence was an enzyme.  

 

Availability 

This predictor can be accessed from the following URL as part of the pGenTHREADER 

analysis: http://bioinf.cs.ucl.ac.uk/psipred 

 

1. Lobley, A., Sadowski, M.I. and Jones, D.T. (2009) pGenTHREADER and pDomTHREADER: 

new methods for improved protein fold recognition and superfamily discrimination, 

Bioinformatics, 25, 1761-1767. 
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2. Laskowski, R.A. (2009) PDBsum new things, Nucleic Acids Res, 37, D355-359. 

3. Porter, C.T., Bartlett, G.J. and Thornton, J.M. (2004) The Catalytic Site Atlas: a resource of 

catalytic sites and residues identified in enzymes using structural data, Nucleic Acids Res, 32, 

D129-133. 

4. The Uniprot Consortium (2010) The Universal Protein Resource (UniProt) in 2010, Nucleic 

Acids Res, 38, D142-148. 

5. Benson, M.L., Smith, R.D., Khazanov, N.A., Dimcheff, B., Beaver, J., Dresslar, P., Nerothin, 

J. and Carlson, H.A. (2008) Binding MOAD, a high-quality protein-ligand database, Nucleic 

Acids Res, 36, D674-678. 
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CONTENDERS 

Multiplayer online game-based homology and ab-initio modeling 

O. Colluphid and other Foldit players
1
 

1
 - Worldwide 

cfc@folditcontenders.com 

 

Models were constructed and refined using Foldit, the online multiplayer game available at 

http://fold.it. CASP10 targets shorter than 170 residues were given to the playing community at 

Foldit as puzzles to solve. The Contenders are a human based subgroup within that community. 

They also drink a lot of tea.  

 

Methods 

Foldit uses the Rosetta protein modeling software package
1
 and allows players to modify and 

visualise protein structures in real time
2
. Foldit players are provided with tools that allow them to 

move the protein structure manually, such as directly pulling on any part of the protein. They are 

also able to rotate helices and rewire beta-sheet connectivity. Players are able to guide moves by 

introducing soft constraints and fixing degrees of freedom, and have the ability to change the 

strength of the repulsion term to allow more freedom of movement. Available automatic moves 

(combinatorial side-chain rotamer packing, gradient-based minimisation, fragment insertion) are 

Rosetta optimisations modified to suit direct protein interaction and simplified to run at 

interactive speeds.  Each CASP10 puzzle was typically accessible to Foldit players for 8-9 days. 

For CASP10 targets shorter than 170 residues in the “All Groups” category, two different 

Foldit puzzles were given to the players. One puzzle started from an extended chain, with 

alignments to known templates taken from the RAPTOR
3
, SPARKS

4
, and HHsearch

5
 servers 

provided. Foldit players were able to modify alignments between the query and template 

sequences within the game. They could then build models based on these alignments by 

threading the query sequence onto the templates and refining these models using the in-game 

tools listed above. For the second puzzle, models were constructed using the QUARK
8
 and 

Zhang
7
- Server predictions. These server models were initially minimised using Rosetta and then 

given as starting points for the Foldit players to refine. This same protocol was used for CASP10 

targets in the “Refinement" category, where server models were first minimised with Rosetta 

before being given to the Foldit playing community. Foldit players were provided with secondary 

structure predictions, generated by the SAM-T08 server
6
, in the form of a sequence logo for all 

CASP10 puzzles. 

Quality and ranking of individual models was determined entirely by the Rosetta full-

atom energy ranking.  Contenders submissions were then further judged and selected on merits 

of diversity, compactness and optimal side-chain interaction. 

 

Availability 

Foldit is available via the Rosetta Commons at http://tinyurl.com/academic-foldit   

 

1. Leaver-Fay,A., Tyka,M., Lewis,S., Lange,O.F., Thompson,J., Jacak,R., Kaufman,K., 

Renfrew,P.D., Smith,C., Sheffler,W., Davis,I., Cooper,S., Treuille,A., Mandell,D., Richter,F., 

Ban,Y.A., Fleishman,S., Corn,J., Kim,D.E., Lyskov,S., Berrondo,M., Mentzer,S., Popović,Z., 

Havranek,J., Karanicolas,J., Das,R., Meiler,J., Kortemme,T., Gray,J.J., Kuhlman,B., Baker,D. 

http://fold.it/
http://tinyurl.com/academic-foldit
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fragments and optimized knowledge-based force field. Proteins 80, 1715-35. 
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The structures of the target proteins were predicted by the following four steps. First, a UNited-

RESidue force field (UNRES) was employed to carry out Multiplexed Replica Exchange 

Molecular Dynamics (MREMD)
1
 for target proteins. Second, based on the MREMD simulation 

results, the Weighted-Histogram Analysis Method (WHAM) analysis was used to calculate 

relative free energy of each structure of the last slice of the MREMD simulation; the respective 

procedure is described in ref. 2. Third, cluster analysis was employed to cluster the structures 

from the MREMD simulation. Five clusters with lowest free energies were chosen as prediction 

candidates. The conformations closest to the respective average structures corresponding to the 

resulting clusters were converted to all-atom structures
3,4

 in the last stage of the approach to 

produce the models which were subsequently submitted.  

 In the UNRES model, a polypeptide chain is represented by a sequence of -carbon 

atoms connected by virtual bonds with attached side chains. Two interaction sites are used to 

represent each amino acid: the united peptide group (p) located in the middle between two 

consecutive -carbon atoms and the united side chain (SC). The interactions of this simplified 

model are described by the UNRES potential derived from the generalized cluster-cumulant 

expansion of a restricted free energy (RFE) function of polypeptide chains. The cumulant 

expansion enabled us to determine the functional forms of the multibody terms in UNRES. In 

this CASP exercise we also introduced correlation terms that couple the backbone and side chain 

local-interaction energies. The effective energy function depends on temperature and has been 

parameterized to reproduce structure and thermodynamics of selected training  proteins.
 2,5

  

 To obtain prediction, MREMD simulations were run with the parallelized UNRES code 

available at www.unres.pl. In order to speed up the search for larger proteins, information from 

secondary structure prediction by PSIPRED
6
 was used in the generation of the initial structures. 

 

Availability 
The UNRES package to perform coarse-grained simulations is available at http://www.unres.pl  

 

1. Czaplewski, C., Kalinowski, S., Liwo, A. & Scheraga, H. A. (2009). Application of 

multiplexed replica exchange molecular dynamics to the UNRES force field: tests with and 

 proteins. Journal of Chemical Theory and Computation. 5, 627-640. 

2. Liwo, A., Khalili, M., Czaplewski, C., Kalinowski, S., Ołdziej, S., Wachucik, K. & Scheraga, 

H. A. (2007). Modification and optimization of the united-residue (UNRES) potential energy 

function for canonical simulations. I. Temperature dependence of the effective energy 

function and tests of the optimization method with single training proteins. The Journal of 

Physical Chemistry B 111, 260-285. 

http://www.unres.pl/
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3. Kazmierkiewicz, R., Liwo, A. & Scheraga, H. A., (2002). Energy-based reconstruction of a 

protein backbone from its -carbon trace by a Monte Carlo method. Journal of 

Computational Chemistry 23, 715-723 

4. Kazmierkiewicz, R., Liwo, A. & Scheraga, H. A. (2003). Addition of side chains to a known 

backbone with defined side-chain centroids. Biophysical Chemistry 100, 261-280. 

5. He, Y., Xiao Y., Liwo, A. & Scheraga, H. A. (2009). Exploring the parameter space of the 

coarse-grained UNRES force field by random search: selecting a transferable medium-

resolution force field. Journal of Computational Chemistry 30, 2127-2135 

6. McGuffin, L.J., Bryson, K. & Jones D.T. (2000). The PSIPRED protein structure prediction 
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We retrained our server CSpritz1 on recent PDB structures. The server is a substantial redesign 

of our previous method Spritz2. The 'C' stands for Combination, meaning we utilize a 

combination of machine learning and modeling techniques. Structural templates are incorporated 

in two modules. While the other module is strictly pattern detection (i.e. ab initio). 

Benchmarking  performed on the now two year old CASP9 data indicated CSpritz would have 

ranked consistently well with other methods.  

 

Methods 

CSpritz constitutes three separate modules. Previously, we proved that the modules find different 

disorder patterns (maximum Pearson correlation coefficient 0.59). This is an important 

characteristic when doing a combination based approach3.  

 Module one: Support Vector Machines (SVMs)4 were used to find disordered patterns 

given a local sequence window, predicted secondary structure and PSI-BLAST5 multiple 

sequence alignments. In addition, if PSI-BLAST returned PDB entries which contain structure 

(“non-disorder”) the resulting output probability was scaled accordingly. The disorder dataset 

was not updated for this round of CASP and is identical to the original disorder definition2. 

However, the structural templates used for post-filtering were found on a more recent PDB.  

 Module two: The same SVM was constructed with the addition of solvent accessibility 

and structural templates as input. The definition of disorder is also slightly different relative to 

the other modules. The sequence of each chain in the PDB SEQRES records is aligned with 

DSSP sequence in the PDBFinderII6 database. Missing atoms retrieved from this alignment are 

considered disordered. Only high quality structures were considered (<2.0 Å resolution). 

Moreover, we used a publicly available dataset7. Structural templates formed an input feature 

whereas module one had it as an output scaling factor.  

 Module three: see ESpritz group at this CASP. It is important to mention, for this module, 

NMR based predictions were executed when a target was determined as such.  

 After careful experimentation a simple average of the probabilities was observed to be 

the best mode of combination. All predictions were solely computational. Benchmarking was 

done on the previous CASP round where all data was independent from training.  

 

Results 

On CASP 9 targets, our calculations show CSpritz achieved (sensitivity+specificity)/2=76.8 and 

an Area Under the receiver operator Curve (AUC) 84.3. This is comparable to the best methods. 

Although it is a meta/combination based approach, all modules were carefully designed, in-

house, to be different and to incorporate various sources of information. We anticipate changes in 

the performance depending on the structural templates found and the amount of NMR structures 

at this CASP round.  
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Availability 

The server, together with help and methods pages including examples, are freely available at 

URL: http://protein.bio.unipd.it/cspritz/.  An important addition to the server includes the 

detection of disordered linear motifs from ELM8, secondary structure and homology 

information. The server also incorporates Disprot based predictions which are generally longer 

disorder patterns.  

 

1. Walsh, I. et al. CSpritz: accurate prediction of protein disorder segments with annotation for 

homology, secondary structure and linear motifs. Nucleic Acids Res. 39, W190–196 (2011). 

2. Vullo, A., Bortolami, O., Pollastri, G. & Tosatto, S. C. E. Spritz: a server for the prediction of 

intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids 

Res. 34, W164–168 (2006). 

3. Sollich, P. & Krogh, A. Learning with ensembles: How over-fitting can be useful. (1996). 

4. Cortes, C. & Vapnik, V. Support-Vector Networks. Mach. Learn. 20, 273–297 (1995). 

5. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database 

search programs. Nucleic Acids Res. 25, 3389–3402 (1997). 

6. Hooft, R. W. W., Sander, C., Scharf, M. & Vriend, G. The PDBFINDER database: a summary 

of PDB, DSSP and HSSP information with added value. Comput Appl Biosci 12, 525–529 

(1996). 

7. Cheng, J., Sweredoski, M. J. & Baldi, P. Accurate Prediction of Protein Disordered Regions 

by Mining Protein Structure Data. Data Min. Knowl. Discov. 11, 213–222 (2005). 

8. Dinkel, H. et al. ELM--the database of eukaryotic linear motifs. Nucleic Acids Research 40, 

D242–D251 (2011). 
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Distill has two main components: a fold recognition stage dependent on sets of protein features 

predicted by machine learning techniques; an optimisation algorithm that searches the space of 

protein backbones under the guidance of a potential based on templates found in the first stage. 

The main differences with our CASP9 systems are: the greatly improved fold recognition stage; 

the fact that we fit structures directly to the distance maps of templates rather than to predicted 

contact maps. The difference between Distill and Distill_roll is that for the former we use an 

improved fold recognition algorithm. 

 

Methods 

Distill runs 3 rounds of PSI-BLAST against a 90% redundancy reduced UniProt to generate 

multiple sequence alignments (MSA). The PSSM from the second round is reloaded to search 

the PDB for templates (e=1e-3). MSA and templates are fed to our 1D prediction systems (all 

based on BRNN): Porter
1,4

 (secondary structure), PaleAle
4
 (solvent accessibility), BrownAle

4
 

(contact density), Porter+
2
 (structural motifs). All predictors use template information as an input 

alongside the sequence and MSA.  

1D predictions are combined into a structural fingerprint
4
 (SAMD) which, alongside the 

PSSM, is used to find remote homologues in the PDB through 3 searches for Distill_roll (PSSM 

and SAMD profile against PDB sequences and SAMD, with 3 different substitution matrices) 

and 6 searches for Distill (same as above, plus 3 more searches against PDB PSSM rather than 

sequences). 

In the following stage residue contact maps are predicted by a system based on 2D-

Recursive Neural Networks (XXstout
5
). We predict binary maps with a contact threshold of 8Å 

between Cβ, which are submitted to the RR category. Inputs for map prediction are: the 

sequence; MSA; PSI-BLAST, SAMD and SAMD templates. That is, the maps are template-

based whenever suitable templates are found. 

The 3D reconstruction, which is only conducted on Cα traces, is run as follows: we run a 

SAMD search for templates with an e-value of 10,000; for each (overlapping) 9-mer of the 

protein we gather the structures of the top 50 templates which fully cover it (SAMD_list); a 

simulated annealing search of the conformational space is run using crankshaft moves to quickly 

find a minimum of a potential function which rewards formation of contacts that appear in a 

weighed average of the distance maps of templates; from the previous enpoint a simulated 

annealing search is run by substituting 9-mers from the conformation with 9-mers from the 

SAMD_list, and using the same potential function as above. 

We run 30 reconstructions for each protein, which we rank by their weighed TM-scores 

against the template list. For the 5 top-ranked models we reconstruct the backbone with 

SABBAC, and the full atoms with Scwrl4, then run a brief energy minimisation by gromacs. 

These are the models submitted to CASP. 
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It should be noted that everything in our pipeline (except BLAST and the software to 

blow Cα traces into full-atom models) is in house, and that in normal conditions we can provide 

predictions for a protein in tens of minutes. 

 

Results 

We await the CASP assessment. On preliminary tests (on the CASP9 set) we have observed a 

GDT_TS improvement of over 5% over our CASP9 systems. 

 

Availability 

http://distillf.ucd.ie/distill/ (Distill), http://dbstill.ucd.ie/distill/ (Distill_roll) 

 

1. Pollastri,G. & McLysaght,A. (2005) Porter, A new, accurate server for protein secondary 

structure prediction, Bioinformatics, 21(8), 1719–1720. 

2. Mooney,C., Vullo, A. & Pollastri, G.. (2006) Protein Structural Motif Prediction in 

Multidimensional φ-ψ Space leads to improved Secondary Structure Prediction, Journal of 

Computational Biology, 13(8), 1489-1502. 

3. Walsh,I., Martin, A.J.M., Mooney, C., Rubagotti, E., Vullo, A. & Pollastri, G. (2009). Ab 

initio and homology based prediction of protein domains by recursive neural networks" BMC 

Bioinformatics, 10,195. 

4. Mooney, C. & Pollastri, G. (2009). Beyond the Twilight Zone: Automated prediction of 

structural properties of proteins by recursive neural networks and remote homology 

information, Proteins, 77(1), 181-90. 

5. Walsh, I., Baú, D., Martin, A.J.M., Mooney, C., Vullo, A. & Pollastri, G. (2009). Ab initio 

and template-based prediction of multi-class distance maps by two-dimensional recursive 

neural networks, BMC Structural Biology, 9,5.  
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We retrained our server ESpritz1 on recent PDB structures. The 'E' stands for Efficiency, 

meaning we designed the algorithm with efficiency as the primary goal. On a single processor it 

can execute three styles of disorder for entire proteomes in a matter of hours (e.g. human 

proteome 5-6 hours). The three styles included are X-ray missing atoms, Disprot and NMR based 

mobility. Disprot based definitions were not executed for this round of CASP since, after 

benchmarking, X-ray and NMR mobility information were found to correlate better on previous 

CASP data. NMR mobility is a novel definition derived from our Mobi server2. We found that 

NMR mobility based predictions, executed on NMR targets, increase our performance on CASP 

data. Benchmarking  performed on the now two year old CASP9 data indicated ESpritz would 

have ranked consistently well with other methods.  

 

Methods 

ESpritz is based on amino acid pattern matching algorithms using bidirectional recursive neural 

networks3. ESpritz participated in two groups at this round of CASP. ESpritz group is similar to 

the method previously published1. It is designed to maximize ACC at the expensive if Matthews 

Correlation coefficient (MCC)4. Group ESpritzV2 is a more conservative disorder predictor 

since it was tuned at a 5% false positive rate. This should improve its MCC at the expensive of 

the ACC measure. In addition, ESpritzV2 was retrained on more recent structural and sequence 

information.  

 ESpritz employs an ensemble based approach where each member of the ensemble 

contains a different source of input. Sources of input information include: five sequence metrics 

reflecting different amino acid properties5, the amino acid itself and evolutionary information in 

the form of multiple sequence alignments.  

 In addition to altering the source of input, the disorder definition to be learned is also 

altered. There are two disorder definitions used at this round of CASP: (1) those with missing 

backbone C-alpha atoms from X-ray high resolution solved structures and (2) a simple definition 

based on regions with different conformations among all models in an NMR ensemble2. 

Whenever a CASP target was determined via NMR, predictions were submitted based on NMR 

tuned algorithms.  

 

 

Results 

All tests were performed on CASP 9 targets, independent from our training sets. Our calculations 

show ESpritz achieved (sensitivity+specificity)/2=76.9 and an Area Under the receiver operator 

Curve (AUC) 85.5. ESpritzV2 achieved ACC=(sensitivity+specificity)/2=72.3 and AUC=85.0, 

however MCC increased by 3 percentage points. These are comparable to the best methods. We 

anticipate changes in the performance depending on the amount of disorder/mobility present in 

the NMR structures at this CASP round.  
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Availability 

Both a web server for high-throughput analysis and a Linux executable version of ESpritz are 

available from: http://protein.bio.unipd.it/espritz/  

 

1. Walsh, I., Martin, A. J. M., Di Domenico, T. & Tosatto, S. C. E. ESpritz: accurate and fast 

prediction of protein disorder. Bioinformatics 28, 503–509 (2012). 

2. Martin, A. J. M., Walsh, I. & Tosatto, S. C. E. MOBI: a web server to define and visualize 

structural mobility in NMR protein ensembles. Bioinformatics 26, 2916–2917 (2010). 

3. Baldi, P., Brunak, S., Frasconi, P., Soda, G. & Pollastri, G. Exploiting the past and the future 

in protein secondary structure prediction. Bioinformatics 15, 937–946 (1999). 

4. Monastyrskyy, B., Fidelis, K., Moult, J., Tramontano, A. & Kryshtafovych, A. Evaluation of 

disorder predictions in CASP9. Proteins 79 Suppl 10, 107–118 (2011). 

5. Atchley, W. R., Zhao, J., Fernandes, A. D. & Drüke, T. Solving the protein sequence metric 

problem. PNAS 102, 6395–6400 (2005). 
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During the evolutionary process of homologous proteins, some regions are conserved, while 

some regions are relatively variable, in the sense of both structure and sequence. The conserved 

regions, denoted as anchors in the study, display significant sequence signals, and thus contribute 

to both alignments and fold recognition, especially for the remote-homologue proteins. Instead of 

the inefficient multiple structure alignment strategy, an efficient randomized algorithm was 

proposed to identify structural conserved regions from a set of pairwise structure alignments of 

templates. Then a target protein was aligned against the structure-conserved anchors rather than 

the full-length templates. The underlying rational is that alignments might be biased due to the 

structural variable regions. For the target protein, if likely folds can be recognized with high 

confidence, the final alignments are built and ranked using HHsearch
1
 against likely templates; 

otherwise, FALCON
2
 was executed to construct the full-length structure from the very scratch 

with distance constraints acquired from alignments against anchors.  

 

Methods 

Finding ANCHORs of templates in one family with 
similar structures and strong sequence signals

Aligning query HHM with all families' ANCHORs and selecting several 
candidate families

Aligning query HMM with all full-length templates of candidate families 
and selecting several candidate templates by alignment quality assessment

Candidate families

Generating models with candidate alignments by MODELLER or FALCON 
(FM targets) and selecting top ones by energy functions

Models

PDB70 database

Alignments

ANCHOR library Query HMM

Query sequence

Building MSA and HMM for query sequence by HHblits

 
Fig.1 Flowchart of FALCON-TOPO 

 

The flowchart of FALCON-TOPO is depicted in Figure 1. The steps are described in detail as 

follows:  

Step 1. Building ANCHOR database 

A database called ANCHOR was built to deposit the regions showing significant structural 

conservation and strong sequence signal.  
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More specifically, for each SCOP
3
 (version 1.75) family, the evolutionarily conserved regions 

shared by the homologous proteins in the family were identified as family-specific anchors. For 

the families that contain only one protein in SCOP, an extension operation was performed to 

include homologous proteins from PDB70. The criteria of the new proteins to be included are: 1) 

the new protein should have the same function annotation to the family; 2) the new protein 

should be structural similar to the existing protein, say RMSD between the two proteins is lower 

than a threshold.  

Given a family of homologous proteins, the structural conserved regions are identified using 

BLOMAPS
4
. To ensure a strong sequence signal, a further filtering was applied for the 

corresponding segments reported by BLOMAPS. In particular, the frequencies of amino acids in 

the corresponding segments are calculated and compared against background amino acid 

distribution, and the segments with high average K-L distance (say, K-L distance > 2.74) will be 

filtered out. By this way, these selected anchors are expected to have significant sequence 

signals.  

Step 2. Fold recognition 

Given a target protein sequence, we align it against anchors rather than against the full-length 

templates. The motivation is to avoid the biases rooted in the structural variable regions in 

templates. Specifically, we design a generative model to describe how a query is generated from 

a set of anchors of a family. For each family, we calculate the probability that query's profiles are 

generated from the anchors' profiles, with gap lengths between anchors fitted with a Poisson 

distribution. The top ones with lowest E-value are kept for the final model generation.  

Step 3. Model generating 

After recognizing likely folds, the final alignments were generated via aligning query sequence 

against candidate full-length templates in the family. Briefly speaking, we run HHsearch
4

 to 

build alignments of query against the new template database, and rank alignments by E-value for 

model generation. 

Finally, we generate models by MODELLER for candidate alignments. The generated models 

are ranked according to dDFIRE
5
energy function. For free-modeling targets, we run FALCON to 

generate several models and select the best ones by ROSETTA
6
 energy function. 

 

1. Söding J (2005). "Protein homology detection by HMM-HMM comparison". Bioinformatics 

21 (7): 951–960.  

2. Shuai Cheng Li, Dongbo Bu, Jinbo Xu, Ming Li, Fragment-HMM: A New Approach To 

Protein Structure Prediction. Protein Science, Vol. 17, No. 11, pages 1925-1934, 2008. 

3. Chandonia JM, Hon G, Walker NS, Lo Conte L, Koehl P, Levitt M, Brenner SE. The 

ASTRAL compendium in 2004. Nucleic Acids Research 32:D189-D192 (2004). 

4. Wang, S. and Zheng, W. ,Fast multiple alignment of protein structures using conformational 

letter blocks. Open Bioinformatics J, volume3,69--83(2009). 

5. Yuedong Yang, Yaoqi Zhou. Specific interactions for ab initio folding of protein terminal 

regions with secondary structures. Proteins 2008;72:793-803. 

6. Kim T. Simons, Charles Kooperberg, Enoch Huang and David Baker, Assembly of Protein 

Tertiary Structures from Fragments with Similar Local Sequences using Simulated Annealing 

and Bayesian Scoring Functions. J. Mol. Biol. (1997) 268, 209-225. 
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Molecular dynamics simulations with the new CHARMMM36 force field1 were carried out 

followed by model selection and structural averaging.  

 

Methods 
Multiple replicas of each target were simulated for 20 ns starting from different random seeds to 

obtain broad conformational sampling. Explicit solvent simulations were employed, and the 

systems were neutralized by adding sufficient amount of ions. Cα atoms of residues considered 

to be accurate in the initial model were weakly restrained to their initial positions, to prevent the 

structures from drifting away. The set of restraint residues followed CASP suggestions. In cases 

where there were no suggestions, restraints were applied to core secondary structure elements 

and in a second set of simulations very weak restraints (k=0.05 kcal/mol/Å2) were applied to all 

Cα atoms.  

Structural ensembles containing 500 snapshots were created from each simulation. The 

RMSD from the initial model (iRMSD) and the emprical energy function DFIRE were then used 

to select a subset of the structures likely to be closest to the native (with low DFIRE scores and 

low to moderate iRMSD values) using a protocol that was previously optimized based on CASP8 

and CASP9 test sets. The selected subset of structures was then used to generate an average 

structure that was further improved with additional short MD simulations to relieve poor 

geometries due to the averaging. Additional models submitted to CASP consisted of individual 

structures with minimal DFIRE scores from the MD ensembles. 

 

Results 

Based on preliminary analysis the refinement protocol was able to consistently generate 

moderately refined structures for almost all targets. Individually selected structures based on 

DFIRE scores were sometimes refined to a larger extent but often also worse than the initial 

model thereby lacking overall consistency.  

 

Availability 

The protocol combined functionality of the widely disseminated MMTSB tool2 set in 

combination with CHARMM and NAMD 3. 

 

1. Best, R.B., et al., (2012) Optimization of the Additive CHARMM All-Atom Protein Force 

Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral 

Angles. J.  Chemical Theory and Comput. 8, 3257-3273. 

2. Feig, M., Karanicolas, J., & Brooks III, C., (2001) MMTSB Toolset, MMTSB NIH Research 

Resource, The Scripps Research Institute 
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In the CASP010 experiment we tested four variants of the FFAS profile-profile alignment 

algorithm: 

 FFAS03 - the current version of the FFAS algorithm as implemented on the public ffas 

server at ffas.godziklab.org. 

 FFAS03c – in this method a "cascade" of FFAS profile-profile comparison searches is 

performed for a query sequence. After identifying and aligning the first template structure 

with the query sequence the covered query fragment is removed. Then new FFAS 

searches are started for the remaining query fragments and this procedure is continued 

iteratively until there is no remaining query fragments longer than 30 residues. 

 FFAS03jh – same as FFAS03 but sequence profiles are prepared based on JACK-

HMMER alignments instead of PSI-BLAST alignments. 

 FFAS03mt - same as FFAS03 but multiple templates were used for modeling when 

available. 

Preliminary CASP10 results show that FFASc method preformed better than other variants of 

FFAS suggesting that the “cascade” searches may be a good approach to improve model’s 

completeness in cases where the first search yielded only a partial alignment. 

Maintenance of the FFAS server is supported by the grant R01-GM087218-01 from the 

National Institute of General Medical Sciences. 

mailto:adam@burnham.org
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Here we describe the protocols used in the prediction of ligand binding sites by the firestar 

server in the 10
th

 edition of CASP. The firestar
1,2

 server is an expert system for predicting ligand 

binding and catalytic sites. Predictions are based on the large catalogue of biologically relevant 

sites culled from PDB structures in the FireDB
3
 database. The new version of the firestar server 

requires no human intervention.  

 

Methods 

Here we present the new developments of firestar
2
. The server extrapolates from a large 

inventory of functionally important residues, principally from two sources: the biologically 

relevant small molecule ligand binding residues organized in the FireDB database and the 

annotated catalytic residues from the Catalytic Site Atlas
4
. Firestar makes predictions by 

homology-based transfer of this functional information. Specifically the server predicts 

functionally important residues by using local sequence conservation
5
. 

Several new features have been incorporated into firestar to improve the quality of the 

predictions. All functional residues in the FireDB repository are classified in terms of their 

biological relevance using evolutionary information, structural data and lists of known cognate 

ligands. 

Previous versions of firestar required human interpretation of the results. Now, the whole 

process has been automatized and a new web interface has been made available. Additionally, the 

server is able to produce high quality results in a high throughput mode by using sequences as 

the only input.   

The server now also uses HHBlits
6
 to generate the initial alignments, thus in theory 

increasing the coverage. 

 

Results 

The firestar server returned binding site predictions for 44 targets, sixteen fewer than in CASP9, 

despite installing HHBlits to increase coverage. Fourteen targets were predicted to bind metals, 

27 to bind non-metal biological ligands and five to bind non-cognate ligands (targets could bind 

more than one type). 

 

 

Availability 

firestar, FireDB and SQUARE can be accessed via http at http://firedb.bioinfo.cnio.es 

 

1. Lopez, G, Valencia, A and Tress, ML (2007). firestar - Prediction of functionally 

important residues using structural templates and alignment reliability. Nucleic Acids Res. 

35 W573-W577; 

2. Lopez, G, Maietta, P, Rodriguez, JM, Valencia, A and Tress, ML (2011). firestar – 

advances in the prediction of functionally important residues. Nucleic Acids Res. 39 

mailto:mtress@cnio.es
http://wwwfiredb.bioinfo.cnio.es/
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W235-241; 

3. Lopez, G, Valencia, A and Tress, ML (2007). FireDB - a database of functionally 

important residues from proteins of known structure. Nucleic Acids Res, 35, D219; 

4. Porter, CT, Bartlett, GJ and Thornton, JM (2004). The Catalytic Site Atlas: a resource of 

catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res, 

32, D129-D133. 

5. Tress, ML, Jones, DT and Valencia, A (2003). Predicting reliable regions in protein 

alignments from sequence profiles. J Mol Biol, 330, 705; 
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ASTRO-FOLD 2.0
1
 is a method for the first-principles structure prediction of proteins based on 

an overall deterministic global optimization framework coupled with mixed-integer optimization 

(MILP). The novel, six-stage approach combines the classical and new views of protein folding. 

All methods used were created in-house, and the approach does not use any templates. 

 

Methods 

The first stage involves secondary structure prediction using CONCORD.
2
 CONCORD is an 

MILP-based consensus method based on seven secondary structure prediction methods. It 

combines the strengths of the different methods to maximize the number of correctly predicted 

amino acids. The second stage focuses on the prediction of the beta-sheet topology using BeST
3
 

to reduce the three dimensional search space. BeST uses a MILP-based framework to maximize 

the total strand-to-strand contact potential of a protein. A number of physical constraints to 

enforce structural and biological validity are applied to provide biologically meaningful 

topologies. The third stage involves physics-based ILP-driven method
4
 for tertiary contact 

prediction in β, α+β, and α/β proteins. The fourth stage involves the prediction of tight dihedral 

angle bounds on the via global optimization of loop regions with flexible stems.
5
 The fifth stage 

involves the prediction of the tertiary structure of the full protein sequence. The problem 

formulation relies on dihedral angle and atomic distance constraints introduced from the previous 

stages as well as detailed atomistic energy modeling representing a highly nonconvex 

constrained global optimization problem. The problem is solved using a combination of a 

deterministically based global optimization approach, αBB
6; 7

 and the stochastic global 

optimization approach Conformational Space Annealing.
8
 Once the pool of potential conformers 

have been generated, ICON,
9
  an iterative traveling-salesman problem-based clustering method 

for identifying near-native protein structures from an ensemble of conformers is applied.  

Enhancements to the global optimization portion of the algorithm have been implemented 

to require an agreement of three different energy functions (ECEPP3
10

/GOAP
11

/AMBER11
12

) 

before accepting a new locally optimal solution. From initial observations this new consensus 

requirement substantially improved the bank of conformers as the optimization step is not 

limited by the accuracy of only one energy function but on the consensus of three different ones. 

A method for β-strand structure refinement was developed over the course of the 

experiment and was applied to the structures produced by ASTRO-FOLD. The method 

maximized the hydrogen bond network given a beta-sheet topology and subsequently produced 

final structures with improved secondary structure quality. 

  

 

 

Availability 
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Predictors are welcome to use the individual components of the ASTRO-FOLD 2.0 method via 

publically available webservers. 

CONCORD (2° Structure Prediction): http://helios.princeton.edu/CONCORD/ 

BeST (Beta-Sheet Topology Prediction):  http://selene.princeton.edu/BeST/ 

ICON (TSP-based clustering): http://helios.princeton.edu/ICON/ 

 

1. Subramani, A., Wei, Y. & Floudas, C. A. (2012). ASTRO-FOLD 2.0: An enhanced 

framework for protein structure prediction. Aiche Journal 58, 1619-1637. 

2. Wei, Y., Thompson, J. & Floudas, C. A. (2012). CONCORD: a consensus method for 

protein secondary structure prediction via mixed integer linear optimization. Proceedings 

of the Royal Society A: Mathematical, Physical and Engineering Science 468, 831-850. 

3. Subramani, A. & Floudas, C. A. (2012). β-sheet Topology Prediction with High Precision 

and Recall for β and Mixed α/β Proteins. PLoS ONE 7, e32461. 

4. Rajgaria, R., Wei, Y. & Floudas, C. A. (2010). Contact prediction for beta and alpha-beta 

proteins using integer linear optimization and its impact on the first principles 3D 

structure prediction method ASTRO-FOLD. Proteins 78, 1825-46. 

5. Subramani, A. & Floudas, C. A. (2012). Structure Prediction of Loops with Fixed and 

Flexible Stems. The Journal of Physical Chemistry B 116, 6670-6682. 

6. Klepeis, J. L., Wei, Y., Hecht, M. H. & Floudas, C. A. (2005). Ab initio prediction of the 

three-dimensional structure of a de novo designed protein: A double-blind case study. 

Proteins Structure Function and Bioinformatics 58, 560-570. 

7. Klepeis, J. L. & Floudas, C. A. (2003). Ab initio tertiary structure prediction of proteins. 

Journal of Global Optimization 25, 113-140. 

8. Lee, J., Scheraga, H. A. & Rackovsky, S. (1997). New optimization method for 

conformational energy calculations on polypeptides: Conformational space annealing. 

Journal of Computational Chemistry 18, 1222-1232. 

9. Subramani, A., DiMaggio, P. A. & Floudas, C. A. (2009). Selecting High Quality Protein 

Structures from Diverse Conformational Ensembles. Biophysical Journal 97, 1728-1736. 

10. Nemethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., 

Rumsey, S. & Scheraga, H. A. (1992). Energy parameters in polypeptides. 10. Improved 

geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, 

with application to proline-containing peptides. The Journal of Physical Chemistry 96, 

6472-6484. 

11. Zhou, H. & Skolnick, J. (2011). GOAP: A Generalized Orientation-Dependent, All-Atom 

Statistical Potential for Protein Structure Prediction. Biophysical Journal 101, 2043-2052. 

12. Weiner, P. K. & Kollman, P. A. (1981). AMBER: Assisted model building with energy 

refinement. A general program for modeling molecules and their interactions. Journal of 

Computational Chemistry 2, 287-303. 
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Recent studies have shown that the hydrogen bond count in proteins has a strong, linear 

correlation to the molecular weight of the protein
1
. However, many Tertiary Structure Prediction 

methods produce structures with hydrogen bond counts well below the number expected. We 

have developed a method to optimize the number of hydrogen bonds of a given structure, while 

minimizing the necessary structural changes to do so. The method produces refined structures 

with well defined secondary structure, even when the starting structure has a little discernible 

secondary structure. 

 

Methods 

The refinement method takes in a starting predicted tertiary structure of a protein as input. Both 

atom-atom distance constraints and dihedral constraints are calculated for the entire structure. 

These constraints are necessary to limit the overall structural changes induced by the refinement 

method. The ideal hydrogen bond network is calculated from structural analysis of the given, 

starting protein. User input of known secondary structure or predicted secondary structure and 

topology (CONCORD
2
/BeST

3
) is used to improve the hydrogen bond network optimization 

performance. Constraints were also derived for the total number of hydrogen bonds based on the 

molecular weight of the input protein
1
. 

The derived atom-atom distance constraints are used as input to the CYANA 2.1 software 

package for NMR structure refinement
4
. CYANA is used to produce a number of candidate 

structures that satisfy the derived hydrogen bond network, with minimal violation of the starting 

distance and angle constraints. The combination of the two constraint sets limits the overall 

structural changes allowed during a single iteration of the method, while producing structures 

with improved secondary structure and hydrogen bonding. 

The structure with the best chance at improving GDT value to the native is chosen from 

the large ensemble of produced structures through energetic (GOAP
5
/DFIRE

6
) and structural  

(Hydrogen Bond number, Solvent Accessible Surface Area, etc.) analysis. Testing was also done 

with the aim of using the hydrogen bonding network optimization derived structures as input to a 

well established refinement method, such as Kobamin
7-9

. An example of a structure produced by 

the Floudas group's ASTROFOLD 2.0
10-13

 method is shown in Figure 1, highlighting the 

secondary structure improvements that the method is capable of through hydrogen bond network 

optimization. 
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Figure 1: CASP 10 Target T0676 before (left) and after (right) hydrogen bond network 

optimization. Starting structure output from ASTROFOLD 2.0 structure prediction. 
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proteins increase with increasing protein molecular mass more rapidly than those of other 

proteins. PLoS One 6: e28464. 

2. Wei Y., Thompson J., Floudas C.A. (2012). CONCORD: a consensus method for protein 

secondary structure prediction via mixed integer linear optimization. Proceedings of the 
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3. Subramani A., Floudas C.A. (2012). β-sheet Topology Prediction with High Precision 
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Models were constructed using Foldit, the online multiplayer game at http://fold.it. CASP10 

targets shorter than 170 residues were given to Foldit players as puzzles to solve.  

 

Methods 

Foldit uses the Rosetta protein modeling software package
1
 and allows players to modify and 

visualize protein structures in real time
2
. Foldit players are provided with tools that allow them to 

move the protein structure manually, such as directly pulling on any part of the protein. They are 

also able to rotate helices and rewire beta-sheet connectivity. Players are able to guide moves by 

introducing soft constraints and fixing degrees of freedom, and have the ability to change the 

strength of the repulsion term to allow more freedom of movement. Available automatic 

moves—combinatorial side-chain rotamer packing, gradient-based minimization, fragment 

insertion—are Rosetta optimizations modified to suit direct protein interaction and simplified to 

run at interactive speeds.  Each CASP10 puzzle was typically accessible to Foldit players for 8-9 

days. 

For CASP10 targets shorter than 170 residues in the “All Groups” category, two different 

Foldit puzzles were given to the players. One puzzle started from an extended chain, with 

alignments to known templates taken from the RaptorX
3
, Sparks-X

4
, and HHsearch

5
 servers 

provided. Foldit players were able to modify alignments between the query and template 

sequences within the game. They could then build models based on these alignments by 

threading the query sequence onto the templates and refining these models using the in-game 

tools listed above. For the second puzzle, models were constructed using the Zhang-Server
6
 and 

QUARK
7
 predictions. These server models were initially minimized using Rosetta and then 

given as starting points for the Foldit players to refine. This same protocol was used for CASP10 

targets in the “Refinement" category, where server models were first minimized with Rosetta 

before being given to the Foldit players.  

For each CASP10 puzzle, Foldit players were provided with secondary structure 

predictions generated by the SAM-T08 server
8
, in the form of a sequence logo. For some of the 

CASP10 puzzles, the top scoring Foldit model was not submitted by our group, but rather by the 

wfFUIK CASP10 group. In the collaborative spirit of the WeFold project, we did not want to 

submit redundant predictions. Therefore, a complete assessment of all Foldit results should also 

include these submissions.  

Quality and ranking of individual models was determined entirely by the Rosetta full-

atom energy.  A conformationally diverse set of Foldit submissions were selected from the top-

ranking Foldit predictions.  

 

Availability 

Foldit is available through the Rosetta Commons at http://tinyurl.com/academic-foldit . 

 

1. Leaver-Fay,A., Tyka,M., Lewis,S., Lange,O.F., Thompson,J., Jacak,R., Kaufman,K., 

http://fold.it/
http://tinyurl.com/academic-foldit
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This approach is a repetition of the four body potential approach of the previous CASP. No 

changes were made to the program except some minor code revisions to enable compilation on 

local machines. This server will eventually be part of the bioinformatics services page of the 

Kloczkowski Lab at the Battelle center. 
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Refinement of template structures continues to be a challenging problem in protein structure 

prediction.  In the CASP9 refinement experiment
1
, attempts to refine the best server model often 

did not yield substantial improvement in backbone geometry and other evaluation metrics.  

Generally, failure to improve a template structure can be attributed to a combination of sampling 

inefficiencies and errors in the scoring function.  We designed an updated version of FRESS 

(fragment re-growth via energy-guided sequential sampling) to sample candidate conformations, 

and developed GAMs (generalized additive models) to select the final predicted structure from 

the sampled conformations.  

 

Methods 
Input:  For regular CASP10 TS targets, we first used an automated HHsearch

2
 script to detect 

homologous proteins, followed by a Modeller
3
 run to build a selection of initial models based on 

the matching templates.  For refinement targets, we began with the provided template model.  

Reduce
4
 was run on all models for adding hydrogen atoms to the structures. 

 

Sampling:  The basic Monte Carlo move in our simulations is based on FRESS, which we 

originally developed in the context of HP models
5
.  Applied to protein structures, our method is 

an efficient way to sample the conformation of a fragment while keeping the rest of the structure 

fixed.  In each chosen fragment, residue backbone atoms are regrown one at a time, with the goal 

of finding alternative closed and sterically feasible conformations with low energy.  The sampled 

torsion angles at each step are biased towards the eventual closure of the fragment, and 

conditioned on the secondary structure type of the fragment being considered.  Fragments are 

then completed via the addition of side chains to feasible backbones, and evaluated using the full 

energy function.  The energy function at this step employs a weighted combination of Van der 

Waals energy, along with statistics-based terms DFIRE2
6
, Oscar-o

7
, and in-house 

implementations of hydrogen bonding and backbone torsion terms.  To improve the ability of the 

simulations to move through local energy barriers, we implemented PTEEM
8
 (parallel tempering 

with equi-energy moves) to govern the global parallelization scheme over our computing cluster. 

 

Selection:  During the sampling phase, conformations are saved at set intervals, creating a pool 

of structures from which the final prediction must be selected.  The prediction could be selected 

by simply choosing the lowest energy structure; however our energy function is not sufficiently 

accurate.  To improve the final prediction, we built a selection model based on GAM
9
.  The terms 

used to build the model include the energy terms listed above, and additionally a secondary 

structure score based on differences from the PsiPred
10

 prediction for the sequence, and the 

OPLS-AA
11

 force field.  Structures used for building this statistical model were taken from the 

CASP9 experiment.  The best GAM-scores on predicted GDT-TS were chosen as the prediction. 
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Results 
Using a cross-validation approach, the method was tested on CASP9 refinement targets, 

obtaining a mean improvement of 0.011 GDT-TS units over the starting model. 

 

Availability 
The executable implementing the FRESS method is written in C++ and available upon request. 

 

1. MacCallum, J.L., Perez, A., Schneiders, M.J., Hua, L, Jacobson, M.P., & Dill, K.A. (2011). 
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2. Soding, J. (2005).  Protein homology detection by HMM-HMM comparison. Bioinformatics 

21, 951-960.  

3. N. Eswar, M. A. Marti-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M. Shen, U. 

Pieper, A. Sali (2006). Comparative Protein Structure Modeling With MODELLER. Current 

Protocols in Bioinformatics, Supplement 15, 5.6.1-5.6.30. 

4. Word, J.M., Lovell, S.C., Richardson, J.S., Richardson, D.C. Asparagine and Glutamine: 

Using Hydrogen Atom Contacts in the Choice of Side-chain Amide Orientation.  J. Mol. Biol. 

285, 1735-1747. 
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fragment regrowth Monte Carlo. J. Chem. Phys., 126, 225101. 
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7. Liang, S., Zhou, Y., Grishin, N., & Standley, D.M. (2011). Protein side chain modeling with 

orientation-dependent atomic force fields derived by series expansions.  J. Comput. Chem. 

32, 1680-1686. 
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10. Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring 
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11. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L. (2001) Evaluation and 
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The GOAPQA server is an implementation of the GOAP
1
 statistical potential for protein model 

quality assessment prediction.  

 

Method 

The new statistical potential, GOAP (Generalized Orientation-dependent All-atom Potential), 

depends on the relative orientation of the planes associated with each heavy atom in interacting 

pairs. GOAP is a generalization of previous orientation-dependent potentials that consider only 

representative atoms or blocks of side-chain or polar atoms. GOAP is decomposed into distance 

and angle-dependent contributions. The DFIRE
2
 distance–scaled finite ideal gas reference state is 

employed for the distance-dependent component of GOAP. GOAP was tested on eleven 

commonly used decoy sets containing 278 targets, and recognized 226 native structures as best 

from the decoys, whereas DFIRE recognized 127 targets. The major improvement comes from 

decoy sets that have homology modeled structures that are close to native (all within ~ 4.0 Å or 

from the ROSETTA ab initio decoy set. For these two kinds of decoys, orientation independent 

DFIRE or only side-chain orientation-dependent RWplus
3
 performed poorly. While the OPUS-

PSP
4 

block-based orientation-dependent, side-chain atom contact potential performs much better 

(recognizing 196 targets) than DFIRE, RWplus and dDFIRE
5
 it is still ~15% worse than GOAP. 

Encouraged by its performance in benchmarking, we applied GOAP to protein model quality 

assessment prediction. In order to convert the raw GOAP score into model quality score between 

0 and 1, for each model, its average TM-score
6
 to the top five GOAP ranked models is used as its 

quality score. Thus GOAPQA in its current simple form works only for assessing more than five 

models. 

 

Result 

For the released 41 targets (up to Sep. 20, 2012, excluding cancelled targets, no domain parsing), 

we compare the performance of GOAPQA to the 3D-jury
7
 procedure using the sum of a model’s 

TM-score to all other models for ranking (the larger the sum, the better the model). In Table 1, 

we show that for stage 1 prediction, the average correlation of predicted quality to real model 

quality of 3D-jury is better than that of GOAPQA whereas for stage 2, GOAPQA is better. This 

demonstrates that a non-consensus method as GOAPQA can perform better than consensus-

based 3D-jury and the released models at stage 1 are not challenging enough for naïve 

consensus-based approaches. 

Table 1 

Average correlations of predicted and real 

model quality as measured by GDT-TS-score. 

 

 

 

Stage 1 Stage 2 

GOAPQA 3D-jury GOAPQA 3D-jury 

0.58 0.71 0.50 0.46 
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Availability 

The GOAP program is available at http://cssb.biology.gatech.edu/ 
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GOBA1is a quasi-single model quality assessment program. It estimates the compatibility 

between the structure of a protein model and its expected function. The approach is based on the 

assumption that a high quality model is expected to be structurally similar to proteins 

functionally similar to the prediction target. Whereas DALI2is used to measure structure 

similarity, protein functional similarity is quantified using standardized and hierarchical 

description of proteins provided by Gene Ontology3combined with Wang's algorithm4for 

calculating semantic similarity. During CASP10 our main focus was to submit predictions in QA 

stage1 and stage2 categories (gr # 031 & 033), however we also submitted predictions in human 

TS category(gr# 131). 

 

Methods 

GOBA is based on the protein structure-function relation therefore a perquisite for using GOBA 

is the availability of Molecular Function GO terms annotated to the target protein. These can be 

for instance taken from the target Uniprot record. During the contest we used AmiGO5 tool 

(http://amigo.geneontology.org/cgi-bin/amigo/blast.cgi) and an E-value threshold of 5.6*10-6 for 

assinging GO terms - we used human curated annotations only (nonIEA). 

 The quality assessment procedure is the following. The target functional annotations and 

the model-structure are fed into GOBA. The algorithm starts by constructing a Similarity List 

(Slist) that is a list of Structural Neighbors (SNs) of the model. SNs are identified using DALI. 

This is followed by calculations of the Functional Similarity (FS) score between every SN and 

the target protein. Wang's semantic similarity algorithm is used for FS calculation.  

 Once the Slist is produced, model-structure quality scores are calculated using variations 

of the Receiver Operating Characteristic (ROC) methodology. We proposed two diverse 

approaches to plotting the ROC curve. In both approaches, the SNs are divided into two sets. If 

the FS of a Structural Neighbor is greater than a set FS threshold parameter, it is classified as a 

positive hit, otherwise it is a negative hit. 

 In the basic procedure, a sensitivity vs specificity ROC curve is plotted for the Slist, with 

the DALI Z-score assumed as the cut-off parameter. The basic model quality score – the GA-

score - is defined as the Area Under the plotted ROC Curve. In the modified approach – yGA-

score - the DALI Z-score of each Structural Neighbor is explicitly used when ploting the ROC 

and calculating the AUC.  

 Both GA and yGA scores depend on the FS threshold as a parameter. In the contest we 

tested linear combinations of scores calculated for three FS thresholds, i.e. 0.5, 0.7 and 0.9. The 

http://amigo.geneontology.org/cgi-bin/amigo/blast.cgi
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submitted quality score of a model was an average of GA scores (gr# 031) or yGA scores(gr# 

033) calculated for listed thresholds. 

 GA scores are “single model” MQAPs since they provide an absolute model-structure 

quality 

score only based on a single model. On the other hand, the yGA scores rely on Dali Z-score 

values which are not absolute measures of structural similarity since Z-score values are only 

defined within a given population of structures. Consequently, yGA based GOBA can only be 

used for comparing model-structures of a given target. However, contrary to consensus 

(clustering-based) methods (which require large sets of structures) yGA scores can be used with 

model sets of any size. 

 The BioNanopore group (gr# 131) used GOBA in a simple structure prediction pipeline. 

A number of prediction servers available on-line were used to generate a pool of putative 

model-structures. Models were ranked using the yGA_579 score (described above) and top five 

structures were submitted to the contest. The servers used are listed in Table 1. The group 

processed 'All groups' category models only. 

Table 1: List of servers used in TS category by group #131. 

Pcons.n

et 
http://pcons.net 

MULTI

COM 

http://casp.rnet.missouri.edu/multicom_3d.

html  

SAM-

T08 

http://compbio.soe.ucsc.edu/SAM_T

08/T08-query.html 
Phyre http://www.sbg.bio.ic.ac.uk/~phyre/ 

(PS)2-

v2 
http://ps2v2.life.nctu.edu.tw/ 

SwissM

odel 

http://swissmodel.expasy.org/workspace/in

dex.php?func=modelling_simple1 

AS2TS 
http://proteinmodel.org/AS2TS/AS2

TS_MB/index.html 
(PS)2 http://ps2.life.nctu.edu.tw/ 

LOOPP http://clsb.ices.utexas.edu/loopp/web/ 
3D-

JIGSAW 

http://bmm.cancerresearchuk.org/~populus/

populus_submit.html 

SPARK

SX 

http://sparks.informatics.iupui.edu/yu

eyang/sparks-x/ 

ESyPred

3D 

http://www.fundp.ac.be/sciences/biologie/u

rbm/bioinfo/esypred/ 

 

Results 

The main limitation of the method is the availability of GO term annotations. After removing 

canceled targets, 102 CASP10 targets were issued in 'All groups' (47) and 'Server Only' (55) TS 

categories. Despite a strict E-value criterion, we managed to acquire good annotations for 45 of 

them. This shows that the method is applicable to a significant number of cases.  

 

Availability 

GOBA quality assessment program is available for download at: 

http://www.ibp.pwr.wroc.pl/KotulskaLab/materialy/GOBA%20-

%20Model%20Quality%20Assessment%20Programe/GOBA_src_BMC_BIO.tgz 

It requires DALI installed locally.  

 

1. Konopka BM., Nebel JC, Kotulska M (2012), Quality assessment of protein model-

http://pcons.net/
http://casp.rnet.missouri.edu/multicom_3d.html
http://casp.rnet.missouri.edu/multicom_3d.html
http://www.sbg.bio.ic.ac.uk/~phyre/
http://ps2v2.life.nctu.edu.tw/
http://swissmodel.expasy.org/workspace/index.php?func=modelling_simple1
http://swissmodel.expasy.org/workspace/index.php?func=modelling_simple1
http://proteinmodel.org/AS2TS/AS2TS_MB/index.html
http://proteinmodel.org/AS2TS/AS2TS_MB/index.html
http://ps2.life.nctu.edu.tw/
http://clsb.ices.utexas.edu/loopp/web/
http://bmm.cancerresearchuk.org/~populus/populus_submit.html
http://bmm.cancerresearchuk.org/~populus/populus_submit.html
http://sparks.informatics.iupui.edu/yueyang/sparks-x/
http://sparks.informatics.iupui.edu/yueyang/sparks-x/
http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/
http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/
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Introduction 
The model quality assessment of protein (MQAP) is an essential challenging issue in protein 

structure prediction. Among all MQAP methods in QA category of last several CASP 

competitions, consensus methods incorporating all the model information together in calculating 

similarities could obtain much more accurate results. In QA category of CASP10, only a few 

models and good part of all models are provided to QA participants in stage 1 and stage 2, which 

eliminates greatly the power of existing consensus methods in QA.  

 

Methods 
In aim to use the great power of consensus methods, we developed Group based Quality 

Assessment of Protein (G-QA) method. The basic idea of G-QA is to use as many reference 

models as possible to facilitate the usage of information gathering by consensus methods. We 

used referenced models generated by I-TASSER1 Monte Carlo Simulation in supplementing the 

models provided by CASP organizer, and then use modified consensus methods on these 

enhanced model pools in calculating the paired tertiary structure similarities as the QA scores.    

 

Availability 
G-QA is NOT available for public now. 

 

1. Yang Zhang (2008). I-TASSER server for protein 3D structure prediction. BMC 

Bioinformatics, 9, 40.  
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A core interest in our group is to better understand and improve fragment-assembly approaches 

to ab initio protein structure prediction.  

 

Low-resolution methods for protein structure prediction continue to play a crucical role in ab 

initio prediction, as they are essential for providing suitable starting points for subsequent full-

atom refinement. Recent CASP experiments show that existing methods for low-resolution 

sampling have a tendency to break down for proteins with > 70 amino acids, and the analysis of 

the corresponding search trajectories reveals that this is, at least in part, due to a break-down of 

the sampling protocols employed. 

 

An improved understanding of the properties and search dynamics of fragment assembly 

approaches is important to enable the development of more effective sampling protocols that will 

scale to larger proteins. For this reason, we have recently conducted a systematic analysis of the 

role of fragments during the search process: our analysis in [1] highlights the dual role that 

fragments play during low-resolution sampling, as they constrain the search space but 

simultaneously define the size of the variation operator. This suggests that it may be valuable to 

isolate these two different aspects of fragments, which we have termed as "fragment length" and 

"move length", and this idea was further explored in [1]. 

 

During this CASP competition, we utilized a modified version of Rosetta that separates these 

concepts of fragment and move length. The emphasis was on exploring the use of medium to 

large fragments in combination with shorter move sizes. Using this method, ab initio predictions 

were made for the majority of CASP targets (where time constraints permitted), and different 

combinations of fragment length / move length were utilized to generate models of different 

rank. The computational resources utilized were fairly small with 500 low-resolution models 

generated per target only. 

 

1. J. Handl, J. Knowles, R. Vernon, D. Baker and S.C. Lovell, The dual role of fragments in 

fragment-assembly methods for de novo protein structure prediction, Proteins 80(2):490-504 
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The UCL NewSerf and hGen3D servers implement a fully automated template selection and 

homology modelling strategy. 

 

Methods 

NewSerf is an update of our automated homology pipeline, BioSerf, which was entered in to 

CASP8 and CASP9.  This method has been substantially streamlined and all de novo modelling 

components have been removed. The NewSerf process initially attempts to find appropriate 

templates for homology modelling using PSI-BLAST [1] against the fasta PDB, PSIPRED [1] & 

pGenTHREADER [2] and HHBlits[4]. Possible templates are then selected with conservative 

scoring cutoffs; E-values less than 5x10
-5

 or 1x10
-3

 for PSI-BLAST and HHBlits respectively or 

a GenTHREADER p-value of <= 0.01. Next we attempt to 'intelligently' select appropriate 

homology modelling templates from the set of all good scoring putative templates. First 

QMODCHECK [5] is run to select the compatibility of the modelling target sequence with each 

of the putative templates. Any templates that do not score well are discarded. Then we use a TM 

score Jury method to select a maximum of 10 templates. All-against-all TM scores[6] are 

calculated for the remaining set of templates, any putative template that does not cluster with the 

majority of the templates is discarded and then the 10 most tightly clustered templates are 

selected for homology modelling. Lastly MODELLER [7] is used, with the alignments generated 

by PSI-BLAST, pGenTHREADER and HHBlits, to generate a model using the 10 template 

structures that were chosen in the TM Jury step. 

 

hGen3D is an experimental modification of NewSerf which attempts to select the optimal 

number of templates by building models starting with the top-ranked template and ending with a 

maximum of 10 templates. From these (maximum of 10) models the best model is selected using 

two model quality assessment programs (QMODCHECK and MODELLER’S DOPE score).   

 

Results 

Models for all server targets were submitted. 

 

Availability 

NewSerf (BioSerf2) can be access from the following URL: http://bioinf.cs.ucl.ac.uk/psipredtest 

 

1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped 

BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 

Acids Res. 1997 Sep 1;25(17):3389-402. 

2. Jones, D.T. Protein secondary structure prediction based on position-specific scoring 

matrices. J Mol Biol (1999), 292, 195–202. 

3. Lobley, A., Sadowski, M.I. and Jones, D.T. (2009) pGenTHREADER and 
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4. Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast iterative protein 

sequence searching by HMM-HMM alignment. Nat Methods. 2011 Dec 25;9(2):173-5. 

doi: 10.1038/nmeth.1818. 

5. Pettitt CS, McGuffin LJ, Jones DT. Improving sequence-based fold recognition by using 

3D model quality assessment. Bioinformatics. 2005 Sep 1;21(17):3509-15. Epub 2005 

Jun 14. 

6. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-

score. 

7. Nucleic Acids Res. 2005 Apr 22;33(7):2302-9. Print 2005. 

8. Eswar, N., Eramian, D., Webb, B., Shen, M.Y. & Sali, A. Protein structure modeling with 

MODELLER. Methods Mol Biol (2008), 426, 145–159. 
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We registered three servers for CASP10: HHpredA is almost identical to HHpredA from CASP9. 

HHpredA-thread includes profile-to-structure scoring. HHpredB was intended to perform model 

quality estimation via a newly implemented method but did not get ready in time and was 

identical to HHpredA. As in CASP9, we tried to keep response times under 10 min. 

 

Methods 

We summarize the HHpredA pipeline in the following: 

 

1. The first template was selected by a regression neural network that predicts the model 

quality (TM-score) based on four input features from the HHsearch results: HHsearch 

raw score, secondary structure score, template resolution, and length-normalized sum of 

posterior probabilities over all aligned residues.  

2. Further templates are selected with a heuristic approach which tries to produce the 

maximum coverage of the query with a limited number of templates. We measure the 

coverage of query residues quantitatively in term of the posterior probability for the 

query residue to be correctly aligned to the template, as calculated from the maximum 

accuracy alignment algorithm implemented in HHsearch. 

3. We replaced MODELLER's
4
 distance constraints to account for the varying confidence of 

aligned residue pairs along the alignment, again measured by the posterior probabilities. 

We define bimodal distance restraints in MODELLER as a mixture of two Gaussians, the 

two components describing correctly and incorrectly aligned residues. The mixture 

parameters (means, standard deviations and mixture weights) are predicted by a mixture 

density network, a neural network designed for training the parameters of a mixture of 

Gaussians. Badly aligned residues with low posteriors will lead  an increased background 

mixture weight and larger sigmas of the Gaussian mixture components. 

4. We performed three search iterations with our program HHblits
3
 with default parameters 

through the uniprot20 database of HMMs to build a multiple sequence alignment (MSA) 

for the query sequence. The query alignment was converted into an HMM with HHmake, 

and HHsearch
2
 from the HH-suite

3
 was used to search for templates in representative 

HMMs of the PDB (70% maximum sequence identity). These representative template 

HMMs were also generated using three iterations of HHblits with default parameters. 

 

Availability 

HHpred, HHblits and more bioinformatics tools are available at our bioinformatics toolkit
5
 at 

http://toolkit.lmb.uni-muenchen.de/. 

 

References 

1. Hildebrand A, Remmert M, Biegert A, and Söding J. (2009) Fast and accurate automatic 

structure prediction with HHpred. Proteins 77 Suppl 9: 128-132. 



98 

2. Söding J. (2003) Protein homology detection by HMM-HMM comparison. Bioinformatics 

21: 951-960. 

3. Remmert M, Biegert A, Hauser A, and Söding J. (2011)  HHblits: Lightning-fast iterative 

protein sequence searching by HMM-HMM alignment.  Nat. Methods 9: 173-175. 

4. Sali A, Blundell TL. (1993)  Comparative protein modelling by satisfaction of spatial 

restraints.  J Mol. Biol. 234: 779-815.  

5. Biegert A, Mayer C, Remmert M, Söding J, Lupas A N. (2006) The MPI Bioinformatics 

Toolkit for protein sequence analysis. Nucleic Acids Res. 34: W335-339. 

 

 

  



99 

HHpredA-func 

Prediction of functional sites with HHpredA-func 

M. Meier
1
, A. Meier

1
, C. Angermüller

1
 and J. Söding

1 

1
 Gene Center Munich, LMU 

meiermark|meier|angermueller|soeding@genzentrum.lmu.de 

 

HHpredA included a functional site prediction module HHpredA-func. It searches for 

homologous templates with annotated functional sites in the fireDB
1
 and assesses the reliability 

of these predicted functional sites based on match probability, query-template alignment 

accuracy, conservation of residues within the functional site between query and template, and 

conservation of these residues within the query multiple sequence alignment. If the template-

based prediction confidence is below 0.3 for the best predicted site, the de-novo prediction 

method Frpred
2
 is employed instead. 

 

Availability 

HHpred, HHblits and more bioinformatics tools are available at our bioinformatics toolkit
3
 at 

http://toolkit.lmb.uni-muenchen.de/. 

 

 

 

1. Lopez G, Valencia A, and Tress M. (2007) FireDB -- a database of functionally important 

residues from proteins of known structure. Nucleic Acids Res. 35: D219—D223. 

2. Fischer J, Mayer CE, and Söding J. (2008) Prediction of protein functional residues from 

sequence by probability density estimation. Bioinformatics 24: 613-620. 

3. Biegert A, Mayer C, Remmert M, Söding J, Lupas A N. (2006) The MPI Bioinformatics 

Toolkit for protein sequence analysis. Nucleic Acids Res. 34: W335-339. 
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Methods 

HHpredA-thread is similar to HHpred but, in addition to the amino acid column score and the 

secondary structure similarity score, we developed three statistical scores that compare the 

query's sequence profile with the template structure and template profile in order to improve the 

ranking of templates and the query-template alignments. First, both the query and template 

profiles are discretized by assigning each profile column the most similar column state out of a 

previously learned alphabet of size 62. We also count the number of residue contacts for each 

residue in the template and in the virtual query model that the query-template alignment would 

give rise to. Using these data, number of residue-residue contacts and column states for query 

and template, we computed the following residue-wise log-odds scores: 

The column state substitution score evaluates column state substitutions given the 

number of contacts in the template. The compactness score assesses the conservation of the 

number of contacts between the model and the template given the template's column state. The 

model quality score evaluates the likelihood ratio of all pairwise distances in the virtual query 

model given the column states of query and template at the alignment position. The three 

threading scores are linearly combined with optimized weights to obtain the total threading score 

function.  

 

Availability 

HHpred, HHblits and more bioinformatics tools are available at our bioinformatics toolkit
1
 at 

http://toolkit.lmb.uni-muenchen.de/. 

 

 

1. Biegert A, Mayer C, Remmert M, Söding J, Lupas A N. (2006) The MPI Bioinformatics 

Toolkit for protein sequence analysis. Nucleic Acids Res. 34: W335-339. 
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Our CASP10 residue-residue contact prediction method is a small variation of the method which 

has participated in CASP8 and CAPS9
1
. The predictions are performed by an ensemble of 1250 

rule sets that are generated by BioHEL
2
, our in-house machine learning system. Three types of 

input information were used to train our system: (1) detailed local sequence information from 

two selected regions (windows) around specific residues, (2) information about the connecting 

segment between the two target residues and (3) global sequence information. 

Two windows of ±4 residues were constructed around the two target residues. Each 

residue in the windows was characterised using: (1) a position-specific scoring matrix (PSSM) 

profile computed with PSI-BLAST
5
, (2) secondary structure (SS) predicted by PSIPRED

7
, (3) 

five-state coordination number (CN)
8
, (4) five-state relative solvent accessibility (SA)

3
 and (5) 

five-state Recursive Convex Hull (RCH)
3
. CN, SA and RCH were predicted using BioHEL as 

well. 

The connecting segment was represented by the distributions of amino acids types, 

predicted secondary structure states
6
, as well as predicted CN, SA and RCH. The global sequence 

information contained the sequence length and the distributions, for the whole sequence, of 

amino acids and predicted SS, SA, RCH and CN. We also used two more attributes: the number 

of residues separating the two target residues
6
 and the contact propensity between the amino acid 

types of the target residue pair
9
. In total, 511 variables were used in the training process. 

The training process followed the four steps below: 

 

1. We selected a set of 3262 protein chains from PDB-REPRDB with a resolution less than 2Å, 

less than 30% sequence identity and without chain breaks or non-standard residues. We used 

90% of the proteins (~573000 residues) for training and 10% for test. This training set was 

used to predict RCH, SA and CN. 

2. For the residue-residue contact prediction, the size of the training set was reduced: All 

proteins with less than 250 residues and only a random 20% of proteins longer than 250 

residues were kept. Still, the new set contained 32 million pairs of residues (15.2M in 

CASP8), from which less than 2% were real contacts. 

3. To balance the training set (in terms of contacts/non contacts) we created 50 random samples 

from these 32 million pairs. Each sample contained around 720000 residue pairs with a fixed 

2:1 proportion of non-contacts to real contacts. 

4. We run BioHEL 25 times for each training sample with different initial random seeds, thus 

generating an ensemble of 1250 rule sets (50 training samples x 25 seeds). This ensemble 

performed the residue-residue contact prediction. 

 

The changes between this and our CASP9 predictor are that (1) we have simplified our 

representation and (2) we have increased the sizes of the samples. We have removed from our 

previous representation a third window of residues placed at the middle point between the target 

pair of residues. Our analysis of the rule sets involved in the previous representation
1 

suggested 

mailto:jaume.bacardit@nottingham.ac.uk
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that this third window was the weakest contributor to the prediction capacity of our method. 

Also, we have increased the sizes of the samples from 660000 to 720000 residue pairs. 

 

Availability 
Our contact map prediction method is available as part of the ICOS server for the prediction of 

structural aspects of protein residues, at http://icos.cs.nott.ac.uk/servers/psp.html 
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Krasnogor. Contact map prediction using a large-scale ensemble of rule sets and the fusion of 

multiple predicted structural features. Bioinformatics. First published online July 25, 2012 

doi:10.1093/bioinformatics/bts472 

2. J. Bacardit, E.K. Burke and N. Krasnogor. Improving the scalability of rule-based 

evolutionary learning. Memetic Computing journal 1(1):55-67, 2009 
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CMAPpro
3
 is a Deep Neural Network architecture for residue-residue contact prediction. The 

deep architecture is designed to address two main issues in contact prediction: (1) Residue-

residue contacts are not randomly distributed in native protein structures, rather they are spatially 

correlated. Contact predictors generally do not take into account these correlations, not even at 

the local level, since the contact probability for a residue pair is typically learned/inferred 

independently of the contact probabilities in the neighborhood of the pair. (2) Proteins do not 

assume a 3D conformation instantaneously, but rather through a dynamic folding process that 

progressively refines the structure. In contrast, machine learning approaches typically attempt to 

learn contact probabilities in a single step.  

 

Methods 
CMAPpro

3
 consists of a stack of Neural Networks NN

k 
. Each network in the stack is a standard 

three-layer feed-forward network trainable by back propagation, and all the networks share the 

same topology: same input size, same hidden layer size, with one single output, which represents 

the residue-residue contact probability. Each level NN
k
 in the stack produces a contact map 

prediction, which is fed in input, and refined, in the successive level. Thus, the stack architecture 

allows to take into account the spatial correlation between residue-residue contacts, and it is used 

to organize the prediction is such a way that each level of the stack is meant to refine the 

prediction produced by the previous level. Other than the predictions coming from the previous 

level, the NN
k
 input includes three types of fixed information across the different levels: 

 

Residue-residue features. These are the three most common type of features used for contact 

prediction. (1) Evolutionary information in form of sequence profiles, obtained with PSI-

BLAST
1
. (2) Predicted secondary structure, obtained with SSpro

7
. (3) Predicted solvent 

accessibility, obtained with ACCpro
8
.  

 

Coarse features. We use a recurrent neural network (RNN) to predict coarse contact probabilities 

and orientation between secondary structure elements. In particular, the RNN is used to predict 

whether two secondary structure elements are in parallel contact, antiparallel contact, or no-

contact. Such contact and orientation probabilities are fed into the network input. 

 

Alignment features. We use an energy-based method to assign energies and then probabilities to 

the possible alignments between contacting secondary structure elements. The alignment 

probabilities provide some estimation of the possible spatial arrangement of two secondary 

structure elements. From such alignment probabilities we derive approximate probabilities of 

contact at the residue level, which are fed into the network input.  

 

mailto:pdilena@uci.edu
mailto:knagata@uci.edu
mailto:pfbaldi@ics.uci.edu
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 CMAPpro is trained on a large set of 2,356 non-redundant protein domains with less than 20% 

pairwise sequence identity, obtained from ASTRAL
2
 release 1.73. The dataset of protein 

examples has been partitioned into 10 disjoint groups, so that no domains from two distinct 

groups belong to the same SCOP fold. Model training is performed using a standard 10-fold 

cross-validation procedure. The final CMAPpro is thus an ensemble of the ten distinct predictors. 

 

Results 
The performances of the deep architecture alone (with residue-residue features but without 

coarse and alignment features) have been tested in comparison to those of Neural Network (NN) 

and Recurrent Neural Network (RNN), trained from scratch on exactly the same data
3
. 

Experimental results show that the deep architecture leads to an accuracy of about 30% for long 

range contacts, roughly 10% above those of NN and RNN methods. The performances of 

CMAPpro
4
 have been assessed on a large set of new-fold domains with respect to the training 

structures, as well as on the set of protein domains used for contact prediction in the two most 

recent CASP8
5
 and CASP9

6
 experiments. On these datasets, the accuracy of CMAPpro for long 

range contacts is close to 30%.  

 

Availability 
CMAPpro is available as part of the SCRATCH suite at: http://scratch.proteomics.ics.uci.edu/ 
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Automated Tertiary Structure (TS) predictions were submitted using the TS component of the 

IntFOLD server 
1
 (IntFOLD-TS). Despite being a single template modelling method, the server 

performed well during the last round of CASP (CASP9). In particular, the B-factor scores that 

were assigned for each residue in a model provided an accurate reflection of observed local 

model quality
2
. The IntFOLD TS predictions were again included in CASP10 to provide a 

benchmark for monitoring performance of newer methods, such as IntFOLD2.  

 

Methods 
The IntFOLD method was essentially unmodified since CASP9; only the template and sequence 

databases were updated. The method works by integrating the alignment output from the SP33, 

SPARKS3, HHsearch4 and COMA5 methods and then generating around 40 alternative single 

template based 3D models using Modeller6. For each target, all the generated models were then 

ranked using the ModFOLDclust2 QA method7 and the top 5 were submitted. 

The method included per-residue accuracy predictions in coordinate files, which were 

found to be accurate during the CASP9 experiment according to official assessments8. However, 

for CASP9, we did not make any attempt to correct the errors identified in single-template 

models. The method has since been updated for CASP10 and it now includes multi-template 

modeling guided by local quality assessment (see our IntFOLD2 abstract for more details). 

 

Availability 
The IntFOLD server is available at: 

http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD_form.html. 

 

1. Roche, D. B., Buenavista, M. T., Tetchner, S. J. & McGuffin, L. J. (2011) The IntFOLD 

server: an integrated web resource for protein fold recognition, 3D model quality assessment, 

intrinsic disorder prediction, domain prediction and ligand binding site prediction. Nucleic 

Acids Res. 39, W171-6. 

2. McGuffin, L. J. & Roche, D. B. (2011) Automated tertiary structure prediction with accurate 

http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD_form.html
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local model quality assessment using the IntFOLD-TS method. Proteins: Structure, Function, 

and Bioinformatics, 79 Suppl 10, 137-46. 

3. Zhou,H. & Zhou,Y. (2005) SPARKS 2 and SP3 servers in CASP6. Proteins. 61 (S7), 152-

156. 

4. Söding, J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics. 

21, 951-96. 

5. Margelevičius,M. & Venclovas Č. (2010) Detection of distant evolutionary relationships 

between protein families using theory of sequence profile-profile comparisons. BMC 

Bioinformatics. 11, 89. 

6. Sali,A. & Blundell,T.L. (1993) Comparative protein modelling by satisfaction of spatial 

restraints. J. Mol. Biol. 234, 779-815. 

7. McGuffin,L.J. & Roche,D.B. (2010) Rapid model quality assessment for protein structure 

predictions using the comparison of multiple models without structural alignments. 

Bioinformatics. 26, 182-188. 

8. Mariani V., Kiefer F., Schmidt T., Haas J. & Schwede T. (2011) Assessment of template 

based protein structure predictions in CASP9. Proteins. 79 Suppl 10, 37-58. 
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The IntFOLD2 server integrates our latest methods for: fold recognition, domain boundary 

prediction, prediction of intrinsically disordered regions, prediction of protein-ligand interactions 

and the global and local quality assessment of predicted 3D models of proteins. Our main focus 

for IntFOLD2 was the improvement of 3D protein models using multiple templates guided by 

single-template model quality assessment. 

 

Methods 
For CASP10, a bespoke version of the server was developed in order to simultaneously return 

results for 3 prediction categories: tertiary structure (TS), disorder (DR), and ligand binding site 

residues (FN). Local quality assessment results were returned as scores in the B-factor column of 

each TS model file. Full QA results were returned by separate servers (see our ModFOLD4 and 

ModFOLDclust abstracts for details). 

  

TS predictions: Our new TS method was developed with the aim of fixing local errors, identified 

in an initial pool of single template models, through iterative multi-template modeling. The 

method attempts to exploit our CASP9 success in local quality prediction
1
 by taking the per-

residue errors into consideration during multiple alignment selection. 

In a recent paper, we compared several alternative alignment section methods for multi-

template modeling
2
. We discovered that using accurate local model quality scores to guide the 

alignment selection was the most consistent way to significantly improve models for each of the 

sequence to structure alignment methods tested. In addition, using accurate global model quality 

for re-ranking alignments, prior to selection, further improved the majority of the multi-template 

modeling approaches that we tested. Furthermore, subsequent clustering of the resulting 

population of multiple-template models significantly improved the quality of selected models 

compared with the previous version of our tertiary structure prediction method (IntFOLD-TS).  

For the IntFOLD2 server TS predictions, nine different fold recognition methods were 

installed and run in-house to generate up to 10 sequence-to-structure alignments each, resulting 

in up to 90 alternative single-template based models being generated for each CASP target. The 

fold recognition methods that we used were SP3
3
 and SPARKS2

3
, HHsearch

4
, COMA

5
 and the 
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5 alternative threading methods that are integrated into the current LOMETS package
6
 - QQQ, 

GGGd, GGGf, NNNd and SSSc. 

In the first iteration of the IntFOLD2 TS method, all single-template models were 

assessed using ModFOLDclust2 to assign global and local model quality scores. Using the single 

template model quality scores and other criteria, alignments were selected from each fold 

recognition method and used to build multiple-template models, with the aim of minimizing 

errors. The multi-template modeling alignment selection methods resulted in the generation of a 

new population of models for each target. In the second iteration the new multi-template models 

were then assessed using ModFOLDclust2
7
 and the top-ranked models were designated as the 

IntFOLD2 TS predictions. 

 

DR predictions: The latest version of our DISOclust method
8
 was used to generate automated 

DR submissions via the IntFOLD2 server. The new method uses the ModFOLDclust2 QMODE2 

output in order to identify the regions of high variability occurring in the 3D models generated 

by the IntFOLD2 TS method. 

 

FN predictions: The latest version of FunFOLD
9
 was used to generate automated FN 

submissions via the IntFOLD2 server. The method uses structural superpositions of the top 

ranked IntFOLD2 3D models and related templates with bound ligands in order to identify 

putative contacting residues. The method uses a hierarchical agglomerative clustering approach 

for ligand identification and residue selection. 

 

Availability 
The IntFOLD2 server is available at: 

http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD2_form.html. 
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21, 951-96. 
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To predict structures for all server targets in CASP10, we developed an automatic fold 

recognition method named Jiang_Fold. Different from our previous fold recognition method FR-

t5 [1], Jiang_Fold is based on a new structural descriptor, packing cluster (PC) which is 

represented as a buried highly connected side-chains network enclosed by main-chains. PC, 

which can be regarded as a type of 'structural code', was used to guide sequence-structure 

alignment in fold recognition, leading to an improvement on the performance of fold recognition 

especially for remote homology. We further improved the threading speed and accuracy by 

implementing an iterative threading strategy. 

 

 
Figure 1: The framework of fold recognition server Jiang_Fold for CASP10. 

 

The framework of Jiang_Fold consists of four key steps (Figure 1) described as follows: 

Step 1: Quality Evaluation of Sequence Profile 
For each target sequence to be modeled, we first evaluate its sequence profile quality using the 

method of Qpro (Quality of Profile) we recently developed. 
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Step 2: Sequence-template Alignment and Homology Estimation 
If Qpro<0.05, pcThread_no_profile module was used for sequence-template alignment which 

does not consider profile term in alignment scoring function. Otherwise, pcThread_score module 

was used. The sequence-template is performed against a template library of SCOP <= 90% 

sequence similarity [2]. Meanwhile, we calculated the correlation coefficient between profiles of 

target sequence and fold template (ProCC). If ProCC<0.25, which means low homology between 

the target and template, we re-did sequence-template alignment using pcThread_pattern module 

that was trained on low homology targets. All the sequence-template alignments ware evaluated 

by Z-scores and the top 10 alignments with highest Z-scores were chosen as seeds for next round 

of threading procedure. 

 

Step 3: Refinement of sequence-template alignment 
To improve the performance of fold recognition, we obtained all structures with same folds from 

the complete SCOP template library for the top 10 seed templates that were generated above. 

Then target sequence was aligned with all these structures including the top 10 seed templates. 

Finally the top 5 structural templates with highest Z-scores were obtained. 

 

Step 4: Construction of Full-length Model 

For target sequences of multiple domains, the templates generated could only cover partial 

protein since the domain-based template library is used. Therefore, we need to check whether the 

sequence-template alignment covers the whole target sequence. If not, we generated templates to 

cover different domains of the target sequence, and used PatchDock [3] to construct the full-

length model. 

 

1. Hu Y, Dong XX, Wu AP, Cao, Y, Tian LQ, Jiang TJ. (2011). Incorporation of local structural 

preference potential improves fold recognition, PLoS One. 6(2): e17215. 

2. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. (1995). SCOP: a structural 

classification of proteins database for the investigation of sequences and structures. J. Mol. 

Biol. 247, 536-540. 

3. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. (2005). PatchDock and 

SymmDock: servers for rigid and symmetric docking. Nucl. Acids. Res. 33: W363-367. 
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The protein structure prediction server, Jiang_Server was developed by integrating our threading 

program FR-t5
1 

and de novo fragment-based assembly program (denoted as NCACO-assembler) 

using NCACO-score function
2
. The predicted models were ranked by a model selection method 

that we recently developed
3
. The framework of Jiang_Server is depicted as Figure 1. 

   

Methods: 

 
Figure 1. Framework of the integrated protein structure modeller Jiang_Server. 

 

Jiang_Sever was used to generate structure models for the target sequences in the 10th 

Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure 

Prediction (CASP10). For each target sequence, we first used the threading program FR-t5 to 

generate 50 structure models. Then, a model selection program was employed to assess these 

structure models, whose quality was measured by the Gscores (General Model Selection). If 

there existed ≥5 models with Gscores ≥2.95, the top 5 models were selected as the final 

prediction models. Otherwise, ten more models were generated by the de novo assembly 

program NCACO-assembler, and the top 5 models with highest Pscores (FM Model Selection) 

were selected from these 60 structure models. General Model Selection and FM Model Selection 
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are all based on SVR(support vector machine regression) algorithm, while Pscore has better 

performance than Gscore in hard targets for its training process.  

 

Results 

The performance of Jiang_Server was evaluated on the 117 targets from CASP9. To mimic the 

participation in CASP9, the PDB database used to generate fragment libraries and the nr 

database used to generate sequence profiles were constructed based on the data before the start of 

CASP9  (namely Apr 14, 2010). In order to assess the performance of Jiang_Server, we 

compared it to our previous prediction server Jiang_THREADER. As shown in Table 1, 

Jiang_Server shows a better performance than Jiang_THREADER. 

 

 ALL(117 targets) Hard Targets(29) 

Jiang_Server 75.42 7.92 

Jiang_THREADER 73.78 6.20 

Table 1. Comparison of Jiang_Server and Jiang_THREADER in CASP9 targets. The scores are 

the total TM-scores over Top1 models for all targets or hard targets.  

 

1. Tian,L. Wu,A. Cao,Y. Dong,X. Hu,Y. and Jiang,T. (2011). NCACO-score: an effective main-

chain dependent scoring function for structure modeling. BMC bioinformatics 12, 208-230. 

2. Hu,Y. Dong,X. Wu,A. Cao,Y. Tian,L. and Jiang,T. (2011). Incorporation of Local Structural 

Preference Potential Improves Fold Recognition. PLoS ONE 6, e17215. 

3. Work in preparation for publication.  
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The Jones-UCL group's main prediction efforts were aimed at generating models for the harder 

prediction targets; if there were obvious homologous matches with target domains a simple meta 

prediction method based on our hGen3D method was used (see hGen3D/NewSerf server abstract 

elsewhere). 

 

Methods 

For CASP10, for those target domains which we believed could not be reliably predicted using 

fold recognition methods (such as pGenTHREADER[1]), we used FRAGFOLD [2] to generate 

up to 5 structures. This approach to protein tertiary structure prediction is based on the assembly 

of recognized supersecondary structural fragments taken from highly resolved protein structures 

using a simulated annealing algorithm. The current release of FRAGFOLD, version 4.7, was 

very similar to the version used in CASP9.  As many as 5,000 structures were generated for each 

target domain using UCL's Legion supercomputer, and a simple rigid-body structural clustering 

algorithm used to select the models representing the largest clusters of conformations.  

For 12 targets, we attempted to predict residue-residue contacts using PSICOV [5], which 

identifies correlated mutations by applying a graphical lasso procedure to large multiple 

sequence alignments. Unfortunately none of these targets turned out to be de novo targets, and so 

we are unable to evaluate the efficacy of this approach in the CASP10 experiment. The lack of 

homologous sequences for CASP10 targets seems rather unusual based on general family size 

statistics. Whether this indicates a bias in the selection of CASP targets, or perhaps a bias in 

target selection in the major structural genomics consortia, remains to be seen. 

Submitted predictions were made using little or no human intervention apart from initial 

domain assignment and preparation of input secondary structure and sequence alignment files. 

Prior to submission DaliLite was used with the model in case it could be used to find a distant 

homologous structure which could be used to alternatively model the target sequence. 

 

Results 

Predictions of folds were submitted for all targets. Due to a lack of homologous sequences for 

the de novo targets, it is not possible to evaluate the prospects of using newly developed contact 

prediction methods for advancing the state-of-the-art in de novo protein structure prediction. 

 

1. Lobley, A., Sadowski, M.I. and Jones, D.T. (2009) pGenTHREADER and 

pDomTHREADER: new methods for improved protein fold recognition and superfamily 

discrimination, Bioinformatics, 25, 1761-1767. 

2. Jones D.T. (1997) Successful ab initio prediction of the tertiary structure of NK-Lysin using 

multiple sequences and recognized supersecondary structural motifs. PROTEINS. Suppl. 1, 

185-191. 
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In the current CASP experiment we focused on model selection and refinement, using server 

models as our starting point for all simulations.   

For model refinement we used energy optimization with a cooperative energy function, 

as we did in previous CASP experiments.  This time, however, we used a different scoring 

function for model ranking and selection.  This scoring function is applicable to energy-

optimized models considering the energy terms, but weighs them differently and complements 

them with evolutionary- based information in the Spirit of Kalman et al
1
 

 

Methods 

We took part in three CASP10 categories: QA, refinement, and tertiary structure prediction.  For 

the three tasks we used the same protocol, presented below.  QA required steps 1-3 of the 

protocol, for refinement we used steps 5-8, and the whole protocol was used for structure 

prediction. 

1. Server models were downloaded from the CASP web site.  

2. All models were energy minimized to reduce server-specific characteristics that mask quality 

related differences. 

a. Our energy function requires a secondary structure assignment. To this end we used two 

alternative secondary structure predictions: PSI-PRED
2
 and SAM-T08

3
. Thus each 

model was minimized twice, each time with a different secondary structure assignment. 

b. It should be noted that quite a few of the server models did not pass this stage. Typically, 

this had to do with some (often minor) structural distortion in the model that rendered the 

minimization numerically unstable.  These models were not considered further.     

3. Models were ranked by a scoring function. This function was trained with native secondary 

structures, and turned out to be very sensitive to the secondary structure assignment and often 

provided different rankings for the two choices of secondary structure assignments.  In our 

work for CASP10 we chose for each target the secondary structure (and thus ranking) that 

received the higher score. 

At this stage QA predictions were submitted.  Structure modeling targets continued to 

the next stage.     

4. We visually inspected the top ranking models (around 20 models depending on time 

limitations). Visual inspections had two roles: 

a. Removal of identical models and obvious outliers (i.e. apparent FM models in clear 

TBM targets). 

b. Identification of multi-domain targets. Typically the top ranking models agreed on 

domain boundaries. In cases of doubt we consulted BLAST
4
 and 3D-Jury

5
. In what 

follows, identified domains were handled separately and submitted as independent 

fragments. 

Here refinement targets entered the protocol.  
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5. The selected models were often manually manipulated. Most of these manipulations were 

limited to changes in the secondary structure assignment and tethering of conserved 

structural elements. In a few cases, when distortions seemed obvious and time permitted, 

actual structural changes were made. 

6. Models were energy optimized using MCM
6
 

7. Optimized models were ranked by the scoring function and submitted. 

Two central elements of the above scheme are the energy and scoring functions.  The energy 

function includes non-cooperative torsion angle
7
 and atom-pair potentials

8
, and cooperative 

meta-terms that bound the latter from reaching values that are too low
9
. In addition the energy 

function includes a cooperative hydrogen bonding term
10

, and a cooperative solvation term
9
.  

The scoring function includes some of the above energy terms as well terms that penalize 

exposed conserved residues, and a term that penalizes deviations from the assigned secondary 

structure. The weights of these terms were learnt from a subset of the CASP8 server models. 

  

Results 
According to our self-evaluation, given the available native structure as of Sept. 28

th
 : 

1. In the QA category we have reached weighted average correlations
11

 of 5.2 and 2.6 for the 

stage1 and stage2 tracks, respectively. 

2. In the refinement category we slightly improved (model #1) five out of ten models in terms 

of GDT_TS. 

3. No evaluation of tertiary structures was performed yet. 
  

Availability 
All the software that was used in this work is freely available at http://www.cs.bgu.ac.il/~meshi.  
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In the last few years, we have been developing the physics-based UNRES
1
 force field for coarse-

grained simulations of protein structure and dynamics, which performs well in the physics-based 

prediction of protein structure. Because of still imperfect representation of local interactions, 

errors in secondary structure, local details, and packing are sometimes substantial. Recently, the 

Dynamic Fragment Assembly (DFA) method was proposed by Sasaki et el.
2,3

, in which 

knowledge-based information of a given protein is incorporated into a set of local potentials. The 

DFA method was subsequently implemented by Lee et al.
4
 in protein-structure prediction by 

global conformational search with Conformational Space Annealing (CSA)
5
 and the CHARMM2 

force field. The purpose of this exercise was to assess how does this supplementary information 

of local interactions improve the performance of UNRES. 

 

Methods 
 

In the UNRES model
1
, a polypeptide chain is represented by a sequence of -carbon atoms 

connected by virtual bonds with attached side chains. Two interaction sites are used to represent 

each amino acid: the united peptide group (p) located in the middle between two consecutive -

carbon atoms and the united side chain (SC). The interactions of this simplified model are 

described by the UNRES potential derived from the generalized cluster-cumulant expansion of a 

restricted free energy (RFE) function of polypeptide chains. The cumulant expansion enabled us 

to determine the functional forms of the multibody terms in UNRES. 

The DFA routines by Sasaki et al.
2,3

 were incorporated into the UNRES package. For 

each target, the knowledge-based potentials, which consisted of virtual-bond-angle and virtual-

bond-dihedral-angle biasing potentials, biasing potentials imposed on local distances (within 9-

residue fragments), neighbor-number potentials, and a biasing potential accounting for -sheet 

propensity,  were constructed with the use of the procedure developed by Sasaki et al.
2,3

 

Subsequently, the Conformational Space Annealing (CSA)
5
 global-optimization runs were 

carried out with UNRES+DFA as the target function and cluster analysis of the results was 

carried out by the Ward minimum-variance method
6
 to identify conformational patterns. The 

clusters were ranked according to the UNRES+DFA energy of the lowest-energy member and the 

lowest energy conformation of a cluster was selected to represent the entire cluster.  

The representatives of five lowest-energy clusters were subsequently selected for further 

stages of the procedure. Then, all-atom structures were constructed from the UNRES structures 

by using our physics-based procedure
7,8

 for the reconstruction of all-atom backbone and all-atom 

side chains. In this procedure, the peptide groups are positioned first by Monte Carlo 

optimization of the sum of dipole-dipole interaction energy and energy of backbone-local 

interactions, subject to the C-trace geometry resulting from coarse-grained simulations and, 

subsequently, side chains are added subject to the condition of minimum overlap
8
. Finally, the 



119 

structures are refined by energy minimization with the ECEPP/3 force field
9
.    

 

Availability 
The UNRES package to perform coarse-grained simulations is available at http://www.unres.pl  
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We submitted structure models in three tertiary structure prediction categories in CASP10. They 

are regular (TS), refinement (TR), assisted (Tc) structure prediction targets of CASP10. 255 

models for 51 regular human-server targets, 133 models for 27 refinement targets, and 75 models 

for 15 assisted prediction targets were submitted in total.   

 

Methods 
Our structure prediction scheme is based on the CABS lattice model-based ab initio folding 

method [1]. We made a number of significant modifications to the original CABS to allow more 

flexible move during Monte Carlo (MC) structure optimization and for better scoring of 

conformations. Moreover, we enhanced the Replica Exchange Monte Carlo (REMC) scheme to 

incorporate predicted local quality information of replica structures. We have also newly 

implemented novel secondary structural fragment-fragment interaction potential into the CABS 

force field. The model selection was performed by applying a novel residue-level environment 

potential. Our interest and the novel implementations are mainly for improving packing patterns 

of secondary structural fragments and side-chains of neighboring residues.  

 

Below is the summary of our prediction procedure using CABS: 

1. Modification of CABS for reflecting expected local errors. 

To allow more flexible move in CABS, chain moves on the 3D lattice are modified. The lattice 

space as well as MC move parameters were modified. In addition, a new REMC routine was 

employed to be able to consider predicted local errors during folding process. In principle, MC 

moves are modulated to enhance moves at local regions that are predicted to be of poor quality. 

2. Novel secondary structural fragment-fragment interaction potential 

On top of the CABS force field, we implemented a novel secondary structural fragment-fragment 

interaction potential. The knowledge-based potential is dependent on fragment crossing angle 

and the distance of fragments. The potential was incorporated into CABS force field and this 

fragments interaction potential was weighted as being half of the total potential value of a protein 

conformation. A several different potentials were prepared based on the mutual distance between 

fragments. The fragment-fragment interaction potential was shown to be very effective in 

making large fragment-based motion and achieving correct fragment packing observed in native 

structures. 

3. Starting Replica structures to CABS 

We generated and selected about 30 starting replica models. Some of them are taken from server 

predictions. We also used our in-house fold quality assessment, Sub-AQUA [2]. After removing 

low quality models that are very different from the others, on average 20-26 different models 

were finally used as initial replica structures in a CABS REMC run. 

4. Running CABS 
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In total 12 independent CABS were run simultaneously. We iterated the running of CABS at least 

2 to 3 times and continued the iteration until the 12 structures from the largest cluster of every 12 

CABS runs nearly converged to a few similar structures. Restraints were applied during the 

simulation to regions that are consistent among server models. 

5. Model selection by a novel residue environmental potential 

A novel residue environmental potential was developed for model selection. The potential was 

used to select best models from the whole Monte-Carlo trajectories. This potential essentially 

examines if side-chain environment at each residue in a model can find similar environment in 

known structures in a structure database or not. The environment of a residue is defined by the 

types and the number of neighboring residues. A residue in a model is scored by counting the 

number of similar environments observed in the representative set of protein structures. Our 

residue environment potential was shown to be superior to several existing scoring functions in 

selecting near native decoys in our benchmark test (manuscript in preparation). Selection of 

models was performed by applying the residue environment potential to models followed by 

manual inspection. Best five models based on the environment potential score were selected 

from the whole MC trajectories. 

 

Summary 

In this work, original CABS ab initio folding program was significantly enhanced in three 

aspects: First, more flexible moves were made possible to explore a larger and more protein-like 

conformational space. Second, the assessed quality of local structures are explicitly considered 

and implemented in the MC optimization. Third, two novel potentials, one for fragment-fragment 

interactions and another one for side-chain environment were developed and implemented. These 

two potentials are complementary to each other but aimed for the same purpose of improving 

packing patterns of fragments and residues. 

 

Acknowledgements 
This work has been supported by grants from the National Institutes of Health (R01GM075004, 

R01GM097528), National Science Foundation (EF0850009, IIS0915801, DMS0800568), and 

National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-

220-C00004). 

 

1. Kolinski, A. (2004). Protein modeling and structure prediction with a reduced representation. 

Acta Biochimica Polonica 51: 349-371  

2. Yang YD, Spratt P, Chen H, Park C, Kihara D. (2010). Sub-AQUA: Real-value quality 

assessment of protein structure models. 23: 617-632. 

 

  



122 

Kloczkowski_Lab 

Eshel Faraggi, Andrzej;Kloczkowski 

Battelle Center for Mathematical Medicine, NCH 

 

Protein structure prediction can be separated between two tasks: sample the configuration space 

of the protein chain, and assign a fitness between these hypothetical models and the native 

structure of the protein. One of the more promising developments in this area is that of 

knowledge based energy functions. However, standard approaches using pair-wise interactions 

have shown shortcomings demonstrated by the superiority of multi-body-potentials. These 

shortcomings are due to residue pair-wise interaction being dependent on other residues along 

the chain. We developed a method that uses whole protein information filtered through machine 

learners to score protein models based on their likeness to native structures. 

 

Materials and Methods 
Single chain models were collected from the PDB and any redundant sequences were removed. 

Additional models were collected from previous CASP experiments. For all models we 

calculated parameters associated with the distance to the solvent and with distances between 

residues. These parameters, in addition to energy estimates obtained by using a four-body-

potential, DFIRE, and RWPlus were used as training for machine learners to predict the fitness 

of the models. For the human prediction portion of the CASP10 experiment we took the top 150 

ranked server models as supplied by the organizers and ranked them according to our trained 

server. The top five ranked models were then submitted as our human prediction. No human 

intervention was carried out in ranking top models. During the CASP experiment we have 

discovered an over-training mistake that we absent mindedly committed and our model were 

slightly modified midway through the experiment. Local testing indicated however that the 

change in ranking coming about from the changing of models was minimal. 

 

Discussion 
Testing on CASP 9 targets showed that our method is superior to the common DFIRE and its 

derivatives as well as to the current version of RWPlus, both of which are considered a standard 

in the field. Further testing showed that our prediction were on par with the best ranking methods 

from all groups participating in the CASP9 experiment. These results are currently being 

improved and summarized into a paper. The server will be part of the bioinformatics services 

page of the Kloczkowski Lab at the Battelle center.  
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Knowledge-based potentials in various forms have been successfully used for protein structure 

predictions at previous CASP experiments.  Such potentials implicitly include the effects of 

solvent and the crystal environment as they are derived from exprimentally determined structures 

deposited in the PDB.  Our knowledge-based potential energy surface has an attractor basin to 

move the near-native conformation (refinement targets) consistently closer to the native structure 

but the surface is very rugged with many local minima close to the native conformation
1
 (Figure 

1).  An iterative scheme to perturb the confirmations slightly may work to move the 

conformations closer to the native conformation by escaping these rugged minima.  To 

investigate this, we submitted predictions for all the targets for CASP-ROLL and CASP10 by 

processing them through three different pipelines.  We test our consistent knowledge-based 

refinement protocol
2
 for structure prediction and used an iterative version of the pipeline for the 

refinement targets.  All steps in these pipelines are automated: if they prove useful, we hope to 

run them in the server category at future CASPs. 

 

Methods 
For CASP-ROLL targets we selected the server predicted models and used the protocol 

implemented in our KoBaMIN web server (http://csb.stanford.edu/kobamin/).  KoBaMIN is a 

protein structure refinement server that employs a simple, accurate, consistent and 

computationally efficient protocol based on a knowledge-based potential energy function
1; 2; 3

.  

The refinement protocol involves a two-step process.  First, the server uses ENCAD
4
 to refine 

the protein by a highly convergent energy minimization algorithm with an all-atom knowledge-

based potential of mean force that implicitly includes the effect of solvent, KB01
1; 2

.  ENCAD’s 

implementation of the KB01 potential enables rapid refinement of structures (less than 5 minutes 

for a protein of chain length 300), often bringing them closer to the true native conformation.  

Second, a restrained energy minimization is performed using MESHI
5
 to correct side-chain 

rotamer positions and other details of the stereochemistry.  This protocol has been tested 

extensively on all human and server models predicted in CASP7 and performed consistently 

well
2
.  The KoBaMIN server protocol was also used as the “end” step by many groups for 

CASP10, specifically, by the WeFold initiative. 

 For the template-based and template-free modeling category, we selected the top five 

server models using our model selection protocol as implemented in BITS server for stage-2 

models as explained in the abstract of the BITS group.  The BITS server is based on the simple 

premise that the functional sites in protein are more conserved than their global structure, and 

that the quality of local structure in predicted models can be used as a measure of overall 

structural quality.  Then we used our KoBaMIN protocol
3
 on the top five selected server models 

and submitted them as predictions. 

 For the refinement targets we followed an iterative KoBaMIN protocol.  In order to 

escape from local minima and move closer to the native structure, the starting model was 

minimized through the KoBaMIN protocol and the resulting model was again processed by the 

http://csb.stanford.edu/kobamin/
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same protocol.  This iteration was done five times.  As the KoBaMIN protocol consists of KB01 

energy minimization step followed by MESHI side-chain rotamer position correction with 

restrained backbone flexibility
2; 3

, such an iterative scheme is effective.  For refinement, we used 

the starting model provided and did not use information about problematic regions in this model.  

Our protocol was applied to the entire structure with no division into individual domains even 

when the target was known to have two or more domains.  These choices were made to provide a 

consistency check of our refinement protocol. The five iterated models were submitted as 

predictions. 

 

Availability 
The KoBaMIN protocol

3
 is available as an online server at http://csb.stanford.edu/kobamin/.  It 

calculates C RMSD, GDT-TS and GDT-HA scores to a reference structure if given and to the 

starting model are calculated if no reference is given.  We plan to release all successful prediction 

pipelines as online web servers in the future and hope to run them under the server category at all 

future CASPs. 

 

Figure 1 (modified from previous 

work
1
).  Comparing the directed movement 

on the potential energy surface for energy 

minimization with KB potential.  The 

starting protein structures are green points, 

the native structure is the cyan disk and the 

final energy minimized structures are 

shown as red points.  This projection of the 

multidimensional energy surface is made 

using a 61 × 61 matrix of pairwise RMS 

values (30 initial, 30 final energy 

minimized, and the native structure).  An 

attractor basin is seen here but the energy 

surface contains many local minima near 

the native state preventing it from being 

reached.  Thus using a MESHI side-chain 

perturbation scheme with iterative KB 

minimization could help escape such 

minima and move the structures closer to 

the native conformation.  The distance between any two points is scaled by how far apart the 

structures are in the C RMSD space. 
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In principle, physics-based methods can be used to fold proteins and predict their structure. 

However, it has remained an elusive task due to the vastness of the protein conformational space 

and the roughness of the potential energy surface. In the process of CASP10 we have been using 

a physics-based methodology that incorporates prior information to focus sampling on the 

relevant parts of conformational space. This prior information is encoded as restraints that are 

used as perturbations to the system’s Hamiltonian using a procedure based on multiple replicas—

the Hamiltonian Replica Exchange method1. We construct a ladder of replicas in which the 

temperature and the strength of the restraints change, and in which springs are selected from a 

pool of possible springs based on physical principles. At high temperatures, restraints are weak, 

resulting in global sampling. As we move to lower temperatures, the springs become stiffer, 

focusing the sampling on local regions.  

 

Methods 
We can use information coming from experiments (e.g. cross-linking experiments, solid state 

NMR, EPR), from bioinformatics (e.g. secondary 

structure predictions2, homologous proteins3), or 

evolution (e.g. residue-residue contacts predicted 

from coevolution4). These types information share 

two properties. First, the information can be 

sparse. For example, an experiment may give us a 

few residue-residue contacts, but we may know 

little about the rest of the structure. Second, this 

information can be noisy. That is, it may contain 

errors and ambiguities. For example, many of the 

contacts predicted from sequence coevolution will 

be wrong. A successful method must be able to 

deal with data that is sparse and noisy. We have 

developed an algorithm that can deal with such 

data in a rigorous statistical mechanical 

framework. 

We use HREMD simulations and a technique we 

call zipping to efficiently generate structures 

compatible with the available data. These 

simulations are run using the GPU accelerated 

version of Amber, which gives a 100-fold speedup 

relative to CPUs and allows for much more conformational sampling. The method obeys detailed 

balance and produces a Boltzmann weighted ensemble, which is important because it means that 

Figure 1: Structure prediction of thioredoxin using 

contacts predicted from evolution. (A) Distribution 

of correctly and incorrectly predicted contacts on 

the native structure. (B) Comparison of the model 

and the native structures. The Ca RMSD is 3.5 Å. 
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we can use populations and free energy to select the correct structures. This method requires far 

less restraint information per residue  (as little as 0.4 restraints/residue) that would be needed to 

determine the structure by NMR alone (~20 restraints/residue). 

 

Results 
Figure 1 shows the predicted structure of thioredoxin, using noisy data from evolution-based 

contact prediction5. Of the 105 contacts predicted, only 68 of them are correct, and trying to 

enforce all contacts simultaneously would lead to major distortions in the structure. Instead, we 

assume that the contact predictions are 60% accurate, which we infer based on past performance 

of the contact prediction algorithm. Using predicted contacts and an assumption of 60% 

accuracy; our method produces a structure that is 3.5 Å from the crystal structure.  

Through out CASP10 we have been relying mostly on bioinformatics tools such as 

secondary structure prediction and homology modeling to use as restraining information in our 

simulations. Our methods for ranking structures were mostly based on clustering the ensembles 

and selecting representative structures from the most populated clusters. 

 

Availability 
The main software for the calculations is Amber (http://ambermd.org), and we apply several 

python wrappers around it to manage and control the restraints that go into Amber at each state. 
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Free energy has a special importance in structural biology. For example, free energy dictates 

protein folding: small globular proteins have a unique, thermodynamically stable native structure 

at the global free energy minimum. We use this property for ranking protein structures. However, 

if the states of interest are very different, various problems like timescale, reaction coordinate, 

and convergence arises in free energy calculation using direct molecular dynamics simulations or 

using popular method like umbrella sampling. We further modify and use recently developed 

confinement free energy method
1-2 

to do such calculation in a computationally less expensive and 

accurate way. 

 

Methods 

The confinement method uses a thermodynamic cycle. As 

shown in figure 1, the free energy, ΔGAB between states A 

and B is calculated in the following way. First, both A and B 

are converted into a confined state A* and B* by gradually 

applying larger and larger harmonic restraint on all atoms so 

that any rotational contribution of the protein is frozen out, 

and the only remaining motion is vibrational. In order to 

achieve this, a series of MD calculation are carried out, and 

the free energy of the confinement, ΔGAA* and ΔGBB* are 

calculated using a numerical approach developed by Tyka et. 

al.
1
 Finally, to close the thermodynamic cycle, the free 

energy difference between the final restrained /frozen states 

are calculated using normal mode/quasi-harmonic analysis. 

The overall free energy of the process is ΔGAB=ΔGAA* -

ΔGBB*+ΔGA*B*.  The method does not require a reaction 

coordinate or transition path and it is computationally less 

expensive. Moreover, with the advancement of GPU 

computers this method is fast to compute. In all cases, we 

use CASP-hosted server predictions as a starting point.  

 

Results 

We tested this method with different models of CASP9 prior to applying it to targets of CASP10.  

In figure 2, we have shown 3 submitted models of Target 559 of CASP 9 along with the 

calculated free energy values. The group BAKER-ROSETTASERVER submitted all these 

models. The order of free energies matches the order calculated by RMSD and GDT_TS (Global 

distance test score) values.  

 

Availability 

Figure 1: The thermodynamic 

cycle involving confinement 

method 

Figure 2: Structures and free energy 

values for the crystal structure and three 

submitted models of Target 559 of 

CASP9. All free energy values are in 

Kcal/Mol. The calculated RMSD values 

are backbone RMSD only. 
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The main software for the calculations is 

Amber (http://ambermd.org). We wrote 

some scripts to manage the whole 

calculation. 
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We have developed a Protein Modeling System (PMS) for sever prediction based on global 

optimization of energy functions and quality assessment for protein 3D models, and we have 

applied it to all CASP10 targets. PMS method adds additional new features to the old gws/LEE 
1-

3
 method which was used in CASP9. Here, we focused on developing new energy functions 

including new restraint terms and physical energy terms to build protein 3D models. In 

addition, we developed a new quality assessment method to select template candidates as well as 

multiple alignments. 

 

Energy function to build protein 3D models: 
For protein 3D modeling, we developed a new Lorentzian-type energy term for structural 

restraints instead of using gaussian type or spline functions used in MODELLER. In order to 

obtain the sigma values for the width and depth of the Lorentzian functions (which control the 

strength of individual distance restraint), we employed a machine learning method, a random 

forest algorithm to predict the sigma values, where the input features are based on the sequence-

template alignment and environmental features including the profile similarity, gap features, 

secondary structure consensus, and solvent accessibility consensus. For loop regions for which 

no restraints are available from templates, we combined physical energy terms including 

dynamic fragment assembly (DFA) energy (which were originally developed for ab-initio 

protein structure modeling
4
) together with DFIRE statistical potential energy, hydrogen bonding 

term, and GOAP terms
5
. In order to optimize the energy function, we utilized conformational 

space annealing (CSA), a powerful global optimization and efficient conformational search 

method. The energy parameters and weights for energy terms were trained using a subset of 

CASP9 targets. 

 

Model quality assessment to select templates and alignments: 
For selecting templates and alignments, we developed a new quality assessment (QA) method 

using the random forest algorithm. For feature vectors, we used the energy values of individual 

energy terms described above evaluated from predicted 3D models and consensus features 

between secondary structure & solvent accessibility of the 3D models and the corresponding 

predicted values. In the fold recognition step, the QA method was used to re-rank template 

candidates generated by FOLDFINDER, an in-house sequence-template alignment method. 

Multiple sequence-template alignment (MSA) for each combination among the query sequence 

and its templates was carried out by using MSACSA
2
, a multiple sequence alignment method by 

global optimization. Then, the QA method was used to select the best MSA candidate by 

assessing each 3D model generated from templates and its multiple alignments. 
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With these major changes in the protocol, we performed model optimizations and side-

chain re-modeling by successively applying the conformational space annealing in PMS 

protocol. We applied three human prediction methods. One human prediction method of LEE 

applied the same protocol of PMS and, in addition, considered additional templates from 

FOLDFINDER. Another human prediction method of LEEMO uses multi-objective CSA 

(MOCSA
6
) optimization instead of single-objective CSA in the model building step. And the 

other human prediction method of LEEcon is consensus method using SERVER prediction 

models as templates, which are identified in the largest cluster. 
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Template-based modeling has been the most successful method at CASP till date. Selection of 

templates remains a difficult task; it is not always possible to identify the best template from the 

PDB due to the limitations of the alignment methods. Using a large number of threading 

programs has become a routine to select templates with best alignments. However, in many cases 

even though the best template is identified by the threading programs, it is ranked lower based on 

the threading Z-scores and is buried deep within many templates. MATRIX is an automated 

protein 3D structure prediction server, which proposes a solution to pick such missed templates 

using binding site information. Specifically, we use the premise that the functional sites are 

conserved across multiple templates identified by the threading programs and combine restraints 

from multiple threading alignments for structure prediction.  

 

Methods 
We address the problem of template recognition from a large set of alignments from multiple 

threading programs, specifically LOMETS
1
 and HHSearch

2
 programs. All the templates were 

collected and the binding site similarity among them were compared using the COFACTOR 

methodology
3; 4

. The final selection of templates is based on the threading score and alignment 

coverage cutoff values in addition to the templates identified by high local similarity binding 

score (BS-score) in COFACTOR. We combined the restraints from multiple threading 

alignments of all the identified templates and used MODELLER program
5
 to quickly generate 

the model. Finally, we refined the top five models generated by MODELLER using the 

consistent refinement protocol implemented by the KoBaMIN refinement protocol
6; 7

 

(http://csb.stanford.edu/kobamin/) for submission.  

 

Availability 
MATRIX is available as a web sever at http://cando.compbio.washington.edu/casp/matrix. 
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For our manual predictions we made use of the component methods that we developed for the 

IntFOLD2 and ModFOLD4 servers
1,2 

(see our server abstracts for more detail). However, we 

also made use of all of the provided 3D server models, we heavily relied on our Quality 

Assessment predictions obtained from ModFOLDclust2
3
 and we used a considerable amount of 

manual intervention as we were developing our prototype homo-multimeric prediction protocol, 

detailed below. 

 

Methods 

 

Tertiary Structure Predictions: For the tertiary structure (TS) category, our manual predictions 

were made using ModFOLDclust2
3
 for model selection. The top five 3D server models, ranked 

according the ModFOLDclust2 global quality scores, were selected and submitted as TS 

predictions. The only major modifications made to the models were in cases where the full 

backbone trace did not exist, in which case the program BBQ
4
 was used to reconstruct the chain. 

In addition, for each model, the ModFOLDclust2 predicted per-residue error was added into the 

B-factor column for each set of atom records.
 

 

Homo-Multimer Predictions: Our multimeric prediction protocol made use of the 

ModFOLDclust2 selected 3D server models and the lists of templates generated by our 

IntFOLD2 server
1
, which has recently been updated to include multi-template modeling

5
 (see 

our IntFOLD2 abstract for details). 

 

The homo-multimeric modeling for each target involved: 1. Ranking 3D model-template 

alignments according to their combined mean coverage and TM-scores using TM-align
6
 2. 

Extracting the multimeric state information for each template from PISA
7
 3. Filtering templates 

based on the PISA multimeric assembly annotation and on set TM-score thresholds. 4. Building 

N-meric model assemblies based on selected N-mer PISA templates, using TM-align and 

PyMOL (http://www.pymol.org) to orientate the model subunits. 5. Implementing further 

screening criteria that included parameters such as MMalign
8
 scores between multimer 
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templates and multimer models, alignment lengths and alignment coverage and 6. Rating 

interface quality by taking into account the predicted B-factors of interface residues, clashes or 

overlaps and the distance of contacting units or sub-units, in an attempt to select the most 

appropriate modeled assembly. 

 

Availability 

 

Our homo- multimeric prediction algorithm is currently being automated and will shortly be 

integrated with the IntFOLD2 server: 

http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD2_form.html.  

The ModFOLDclust2 software can be downloaded from: 

http://www.reading.ac.uk/bioinf/downloads/ 
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Our manual ligand binding site residue predictions were for the most part automated, using the 

output from our IntFOLD2 server1. We also made use of the 3D server models, heavily relying 

on QA results from ModFOLDclust22 and FunFOLDQA3, along with some manual intervention 

in an attempt to add value to our automated FunFOLD4 predictions.  

 

Methods 

We attempted to add value to our automated binding site residue predictions using the standalone 

version of FunFOLD4, better server 3D starting models, QA information from ModFOLDclust22 

and the standalone version of our new ligand binding site quality prediction method 

FunFOLDQA3. 

 Firstly, for the server only targets, the FunFOLD4 server results were visually inspected 

and included in the prediction based on the following criteria: 1. The global quality score for the 

starting model was acceptable; 2. Residues were in contact with more than two well superposed 

ligands. 

 Secondly, for manual targets ModFOLDclust22 was utilized to rank the server models. 

The standalone version of FunFOLD4, was subsequently used to predict ligand binding site 

residues for the top 10 server models. The 10 resultant FunFOLD4 predictions were ranked using 

the standalone version of our ligand binding site quality assessment tool FunFOLDQA3, which 

produces predictive MCC5 and BDT6 scores. The FunFOLD4 prediction with the highest 

predicted MCC and BDT scores was submitted as our manual prediction, if after visual 

inspection the following criteria held true: 1. The global quality score for the start model was 

acceptable; 2. The residues were in contact with more than two well superposed ligands; 3. The 

model-to-template superpositions were good. 

  

Results 

 Preliminary results indicate some improvements for the manual FN predictions over the 

server FN predictions. Taking target T0726 as an example, the server prediction achieves an 

MCC score of 0.773 and a BDT score of 0.612, whereas the manual prediction achieves an MCC 

and BDT score of 1.0. 

 

Availability 

The IntFOLD2 server with graphical output is available at: 
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http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD2_form.html 

The BDT, FunFOLD, FunFOLDQA and ModFOLDclust2 software can be downloaded from: 

http://www.reading.ac.uk/bioinf/downloads/ 
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Computational de novo protein structure prediction is limited to small proteins of simple 

topology. BCL::Fold introduces an algorithm for protein folding with a novel approach of 

assembling secondary structure elements (SSEs) in three-dimensional space. Our approach seeks 

to overcome size and complexity limits of previous methods by discontinuing the amino acid 

chain in the folding simulation. This facilitates the sampling of non-local contacts. By excluding 

the loop regions, we focus the sampling to the relative arrangement of rather rigid SSEs thus 

limiting the search space. We leverage established protocols for construction of loop regions and 

side chains to yield complete protein models. Decoupling the placement of SSEs from the 

construction of loop regions relies on the excessively tested hypothesis
1,2

 that accurate placement 

of SSEs will allow for construction of loop regions and side chains. 

 

Methods 
The Monte Carlo Metropolis-based algorithm uses simulated annealing and SSE-based moves to 

alter the protein models. It optimizes a knowledge-based potential that consists of twelve 

individual terms: amino acid pair distance clash, amino acid pair distance, amino acid solvation, 

SSE pair clash, SSE pair packing, β-strand pairing, loop length, strictly enforcing loop closure, 

radius of gyration, SSE prediction for JUFO, SSE prediction for PSIPRED, and lastly contact 

order. All knowledge based potentials have been derived from a databank that contained 3,409 

high resolution x-ray crystallography protein structures compiled using the PISCES server
3
. 

We use the secondary structure prediction programs JUFO
4,5

 and PSIPRED
6
 to create a 

comprehensive pool of predicted SSEs. To avoid incorrectly predicted secondary structure we 

implement two strategies: a) multiple copies of one SSE of different lengths and types are 

collected; b) the lengths of SSEs are adjusted during the folding simulation in order to optimize 

protein secondary and tertiary structure prediction
4
. 

The minimization process contains two stages. The “assembly” stage consists of large 

amplitude translation or rotations and addition or removal of SSEs. The “refinement” stage 

focuses on small amplitude moves that maintain the current topology but optimize interactions. 

Once the SSE pool is input, the algorithm initializes both the energy functions and the 

move sets for assembly and refinement stages. A starting model for the minimization is created 

by inserting a randomly selected SSE from the pool into an empty model. The starting model is 

passed to the minimizer which executes assembly and refinement minimization. The assembly 

stage terminates after 5000 steps or after 1000 consecutive steps without score improvement. The 

refinement stage terminates after 2000 steps or after 400 consecutive steps without score 

improvement. In general, a move can result in one of four outcomes: “improved” in score, 

“accepted” through Metropolis criterion, “rejected” as score worsened, or “skipped” if SSE 

elements required for the move are not present in the model.  The temperature is adjusted 

dynamically based on the ratio of accepted steps. 

For each CASP10 target 12,000 models were generated, the top 50% by BCL score were 
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selected for clustering analysis. The best scoring models as well as the best scoring models in 

each of the large clusters underwent loop construction and side chain packing using ROSETTA. 

Up to five models for submission were selected from these full atom models. 

 

Availability 
The described method will be made available in two ways. A web-accessible service will be 

provided to test the method and obtain a limited number of model predictions. Executable 

programs for different system environments and additional protocol information will be made 

available for download under academic and commercial licenses within the BCL::Commons set 

of applications. Both will be obtainable at http://www.meilerlab.org. 
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Small Angle X-Ray Scattering (SAXS) is often used for low resolution structural 

characterization of proteins that evade other experimental techniques, such as x-ray 

crystallography and nuclear magnetic resonance (NMR).[1] Here, we introduce BCL::SAXS – 

an algorithm designed to replicate SAXS curves from rigid idealized protein models. We first 

show our derivation of BCL::SAXS and compare our results with CRYSOL[2] for 1) complete 

protein models, 2) models without side chain coordinates, and 3) models without side chains and 

loop regions.  We evaluate the ability to identify a correct protein topology from a set of 455 

proteins from the PISCES dataset with 20% identify cutoff, 1.6 Å resolution cutoff, and 025 R-

factor cutoff.[3] The SAXS score was 99% accurate in identifying the correct protein topology 

from a large set of different protein topologies.  Further, we evaluate the effect of using the 

SAXS score as a weighted term in the knowledge-based energy function of BCL::Fold for seven 

soluble protein examples. BCL::SAXS increased the fraction of correctly folded models for 

proteins with extended topologies, but did not increase the fractions of correctly folded models 

for globular proteins.  

 

Methods 

To accurately determine the SAXS profile from the atomic coordinates of full atom protein 

models we utilized the Debye formula for atomic scatterers and associated equations to calculate 

the form factors.[4-6]  We used GPU acceleration to parallelize the pair wise computation of the 

Debye formula.  Once scattering profiles were generated from rigid body protein models we 

compared the scattering profile computed by BCL::SAXS with the scattering profile computed 

by CRYSOL.  To compare the profiles, we used a cubic spline function to compute the first 

derivative of each curve.  A 𝜒2 measure was used to quantify the difference between the 

derivatives of the two scattering curves.  This measure is the computed SAXS score.  We scored 

a random subset of 455 proteins from the PISCES data set with each other to verify the saxs 

score could distinguish protein topologies.  

To approximate the side chain regions of a given amino acid, the form factors for the 

atoms with missing side chain coordinates were added to the C𝛽 position of the respective amino 

acid.  The loop regions were approximated by removing atomic coordinate data between 

secondary structure elements (SSEs) and computing a parabolic path from the c-terminus of the 

first SSE to the n-terminus of the second SSE.  The amino acid residues in the loop regions were 

placed at points along the path.     

The BCL::SAXS score was added to the minimization process in BCL::FOLD.  During 

the first two rounds of assembly the weight of the SAXS score was set to zero.  The score was 

weighted successfully higher in stages three, four and five.  During the refinement stage the saxs 

score was weighted lower.  Each round of the assembly stage terminates after 2000 steps or after 
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500 consecutive steps without score improvement. The refinement stage terminates after 4000 

steps or after 500 consecutive steps without score improvement.  

 

Availability 

The described method will be made available in two ways. A web-accessible service will be 

provided to test the method and obtain a limited number of model predictions. Executable 

programs for different system environments and additional protocol information will be made 

available for download under academic and commercial licenses within the BCL::Commons set 

of applications. Both will be obtainable at http://www.meilerlab.org. 
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“metaprdos2” is an automated protein disordered region prediction server based on meta 

prediction approach. The prediction system is basically same as metaPrDOS server1 but used 

five independent predictors and modified input vector for second prediction. 

 

Methods 
The prediction comprises two main steps. In the first step, an input sequence is submitted to each 

disorder predictor, and prediction results from all predictors are collected. We used five 

predictors: PrDOS2, DISOPRED2, DISPROT (VSL2P), DISpro, and POODLE-S. Each 

predictor will perform its own prediction for each residue, and the result is obtained as a scaled 

value. In the second step, the meta predictor integrates the prediction results and determines the 

disorder tendency for each residue.  The input vector of meta prediction includes not only the 

output of each component predictor but also the number of homologues sequences in NCBI nr 

and pdbaa to a target sequence. Because, some component predictor shows lower performance 

without homologues sequence information as shown in evaluation of disorder prediction in 

CASP72. Especially, the performance of PrDOS2 highly depends on the homologues in the PDB. 

We adopted the support vector machine (SVM) as the prediction algorithm. Finally, the decision 

value of a SVM is scaled from 0.0 to 1.0, and it is returned as a prediction result. 

 

 

1. Ishida, T and Kinoshita, K. (2008). Prediction of disordered regions in proteins based on the 

meta approach, Bioinformatics, 24, 1344-1348 

2. Bordoli, L. et al., (2009) Assessment of disorder predictions in CASP7. Proteins, 69, 129-

136.   
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The ModFOLD4 server is the latest version of our popular resource for the Quality Assessment 

(QA) of 3D models of proteins 
1,2

. 

 

Methods 

The new version of the ModFOLD server is capable of working in quasi-single model mode or in 

multiple-model/clustering mode. The first stage of the algorithm generates ~84 Tertiary Structure 

(TS) models using the novel multi-template approach
3
 which forms the basis of the IntFOLD2 

server (see our IntFOLD2 abstract for more details). 

In the default server mode (ModFOLD4), a straightforward clustering approach was used 

whereby all submitted models were pooled together with the IntFOLD2 TS models and clustered 

using ModFOLDclust2
4
 (see our ModFOLDclust2 abstract for further details). In addition, we 

decided to include a forced single-model mode version of the server (ModFOLD4_single) in 

order to simulate the effect of users submitting one model at a time. Therefore, in quasi-single 

model server mode each submitted model was compared in isolation against the pool of 

IntFOLD2 models using a global and local scoring approach similar to that used by 

ModFOLDclust2. 
 

Availability 
The ModFOLD server version 4.0 is available at the following URL: 

http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD_form_4_0.html  

 

1. McGuffin,L.J. (2008) The ModFOLD Server for the Quality Assessment of Protein 

Structural Models. Bioinformatics.24, 586-587. 

2. McGuffin,L.J. (2009) Prediction of global and local model quality in CASP8 using the 

ModFOLD server. Proteins. 77, 185-190. 

3. Buenavista, M. T., Roche, D. B. & McGuffin, L. J. (2012) Improvement of 3D protein 

models using multiple templates guided by single-template model quality assessment. 

Bioinformatics. 28, 1851-1857. 

4. McGuffin,L.J. & Roche,D.B. (2010) Rapid model quality assessment for protein structure 

predictions using the comparison of multiple models without structural alignments. 

Bioinformatics. 26, 182-188. 

http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD_form_4_0.html
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The ModFOLDclust2 method
1
 is a leading automatic clustering based approach for both local 

and global 3D model quality assessment
2
. 

 

Methods 
The ModFOLDclust2 method tested at CASP10 was identical to that tested in CASP9. The 

ModFOLDclust2 method was originally developed to provide increased prediction accuracy with 

minimal additional computational overhead. The global QA score from ModFOLDclust2 is 

simply the mean of the global QA scores obtained from the ModFOLDclustQ method and the 

original ModFOLDclust method
3,4

. ModFOLDclustQ is similar to our previous ModFOLDclust 

method, however a modified version of the structural alignment free Q-measure
5
 is used instead 

of the TM-score
6
 in order to carry out all-against-all pairwise model comparisons. The per-

residue QA scores for ModFOLDclust2 were just taken directly from ModFOLDclust as no 

advantage was gained from combining the per-residue scores with those from ModFOLDclustQ. 

 

Availability 
ModFOLDclust2 is provided as a program option via the ModFOLD server version 3.0: 

http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD_form_3_0.html  

The ModFOLDclust2 software is also available to download as a standalone program via: 

http://www.reading.ac.uk/bioinf/downloads/ 

 

1. McGuffin,L.J. & Roche,D.B. (2010) Rapid model quality assessment for protein structure 

predictions using the comparison of multiple models without structural alignments. 

Bioinformatics. 26, 182-188. 

2. Kryshtafovych A, Fidelis K, Tramontano A.(2011) Evaluation of model quality predictions in 

CASP9. Proteins.79, Suppl 10:91-106. 

3. McGuffin,L.J (2007) Benchmarking consensus model quality assessment for protein fold 

recognition. BMC Bioinformatics. 8, 345 

4. McGuffin,L.J. (2009) Prediction of global and local model quality in CASP8 using the 

ModFOLD server. Proteins. 77, 185-190. 

5. Ben-David,M., Noivirt-Brik,O., Paz,A., Prilusky,J., Sussman,J.L. and Levy,Y. (2009) 

Assessment of CASP8 structure predictions for template free targets, Proteins, 77, 50-65 

6. Zhang,Y. and Skolnick,J. (2004) Scoring function for automated assessment of protein 

structure template quality. Proteins. 57, 702-710. 

http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD_form_3_0.html
http://www.reading.ac.uk/bioinf/downloads/
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At the CASP9 meeting several quality assessment issues have been raised. One of them was 

linked to performance of clustering MQAPs that are advantaged in comparison to single-model 

methods on sets of hundreds of models. In such cases the high performance of clustering MQAP 

is caused mainly by the fact that by clustering, these MQAPs can easy identify models of 

incorrect fold, however their performance drops significantly once the ranking of the top quality 

models is considered. In real-life scenario, the user usually wants to predict the quality for a few 

models that were produced by best modeling servers.  

 

Methods 
In this work, we introduce a method for the estimation of quality of structure models. Not only 

does the MQAP perform well when scoring hundreds of alternative models, but also it can be 

applied when only a few models (~20) are available. To do so, we optimized MQAPmulti (a 

program developed by the first author of this abstract, but in different laboratory) to perform 

better when 20 or 150 models are available.  

Likewise MQAPmulti, the MQAPmulti2 prediction is based on the three following 

components: 1) TrueMQAP_componet – scoring functions that is based on statistical and 

agreement potentials; 2) CLUST_component, which clusters models on the base of GDT_TS
1
 

and SQ_score (our modification of Q-score
2 that works by estimating the structural relatedness 

between two protein structures based on comparison of intramolecular distances); 3) 

CORR_component, a correlation based method that combines predictions of the 

TrueMQAP_componet with pair-wise models comparisons measured by GDT_TS and SQ_score. 

Finally, all of these components are used to predict the global quality of a model. To do so, on 

the base of the number of models to score, the program chooses one of 3 regression models that 

describe the relationship between initial parameters and the global quality. These three regression 

models were created for following numbers of input models: 20, 150, 300 or more.  

MQAPsingle2, that is a variant of the MQAPmulti2 program, operates as a quasi-single 

model MQAP. This method applies MQAPmulti2 algorithm, but a model is not compared to the 

input models, but to models generated by GeneSilico fold prediction metaserver
3
.  

 

Results 

MQAPmulti2 was trained and tested for CASP7th, 8th and 9th models dataset, 10-fold cross 

validation procedure was applied to do so. The value of Pearson’s correlation coefficient between 

MQAPmulti2 global score and the GDT_TS of models is 0.712, 0.819 and 0.917. 

 

Availability 
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The MQAPmulti2 and MQAPsingle2 can be executed as standalone programs. 

 

1. Zemla, A. (2003). LGA―a method for finding 3D similarities in protein structures. Nucleic 

Acids Res. 31, 3370–3374. 

2. Goldstein,R.A. et al. (1992) Optimal protein-folding codes from spin-glass theory. Proc.Natl 

Acad. Sci. USA. 89, 4918–4922. 

3. Kurowski MA, Bujnicki JM. (2003) GeneSilico protein structure prediction meta-server. 

Nucleic Acids Res. 31(13):3305-3307. 
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Given a set of predicted protein models from multiple sources or methods, an important task is to 

utilize their diverse information to generate better models
1
. Similarly, if the best model in the set 

is known, it could be improved by using information in other models. In this work, several 

evolutionary algorithms have been developed to address these tasks.  

 

Methods 
The main framework of the evolutionary algorithms consists of three phases: Model Selection, 

Crossover, and New Model Selection. The basic idea is to select a few models from a population 

of models, such as 5, give them to Modeller to generate several new models, and put the good 

ones back into the model population.  

In the Model Selection phase, two different strategies are used for selection: random 

selection and seeded selection. In random selection, a few models are randomly selected from the 

model pool to form the input set to Modeller. In seeded selection, models in the model pool are 

first scored using our quality assessment (QA) method MUFOLD-QA
2
. Then, a seed model is 

selected with a probability in proportion to its score. Next, several models similar to the seed 

model, i.e., within a certain GDT_TS value, are randomly selected. These models, together with 

the seed model, form the input set to Modeller. In the evolutionary algorithms, these two 

strategies are alternated in every other generation to achieve a balance of exploitation around a 

specific configuration and exploration across a broad range of configurations in the search space.    

In the Crossover phase, selected models from the previous phase are fed into Modeller, a 

program producing homology models of protein tertiary structures from a given set of models, to 

generate some new models. Empirical results show that Modeller could improve input models 

slightly, although the output models are generally similar to one or several input models.  

In the New Model Selection phase, good new models generated by Modeller are selected 

and added into the model population. The new models are first scored by our QA method, and 

then compared with existing models.  If some of the new models are better than some existing 

models, they are added into the model population to replace the worse ones.   

These three phases are iterated for a number of generations. The evolutionary algorithms 

terminate either when the maximum number of generations is reached or the models become too 

similar and the whole population converges. Through the evolutionary process, the model pool 

usually becomes better over time. In the end, our QA method is used to evaluate the final pool of 

models and pick up the best models as the final result.  

The evolutionary process with slight variations can be applied to either model refinement 

where the best model in a pool is known or human prediction where the best model is unknown. 

 

Results 
In CASP10, the evolutionary algorithms were implemented in MUFOLD2 server for both human 

prediction and refinement tasks. For human prediction, the server prediction pool was first 

evaluated using our QA method and the best 200 models formed the initial population for the 
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evolutionary algorithm. The difference in refinement is that since the best model in the server 

prediction pool is given, it was used as the seed when the input model set to Modeller was 

generated in every other generation.  Preliminary experimental results of these evolutionary 

algorithms on CASP9 targets show small improvement over initial models. More extensive 

experiments will be conducted on CASP9 and CASP8 data. In addition, their performances on 

CASP10 data will be evaluated after the native structures of the CASP10 targets are released. 

 

 

1. Baker D, Sali A. (2001). Protein structure prediction and structural genomics. Science, 

294:93-96. 

2. Wang Q, Shang Y, Xu D. (2011). Improving a Consensus Approach for Protein Structure 

Selection by Removing Redundancy. IEEE/ACM Transactions on Computational Biology and 

Bioinformatics, 8(6):1708-1715.  
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In protein structure predictions, assessing the quality of predicted models is very important. 

There are two major approaches for protein model quality assessment (QA): single-model 

scoring functions and structure-based consensus methods. Each approach has its strength and 

weakness and performs differently under different circumstances. In CASP7 though CASP9, 

consensus methods have shown a clear advantage on CASP QA data sets
1
. To address the 

weakness of consensus methods, in CASP10, two new types of QA tasks, one for 20-models and 

one for 150-models, were designed.  In this work, several hybrid algorithms combining single-

model scoring functions and consensus methods were developed, aimed at achieving better 

performance on the new QA tasks than the individual methods.   

 

Methods 
Although consensus QA methods have performed very well on CASP targets with more than 300 

server predicted models, they have difficulty on a small number of models or on a set of similar 

models. On the other hand, the QA performance of single-model scoring functions is 

independent of the number of models. Combining them could lead to a more robust algorithm. 

Our hybrid algorithms are based on three single-model scoring functions, Opus-CA, 

dDfire and CalRW, and the naive consensus method. The three scoring functions are selected due 

to their speed and reliability. Since the ranges of these scores are very different, given a set of 

models, their values are normalized into z-scores with mean 0 and standard deviation 1. Then, 

the z-scores are normalized to the range of [0, 1]. For each model i, the average of the three z-

scores from the three scoring functions is its value Zi. Weight Wz for a set of models is the 

average Zi values of all models in the set. 

The naive consensus value (Ci) of a model based on a reference model set is the average 

GDT_TS values of the model against each model in the reference set. Weight Wc for a set of 

models is the average Ci values of all models in the set. 

In MUFOLD-HQA, the hybrid algorithm for the 20-model QA task is as follows:    

(1) Generate a set of prediction models using the MUFOLD server
2
.  

(2) Compute the Zi values of the MUFOLD models; divide their Zi values into 20 

equal-size bins. 

(3) Randomly select one model from each of the 20 bins; combine them with the 

initial 20 QA models to form a combined set of 40 models.  

(4) Re-compute the Zi values of the 40 models as a set and then compute the weight 

Wz. 

(5) Compute the consensus values Ci for each QA model based on the 40-models 

reference set. Then compute weight Wc. 

(6) Compute final QA score of each QA model:  

The 150-model QA is similar to the 20-model QA with two major differences. The first 

difference is that MUFOLD-WQA
1
 instead of the naive consensus method is used. The second 



152 

difference is that MUFOLD models are not used. Therefore, given 150 QA models, the algorithm 

computes the normalized Zi values based on the 150 models. Then, it computes the consensus 

values Ci using MUFOLD-WQA. Finally, the QA score of each QA model is a weighted sum of 

the two, as in Step (6).  

The MUFOLD-QA server uses consensus methods only. For the 20-models QA task, a set 

of template models is generated by the MUFOLD server
2
 is used as the reference set for 

computing the naïve consensus scores. For the 150-models QA task, the MUFOLD-WQA 

method is used. 

 

Results 
In CASP10, MUFOLD-HQA employed hybrid algorithms combining scoring functions and 

consensus methods, whereas MUFOLD-QA simply used consensus methods. Their performance 

will be evaluated after the native structures of the CASP10 targets are released. 

 

Availability 
 

1. Q. Wang, K. Vantasin, D. Xu, and Y. Shang, “MUFOLD-WQA: A New Selective 

Consensus Method for Quality Assessment in Protein Structure Prediction,” Proteins, 

79(S10):185-195, 2011. 

2. J. Zhang, Q. Wang, B. Barz, Z. He, I. Kosztin, Y. Shang, and D. Xu. “MUFOLD: A New 

Solution for Protein 3D Structure Prediction,” Proteins, 78(5):1137-1152, 2009. 
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We have developed a system, MUFOLD
1
, to predict tertiary structure from protein sequence, 

where a multi-layer evaluation approach is applied to guide the model generation and improve 

the model quality iteratively.  

 

Methods 

The system includes three phases: Template Selection, Model Generation, and Model Selection. 

The last two phases are executed interactively and iteratively. In the Template Selection phase, 

evaluation methods are developed to recognize high-quality sequence-template alignments. In 

the Model Generation phase, restraints retrieved from the alignments and models (generated in 

the previous iteration) are used to build new models by Multi-dimensional Scaling (MDS)
2
 

techniques. In the Model Selection phase, both single-model quality assessment (QA) and 

consensus QA methods are developed to evaluate the quality of models.  

 MUFOLD searches PDB to get sequence-template alignments by search engines such as 

PSI-BLAST
3
, HHSearch

4
 and in-house threading tools. With these alignment hits, a QA method 

is developed to evaluate their quality and select top ones for further model generation. The main 

idea is to calculate the fitness between the target and the aligned substructure of the templates, 

and select high-quality ones according to the distribution of the fitness scores of all alignments. 

The fitness score includes sequence similarity, the matches between the templates’ SS (secondary 

structure), SA (solvent accessibility) and the predicted SS, SA of the target sequence, the 

consensus of one alignment hit to all the other hits, etc. 

 The selected top alignments are then clustered into different groups by structure-

similarity comparison. The alignments in each group share some highly similar substructures 

(i.e., conserved regions) and also keep diversities (i.e., non-conserved regions). These regions are 

detected by a graph-based QA method. Various distance restraints are retrieved through sampling 

the above conserved and non-conserved regions, and models are built for each set of distance 

restraint through applying MDS techniques. By MDS, MUFOLD can accommodate diverse 

spatial restraints retrieved from heterogeneous alignments.  

 Model-level QA is very important for structure prediction as a model can provide more 

detailed information in 3D than sequence-template alignment. In the Model Selection phase, both 

single-model QA and consensus QA methods are used to evaluate and select good models. At 

first, single-model QA methods such as OPUS-CA
5
, DDFire

6
 and Model Evaluator Score

7
 are 

applied to filter out poor models. The remaining models are evaluated by consensus QA method. 

For example, the models are clustered and the k (e.g., k=5) representatives of each cluster, which 

have the biggest average similarity to the other members in the cluster are selected as top 

models. 

 In MUFOLD, the model generation and selection phases are executed interactively and 

mailto:zhangjingf@missouri.edu


154 

iteratively. In particular, the restraints between residues are filtered and iteratively refined by 

combining the original restraints derived from the alignments (Dalignment) and the measured 

distances from the generated models (Dmodel) as Drefine = λ*Dalignment + (1 –λ)* Dmodel,  

0≤λ≤1,   where value of λ is decided by the graph-based QA method. By performing this iterative 

generation, the quality of models often becomes better and better, while many deficiencies in the 

models are fixed over iterations.  

 We also use the strategy of MUFOLD-Server on CASP10 human prediction and 

refinement prediction. Different from the Server prediction which uses the PDB structures 

searched by search engines as templates, human prediction uses all CASP10 server prediction 

models as templates while refinement prediction uses the starting model and the PDB structures 

which are close to the starting model as templates. A preliminary assessment
8
 on the CASP10 

targets with release structures shows that MUFOLD-Server performs much better than it did in 

CASP9 and CASP8. 

 

Availability 
 

1. Zhang,J., Wang, Q., Barz, B., He, Z., Kosztin, I., Shang, Y., & Xu, D.(2009). MUFOLD: A 

New Solution for Protein 3D Structure Prediction. Proteins: Struct Funct Bioinformatics. 

78(5), 1137-52. 

2. Borg, I. & Groenen, P. (1997). Modern multidimensional scaling—theory and applications. 

New York: Springer-Verlag. 

3. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. 

(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search 

programs. Nucleic Acids Res. 25, 3389-3402. 

4. Soding, J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics. 

21, 951–960. 

5. Wu, Y., Lu, M., Chen, M., Li, J. & Ma, J. (2007) OPUS-Ca: a knowledge-based potential 

function requiring only Ca positions. Protein Sci. 16, 1449–1463. 

6. Zhou, H. & Zhou, Y. (2002) Distance-scaled, finite ideal-gas reference state improves 

structure-derived potentials of mean force for structure selection and stability prediction. 

Protein Sci. 11, 2714–2726. 

7. Wang, Z., Tegge, A. & Cheng, J. (2009) Evaluating the absolute quality of a single protein 

model using structural features and support vector machines. Proteins: Struct Funct 

Bioinformatics. 75, 638–647. 

8. http://zhanglab.ccmb.med.umich.edu/casp10/ 
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In recent years in silico protein structure prediction reached a level where a variety of servers can 

generate large pools of near-native structures. However, the identification and further refinement 

of the best structures from the pool of decoys continue to remain problematic. To address these 

issues, we have developed a selective refinement protocol (based on the Rosetta software 

package) and a Molecular Dynamics (MD) simulation based ranking method (MDR). The 

refinement of the selected structures is done by employing Rosetta’s relax mode, subject to 

certain constraints. The selection of the final best models is done with MDR by testing their 

relative stability against gradual heating during all atom MD simulations. We have implemented 

the selective refinement protocol and the MDR method in our fully automated server Mufold-

MD, which follows three sequential steps: 1) model generation, 2) selective refinement, and 3) 

MDR selection. We have tested Mufold-MD in the CASP10 competition. 

For model generation, Mufold-MD uses different prediction strategies for “hard” and 

“easy” targets. The server employs sequence-profile alignment (e.g., PSI-BLAST) and profile-

profile alignment (e.g., HHSearch) methods to decide whether the query sequence is an “easy” or 

a “hard” target. For hard targets models (~8,000) are generated using the Rosetta 3.3 software
1-4

 

(ab-initio method). To this end, secondary structure information from the amino acid sequence is 

obtained with PSIPRED
5
 and fragment libraries are built from the NCBI database files. For 

further processing only the N lowest Rosetta energy structures are retained. For easy targets 

models (~2,000) are generated by using the Multi-dimensional Scaling (MDS) method
6
, and 

subsequently ranked according to their OPUS_Ca
7
 scores. Again, the top N structures are 

retained for further refinement (using Rosetta 3.3).   

For selective refinement, based on their structure information, targets are divided into 

different categories and subjected to appropriate constraints. Targets that contain only α-helices 

or β-sheets are refined without constraints. The refinement of large and complicated targets is 

done by fixing their Ca atoms and leaving their side-chain atoms unconstrained. In moderately 

complex large targets one identifies stable substructures and keep fixed the corresponding Ca 

atoms during refinement. The rest of the targets are refined by applying standard deviation 

weighted constraints to the Ca atoms. For each model, a small number n (~10) of refined 

structures are generated. From the  n ´ N  refined structures only the top N models (with the 

lowest Rosetta energy) are retained.  

Finally, from the N refined structures, the top 5 models are selected with the MDR 

method. For the MD simulations, first, the missing hydrogen atoms are added to the structures by 

using PSFGEN, which is part of the visual molecular dynamics (VMD) package
8
. Next, the 

structures are optimized by removing the bad contacts through energy minimization. Finally, the 

stability of the structures is tested by monitoring the change of their RMSD (with respect to their 

low-resolution structures) during the MD simulation of their scheduled heating at a rate of 1 

K/ps. The MD simulations are carried out in vacuum by coupling the system to a Langevin heat 

bath whose temperature can be varied according to a desired protocol. All our energy 
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minimizations and MD simulations were performed with the parallel NAMD2.8 MD simulation 

program
12

, by employing the CHARMM force field
9,10

 (for β-sheet dominated targets) or Amber 

force field
11

 (for α-helices dominated targets). Based on extensive testing of the MDR method we 

have found that statistically the best ranking parameter of the predicted structures is their mean 

RMSD during heating from 40K to 140K. This can be achieved through 100ps-long MD 

simulations that take a matter of hours on a single dual core Intel Xeon EM64T-2.8GHz CPU. 

The Mufold-MD server was used for protein structure prediction in the CASP10 

competition. For CASP10, the decoys were generated on 47 dual-core Intel Xeon EM64T-

2.8GHz CPUs, and N=94. Once the native structures for the CASP10 targets were released we 

were able to assess the quality of our predicted structures and the efficiency of each part of our 

Mufold-MD server. The results of this analysis will be presented during the CASP10 meeting.  
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Selection of near native decoys is still a challenging problem for protein structure prediction. 

Consensus Global Distance Test (CGDT) has proved to work well when good decoys are in a 

majority cluster, which is specially the case in CASP. However, single scoring functions have 

their own merits as CGDT only considers the geometry information from the decoy set. To 

address this issue, we developed a method to combine single scoring functions and consensus 

GDT, and applied it to the QA session in CASP10, as shown in the flowchart. The basic idea is to 

compare any two decoys in terms of their structure quality first 

and then combine all the comparisons for QA of each decoy. First, 

the difference between feature vectors of a decoy-pair A and B 

were input to two independent neural network models to decide 

whether A or B is closer the native structure, in terms of GDT 

score.  The first model was to judge whether two decoys are 

significantly different. If yes, the second model was used to 

decide which one of the two was better.  

The feature vector for each decoy included 

1. CGDT  

2. Secondary structure match score 

3. Solvent accessibility match score 

4. Mean square error between predicted angles and actual decoy angles 

5. Structural environment fitness score between sequence and decoy structure 

After the pairwise comparison between all decoy pairs, the final score, named as PWCom, for 

each decoy was the number of winning times during the pair-wise comparison. If a decoy-pair 

falls in class 2 from model 1, they were close enough to be treated as identical. 

The neural networks were trained and tested on CASP9. Similar method was also applied to the 

I-TASSER data set, which contained 56 targets. Table 1 showed the comparison of CGDT and 

PWCom in terms of top-1, top-5 selection performance and their Spearman correlation to the 

actual GDT score. 

 CASP 9, 44 Targets Yang Zhang’s, 56 Targets 

 1top  5top  Spearman 1top  5top  Spearman 

GDT 0.6412 0.6243 1.0000 0.6946 0.6767 1.000 

CGDT 0.5861 0.5851 0.8408 0.6058 0.6039 0.5845 

PWCom 0.5958 0.5904 0.8499 0.6105 0.6056 0.6011 

Table 1: Performance in top-1, average top-5 selection and correlation 

In conclusion, test results show that combination of consensus GDT and single scoring functions 

improves over the naïve consensus GDT method in selection performance and correlation. 

Further improvements can be achieved by choosing better single scoring functions and parameter 
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settings used in the method.  

 

1. Cheng, J., Randall, A. Z., Sweredoski, M. J. & Baldi, P. (2005). SCRATCH: a protein 

structure and structural feature prediction server. Nucleic Acids Res 33, W72-6. 

2. Faraggi, E., Xue, B. & Zhou, Y. (2009). Improving the prediction accuracy of residue 

solvent accessibility and real-value backbone torsion angles of proteins by guided-

learning through a two-layer neural network. Proteins 74, 847-56. 

3. Kabsch, W. & Sander, C. (1983). Dictionary of protein secondary structure: pattern 

recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-637. 
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Our four tertiary structure prediction servers (MULTICOM-NOVEL, MULTICOM-REFINE, 

MULTICOM-CLUSTER, MULTICOM-CONSTRUCT) and one human tertairy structure 

predictor (MULTICOM) participated in the CASP10 experiment. Despite of implementaiton 

differences and new developoments, they were based on the same conformation ensemble 

approach to protein tertairy structure prediction
1,2

.  
 

Methods 

The basic conformation ensemble protocol
1,2

 in our server predictors generated an ensemble of 

protein models for each target using multiple templates identified by dozens of sequence/profile 

comparison tools (e.g., BLAST, PSI-BLAST, HHSearch
3
, SAM

4
, HMMer) and fold recognition 

tools, alternative target-template alignments, and three complementary model generation tools. 

The ensemble of hundreds (e.g., 150 – 250) of models generally approximated the near native 

conformations of the target well if one or more homologous templates were identified for the 

target. For some hard targets for which no good template was found, tens of models selected 

from hundreads of models generated by a fragment assembly based approach (i.e. Rosetta
5
) were 

added into the ensemble in order to increase the diversity of the model pool as well as the 

frequency of near native conformation fragments. 

The ensemble of models of a target were evaluated by several different methods, 

including the single-model absolute model quality assessment tool – ModelEvaluator
6
, the fully 

pairwise model comparision tool – APOLLO
7
, a protein energy calculation tool – SELECTpro

8
, 

and the frequency of the templates (i.e., number of times that a template was chosen by different 

sequence/profile comparison tools) used to generated models if any. From the ensemble, 

MULTICOM-REFINE selected top five models ranked by APOLLO quality scores, which may 

subject to further multiple model combination and/or ab initio tail refinement based on a 

recursive protein modeling (RPM) protocol; MULTICOM-CLUSTER selected top five models 

ranked by the consensus ranking of ModelEvaluator scores and SELECTpro energies; 

MULTICOM-NOVEL considered both APOLLO scores and template frequence in model 

selection; and MULTICOM-CONSTRUCT chose top five models ranked by the sum of 

APOLLO scores and ModelEvaluator scores. For multi-domain targets, APOLLO may be run on 

individual domains to rank and select top domains to combine into full models. For human 

prediction, our method MULTICOM used all the CASP server predictions as the model ensemble 

because the CASP pool of models generated by 60+ server predictors formed a better 

approximation of the near native conformations of a target than our own server models.  All the 

models in the human ensemble were evaluated by the four measures described above, our new 

weighted pairwise model comparision method (see our MULTICOM-CONSTRUCT QA 

abstract) and our new domain-based single-model and clustering-based model evaluation 

methods. The top models selected by the consensus of the complementary ranking metrics and/or 

human inspection were refined by the model / domain combination protocol
1,2

 and then 

mailto:chengji@missouri.edu
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submitted to CASP by MULTICOM. 

In comparison with our methods tested in CASP9, the major new developments fully or 

partially benchmarked in CASP10 include: 1) a new fold recognition method based on 

information propagation on the pairwise sequence / structure similarity network of template 

protiens; 2) a newly developed multiple sequence aligment tool (MSACompro
9
) based on 

sequence profile, predicted secondary structure, and solvent accessibility that was used to align a 

target with multiple templates to generate more alternative alignments for model generation; 3) a 

new in-house  template-based model generation tool that constructed the core structure for a 

target from templates and filled in the unaligned region (e.g. loop) with fragments of variable 

length extracted from a database of representive proteins according to both sequence similairty 

and structural fitness with the core structure; and 4) new domain-based model evaluation 

methods, weighted pairwise comparison-based model evaluation methods, and an alignment-

based model evaluation method, which were tested with at least one of our predictors on some or 

all targets informing model selection during the CASP10 experiment.  
 

Results 

We evaluated preliminarily our four server predictors on the whole chains of 34 CASP10 targets 

whose experimental structures were released to date. Table 1 reports the average GDT-TS scores 

and TM-scores of top 1 or 5 models predicted by these predictors.  

 

Table 1. The average GDT-TS scores and TM-scores of top one and best of five models on 34 

targets.  

Predictors 
Top One  Best of Five 

GDT-TS TM-score  GDT-TS TM-score 

MULTICOM-NOVEL 0.5418 0.6239  0.5530 0.6340 

MULTICOM-REFINE 0.5417 0.6236  0.5526 0.6357 

MULTICOM-CLUSTER 0.5353 0.6175  0.5526 0.6352 

MULTICOM-CONSTRUCT 0.5345 0.6183  0.5477 0.6326 
 

1. Wang Z, et al. (2010). MULTICOM: A multi-level combination approach to protein structure 

prediction and its assessment in CASP8. Bioinformatics. 26(7):882-888. 

2. Cheng J, Li J, Wang Z, Eickholt J, Deng X. (2012). The MULTICOM Toolbox for Protein 

Structure Prediction. BMC Bioinformatics, 13:65. 

3. Söding J. (2005). Protein homology detection by HMM–HMM comparison. Bioinformatics, 

21(7):951. 

4. Karplus K, et al. (1997). Predicting protein structure using hidden Markov models K. Karplus, 

K. Proteins, S1:134--139. 

5. Leaver-Fay A, et al. (2011). ROSETTA3: an object-oriented software suite for the simulation 

and design of macromolecules.  Methods Enzymol, 487: 545-74. 

6. Wang Z, Tegge AN, Cheng J. (2009). Evaluating the absolute quality of a single protein model 

using support vector machines and structural features. Proteins, 75(3):638-647.  

7. Wang Z, Eickholt J, and Cheng J. (2011). APOLLO: a quality assessment service for single 

and multiple protein models. Bioinformatics, 27(12), 1715-1716. 

8. Randall A, Baldi P. (2008). SELECTpro: effective protein model selection using a structure-

based energy function resistant to BLUNDERS. BMC Structural Biology, 8:52.   

9. Deng X, Cheng J. (2011). MSACompro: protein multiple sequence alignment using predicted 

secondary structure, solvent accessibility, and residue-residue contacts. BMC Bioinformatics, 

12:472. 
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We present our MULITCOM series of protein residue contact predictors. They span the full 

spectrum of contact prediction approaches, including sequence-based machine learning and 

model-based consensus methods.   

 

Methods 
MULTICOM-CONSTRUCT is a new sequence based contact predictor built using boosted 

ensembles of deep networks (DNs). For medium and long-range contacts, the ensemble consists 

of 490 DNs. The overall architecture of each DN is X-500-500-350-1 with the size of the input 

layer X depending on the width of two fixed input windows centered on the residue pair to be 

classified. Each DN is trained layer by layer using contrastive divergence
1
 and then fine tuned 

using standard back propagation. Boosting was accomplished by sampling the training data for 

each DN from a large pool of training examples. Initially, the probability of including a training 

example was uniformly distributed and then adjusted after each round of boosting.  More 

specifically, the training examples which were misclassified by the previously trained DN had its 

probability of selection increased while correctly classified training examples had their 

probability decreased.  For short-range contacts, the ensemble consisted of 30 DNs with an 

overall architecture of 400-500-500-250-21.  The input for each DN in this setting came 

primarily from one window 12 residues in length and the target was all short-range contact 

pairings contained in the input window.  The features used as input included predicted secondary 

structure and solvent accessibility, values from a position specific scoring matrix, and a number 

of statistical pair wise potentials. 

 MULTICOM-CLUSTER is a sequence based, ab-initio predictor based on our residue-

residue prediction tool SVMcon
2
. This approach used a support vector machine (SVM) to 

classify residue-residue pairings. The input to the SVM consisted of features such as predicted 

secondary structure, predicted solvent accessibility and a sequence profile for residues contained 

in two 9-residue long windows centered on the residue pair in question. The SVM was trained on 

a large dataset and classified each residue pair as “in-contact” or “non-contact”.  Those pairs 

classified as “in-contact” were submitted as predictions.        

 MULTICOM-NOVEL and MULTICOM-REFINE are sequence-based, ab-initio methods 

based on our recursive neural network predictor, NNcon
3
. The basis of this software package is a 

set of recursive neural network ensembles, one which predicts general residue-residue contacts 

and another trained specifically to predict beta-residue pairings in beta-sheets (i.e., MULTICOM-

NOVEL used only general residue-residue contact predictions, whereas MULTICOM-REFINE 

combined specific beta-residue contact predictions with general residue contact predictions). 

Features used for each residue include a sequence profile, predicted secondary structure and 

solvent accessibility. 
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 Finally, our human predictor MULTICOM used an automated, model conformation 

ensemble approach to make residue-residue contact predictions
4
. The method works by 

consolidating residue-residue contacts from a number of structural models generated for a target. 

In this case, we used the full set of models submitted by those participants in the server category.  

MULTICOM used a consensus voting approach which extracted contacts from all the tertiary 

structure models and counted the number of times a residue-residue pair was in contact across 

the various models. These contact counts were scaled, ranked and then submitted as the predicted 

contacts. A principle advantage of this approach is the ability to consolidate contact information 

across models regardless of conformation.  

 

Results 
As an initial assessment of our techniques on the CASP10 dataset, we evaluated the methods on 

36 valid CASP targets.  Tables 1 and 2 show the accuracy and coverage of the top L and L/5 long 

and medium range contacts where L is the length of the protein.  Note that this evaluation is done 

on a per target basis and irrespective of the domain architecture.       

 

Table 1. Preliminary results of the MULTICOM series on long range contact predictions on 36 

valid CASP10 targets.   

 Top L/5 long 

range 

Top L long range 

Method  Acc. Cov Acc. Cov. 

MULTICOM-

CONSTRUCT 

0.231 0.038 0.141 0.115 

MULTICOM-CLUSTER 0.142 0.023 0.093 0.075 

MULTICOM-REFINE 0.151 0.024 0.084 0.069 

MULTICOM-NOVEL 0.144 0.024 0.083 0.068 

 

Table 2. Preliminary results of the MULTICOM series on medium range contact predictions on 

36 valid CASP 10 targets.   

 Top L/5 medium 

range 

Top L medium 

range 

Method  Acc. Cov. Acc. Cov. 

MULTICOM-

CONSTRUCT 

0.398 0.144 0.242 0.440 

MULTICOM-CLUSTER 0.311 0.112 0.194 0.336 

MULTICOM-REFINE 0.362 0.131 0.224 0.387 

MULTICOM-NOVEL 0.358 0.129 0.222 0.382 

 

Availability 
MULTICOM-CONSTRUCT (i.e., DNcon) is available as a web service at 

http://iris.rnet.missouri.edu/dncon/.  The MULTICOM-CLUSTER software and web service (i.e., 

SVMcon server) are available at http://casp.rnet.missouri.edu/svmcon.html. The MULTICOM-

REFINE and MULTICOM-NOVEL software and web service (i.e., NNcon server) are available 

at http://casp.rnet.missouri.edu/nncon.html. 

 

1. Hinton, G.E. (2002). Training Products of Experts by Minimizing Contrastive Divergence. 

Neural Computation 14, 30p. 



164 

2. Cheng, J. & Baldi, P. (2007). Improved residue contact prediction using support vector 

machines and a large feature set. BMC Bioinformatics. 8,113  

3. Tegge, N. Wang, Z., Eickholt, J. & Cheng, J. (2009). NNcon: Improved protein contact map 

prediction using 2D-Recursive neural networks. Nucleic Acids Research.  37, w515-w518 

4. Eickholt, J., Wang, Z., & Cheng, J. (2011). A Conformation Ensemble Approach to Residue-

Residue Contact. BMC Structural Biology, 11,38. 

 

 

  



165 

MULTICOM-CONSTRUCT 

Contact Assisted Protein Structure Prediction by MULTICOM-CONSTRUCT 

Badri Adhikari, Xin Deng, Jilong Li, Debswapna Bhattacharya, and Jianlin Cheng
 

 

Department of Computer Science, University of Missouri, Columbia, MO 65211 USA 

chengji@missouri.edu 

 

Our server MULTICOM-CONSTRUCT participated in the CASP10 contact assisted structure 

prediction. The experimental server was developed and continuously updated during the 

CASP10 prediction season. Although the server accidently missed three targets, it still generated 

some valuable, first-hand insights about how to use extra contact information to improve model 

construction and selection. 

  

Method 

Our approach for contact assisted protein structure prediction comprised of six major steps: 1) 

collect CASP10 server models; 2) use APOLLO
1
 to assess these models and score them; 3) score 

the models based on how well they satisfy the contacts or no-contacts; 4) rank the models by 

integrating the scores obtained in steps 2 and 3 (i.e. Apollo's GDT-TS score, Apollo's MaxSub 

score, Apollo's TM-score, percent of exact contacts satisfied, percent of no-contacts satisfied); 5) 

select top 5 models and refine them using 3Drefine
2
; and 6) perform contact assisted structure 

prediction using Modeller
3
 with contacts as distance restraints. Step 6 was added in the middle of 

the CASP10 experiment, and thus was only applied to some targets.  Specifically, for each target, 

a pool of tertiary structure models was downloaded from the CASP10 web site. The pairwise 

model comparison based tool APOLLO was used to evaluate each model, resulting in three 

quality scores in terms of GDT-TS score, MaxSub score, and TM-score. The models were also 

scored based on what percent of given contacts they satisfied (i.e. number of given contacts 

present in the model divided by total number of given contacts). In cases when no-contacts rather 

than contacts were provided, the models were negatively scored based on what percent of no-

contacts they satisfied. To calculate the total score for each model, the following formula was 

used: Total score = APOLLO's GDT-TS score + APOLLO's MaxSub score + APOLLO's TM-

score +  percent of contacts satisfied – 0.1 * percent of no-contacts satisfied.       

The top models ranked by the total scores were refined by 3Drefine. To generate the final 

models, refined models were provided as templates for Modeller along with contacts as distance 

restraint. The contacts information was coded as distance restrains between Cα-Cα atoms (or Cβ 

atoms in case of GLY residue) using a harmonic potential function with 8.0 angstrom mean 

distance and 0.1 standard deviation. 

 

Results 

The final predicted models of contact assisted prediction target were evaluated based on how 

well they satisfied the contacts. Table 1 compares the percent of contacts satisfied by the top 1 

model selected from downloaded models using total score against that by the top 1 model 

generated by our contact assisted prediction pipeline. The results showed that remodeling the top 

models using given contacts with Modeller improved or did not change the percent of contact 

satisfaction in all but one case.  

For eight targets whose experimental structures were known by the time of writing this 

abstract, TM-score
4
 was used to evaluate the predicted models. Table 2 shows that, in six out of 

mailto:chengji@missouri.edu
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eight cases, the TM-scores of the final predicted models are higher than the initial models. 

  
Target Initial % 

contacts 

match 

Final % 

contacts 

match 

Improvement 

Tc649 0.125 0.125 0 

Tc676 0.118 0.118 0 

Tc653 - - - 

Tc658 0.188 0.188 0 

Tc678 0.333 0.417 0.084 

Tc673 0.200 0.200 0 

Tc666 0.214 0.357 0.143 

Tc691 0.400 0.400 0 

Tc684 0.125 0.125 0 

Tc680 0.444 0.222 -0.222 

Tc734 0.200 0.200 0 

Tc705 0.118 0.206 0.088 

Tc717 0.200 0.267 0.067 

Tc719 0.231 0.231 0 

Tc735 0.229 0.343 0.114 

Table 1. Percentage of contacts satisfied by the 

top 1 model for each target before and after 

contact-assisted modeling. Initial % contacts 

match is the percentage of contacts satisfied by 

the top 1 model selected from downloaded models 

using total scores. Final % contacts match is the 

percentage of contacts satisfied by the top 1 

model predicted by the contacts-assisted pipeline. 

Improvement is the difference between the final 

% contacts match and the initial % contacts 

match. For target Tc653 no-contacts were 

provided instead of contacts. It is worth noting 

that, even though all the final models evaluated 

here were generated by the complete prediction 

pipeline with all the six steps during the CASP 

prediction season, the models of targets Tc734, 

Tc705, and Tc717 were not submitted to CASP by 

mistake, the models of targets Tc649, Tc676, 

Tc653, Tc658, Tc678, Tc673, and Tc666 actually 

submitted to CASP did not go through Step 6 of 

the pipeline as the step was added after the 

targets expired, and the initial models of target 

Tc649 used to generate models actually 

submitted to CASP were selected by the program 

with a bug in calculating the percent of contact 

match.  

 
Target Initial  

TM-Score 

Final  

TM-Score 

Improvement 

Tc649 0.360 0.370 0.0099 

Tc676 0.322 0.334 0.0114 

Tc658 0.758 0.767 0.0081 

Tc678 0.447 0.455 0.0083 

Tc673 0.292 0.284 -0.0082 

Tc680 0.728 0.607 -0.1211 

Tc705 0.348 0.367 0.0192 

Tc735 0.335 0.432 0.0971 

Table 2. Evaluation of the top 1 predictions of the 

targets whose experimental structures were 

released. Initial TM-Score is the TM-Score of top 

1 initial model selected by total score. Final TM-

Score is the TM-Score of the top 1 model 

predicted by the six-step prediction pipeline. 

Improvement is the difference between the final 

TM-Score and the intial TM-Score. 

 

Availability  

The server is available at: http://protein.rnet.missouri.edu/contact_assisted/  

 

1. Wang Z, Eickholt J, and Cheng J (2011). APOLLO: A Quality Assessment Service for Single 

and Multiple Protein Models, Bioinformatics, 27(12), 1715-1716. 

2. Bhattacharya, D. and Cheng J (2012). 3Drefine: Consistent protein structure refinement by 

optimizing hydrogen bonding network and atomic-level energy minimization. Proteins: 

Structure, Function, and Bioinformatics. 

3. N. Eswar, M. A. Marti-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M. Shen, U. 

Pieper , A. Sali (2006). Comparative Protein Structure Modeling With MODELLER. Current 

Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15, 5.6.1-5.6.30. 

4. Zhang Y, Skolnick J (2005). TM-align: a protein structure alignment algorithm based on the 

TM-score. Nucleic acids research, 33(7):2302-2309. 
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We participated in CASP10 refinement experiment with our automated refinement server 

MULTICOM-CONSTRUCT with the goal to improve model qualities consistently over the 

initial models. 

 

Methods 

MULTICOM-CONSTRUCT is our recently developed refinement protocol [1] which refines 

protein structures in two steps: (1) Optimizing Hydrogen Bonds network and (2) atomic-level 

energy minimization using a combination of physics and knowledge based force fields. In the 

first step, a search is performed for the polar hydrogen atoms to find out the most favorable 

position of hydrogen atoms satisfying hydrogen bonds with the closest neighboring atoms and 

considering the protonation state of each amino acid in order to optimize the hydrogen bonding 

network in the starting model. We call this “extended atomic model”. The total potential energy 

of the extended atomic model is then computed using a combination of physics based and 

knowledge based force fields.  Finally, a limited memory Broyden-Fletcher-Goldfarb-Shannon 

(L-BFGS) algorithm [2] is employed to minimize the total potential energy using MESHI 

molecular modeling package [3]. The energy minimized model is the refined structure. 

 

Results 

The preliminary assessment of MULTICOM-CONSTRUCT is based on 10 refinement targets for 

which the native structures have been released at the time of writing this abstract. We employ a 

two-fold evaluation technique to test the ability of our method to perform simultaneous 

improvement in both global and local model qualities. TM-score program [4] is used to compare 

the RMSD, GDT-HA and TM-score before and after refinement against the native structures to 

access the improvement in the global positioning of the backbone Cα atoms. In order to evaluate 

the enhancement of local structural qualities, we use MolProbity score [5] which takes into 

account the rotamer outliers, torsion-angle outliers, and steric clashes that have values outside 

the region of experimentally derived standard protein structures. 
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Table I reports the cumulative change in GDT-HA, TM-score, RMSD score and MolProbity 

scores for the best of five and the first submissions for all 10 refinement targets. Overall, there 

are 8, 8, 9 and 6 cases when MULTICOM-CONSTRUCT improves the GDT-HA, TM-score, 

RMSD and MolProbity scores respectively based on best of five submissions.  For the top 

submitted models, the instances for successful refinement are 7, 7, 8 and 5 with respect to GDT-

HA, TM-score, RMSD and MolProbity scores respectively. The ability of our method to 

successfully rank the best submitted model is also encouraging with the best overall refined 

model being submitted as model 1 for 6 out of 10 targets (60%). However, the refinement is 

often modest with improvement in GDT-HA score in the range of 0.01 to 0.03. The most 

promising aspect of this protocol is, therefore, consistency. More than 70% of the times, our 

method can improve the qualities of the starting structures.  

Table I.   Preliminary results for MULTICOM-CONSTRUCT in CASP10 refinement category
*
. 

Submission No. of Targets
a
 

Σ (Δ GDT-

HA)
b
 

Σ (Δ TM-

score) 
c
 

Σ (Δ 

RMSD) 
d
 

Σ (Δ 

MolProbity) 
e
 

Best of Five
f
 10 0.0581 0.0147 0.137 0.019 

Top One
g
 10 0.0321 0.0072 0.069 1.101 

*
  The numbers represents  the cumulative change in score for each metric before and after refinement. A positive number 

indicates that the quality of the metric is improved by refinement and a negative number indicates degradation in quality 

corresponding to that metric after refinement.
 

a
  Number of targets submitted in  CASP10 refinement experiment.

 

b
  Cumulative change in GDT-HA score. 

c
  Cumulative change in TM-score. 

d
  Cumulative change in RMSD score. 

e
  Cumulative change in MolProbity score. 

f
  First submitted model by MULTICOM-CONSTRUCT. 

g
  Best of five submission by MULTICOM-CONSTRUCT. 
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A typical example of refinement is shown in Figure 1 for the target TR662 based on the 

best submitted refined model by MULTICOM-CONSTRUCT. The initial model is quite accurate 

with RMSD of 2.031 Å. After refinement, the RMSD is improved to 1.993 Å along with modest 

but consistent improvement in GDT-HA and TM-score. 

 

Availability 

 MULTICOM-CONSTRUCT web server (i.e. 3Drefine server) is freely available at 

http://sysbio.rnet.missouri.edu/3Drefine/. 

 

1. Bhattacharya, D. and J. Cheng, 3Drefine: Consistent protein structure refinement by 

optimizing hydrogen bonding network and atomic‐level energy minimization. Proteins: 

Structure, Function, and Bioinformatics, 2012. 

2. Liu, D.C. and J. Nocedal, On the limited memory BFGS method for large scale 

optimization. Mathematical programming, 1989. 45(1): p. 503-528. 

3. Kalisman, N., et al., MESHI: a new library of Java classes for molecular modeling. 

Bioinformatics, 2005. 21(20): p. 3931-3932. 

4. Zhang, Y. and J. Skolnick, Scoring function for automated assessment of protein structure 

template quality. Proteins: Structure, Function, and Bioinformatics, 2004. 57(4): p. 702-

710. 

5. Chen, V.B., et al., MolProbity: all-atom structure validation for macromolecular 

crystallography. Acta Crystallographica Section D: Biological Crystallography, 2009. 

66(1): p. 12-21. 

 

http://sysbio.rnet.missouri.edu/3Drefine/
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Protein Model Quality Prediction by MULTICOM Server Predictors 

Renzhi Cao1, Zheng Wang1, Jilong Li2, Charles Shang4, and Jianlin Cheng1,2,3 

1 - Computer Science Department, 2 - Informatics Institute, 3 - C. Bond Life Science Center, University of Missouri, 

Columbia, MO 65211, USA. 4 – Rock Bridge High School, Columbia, MO 65203, USA 

chengji@missouri.edu 

 

Our group developed and tested four model quality assessment (QA) servers: MULTICOM-

REFINE, MULTICOM-CLUSTER, MULTICOM-NOVEL, MULTICOM-CONSTRUCT. They 

predicted both global quality scores and local quality scores for stage1 and stage 2 models of 

CASP10 targets.  

 

Methods 

MULTICOM-REFINE uses a pair-wise model comparison approach (APOLLO)
1
 to generate 

the global quality score. The 19 top models based on the global quality scores and the top 1 

model selected by SPICKER
2
 formed a top model set for local quality prediction. After 

superimposing predicted model with each model in top model set, the local quality score is 

calculated as the average absolute difference between each residue in the model and the residue 

in the model from top model set.  

MULTICOM-CLUSTER is a new, single-model, support vector machine (SVM)-based 

method. The input features to the SVM includes amino acids encoded by a 20-digit vector of 0 

and 1, the difference between secondary structure and solvent accessibility predicted by 

SCRATCH
3
 from the protein sequence and that of a model parsed by DSSP, and predicted 

contact probabilities. The SVM was trained to predict the local quality score of each residue. The 

predicted local quality score was used to generate the global quality score of the model according 

to the formula:  

𝐺𝑙𝑜𝑏𝑎𝑙 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =
1

𝑡
∑ (

1

1+(
𝐿𝑖
𝑝

)2
)𝑡

𝑖=1 . 

In the formula, t is the total number of residues, Li is the local quality score of residue i, and p is 

a parameter whose value is set to 5. Residues that didn’t have predicted local quality scores were 

skipped in averaging.  

MULTICOM-NOVEL is the same as MULTICOM-CLUSTER except that amino acid 

sequence features were replaced with the sequence profile features. The multiple sequence 

alignment of a target used to generate profiles was generated by PSI-BLAST.  

MULTICOM-CONSTRUCT is a weighted pairwise model evaluation approach to 

predict global quality. It uses ModelEvaluator 
4
 – an ab initio single-model global quality 

prediction method – to predict a score for each model and TM-SCORE to get the GDT-TS score 

for each pair of models. The predicted global quality score of a model i is the weighted average 

GDT-TS score between the model and other models, calculated according to the formula: 

𝑆𝑖 = ∑ (𝑋𝑖,𝑗 ∗
𝑊𝑗

∑ 𝑊𝑗
𝑁
𝑗=1

) 𝑁
𝑗=1 . In this formula, 𝑆𝑖 is the predicted global quality score for model 𝑖, 𝑁 

is the total number of models, 𝑋𝑖,𝑗 is the GDT-TS score between model 𝑖 and model 𝑗, 𝑊𝑗 is the 

mailto:chengji@missouri.edu
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score for model 𝑗 predicted by ModelEvaluator. In case that no score was predicted for a model 

by ModelEvaluator, the weight of the model was set to the average of all the scores predicted by 

ModelEvaluator. The local quality prediction of MULTICOM-CONSTRUCT is the same as 

MULTICOM-NOVEL except that additional SOV (segment overlap measure of secondary 

structure) score features were used by the SVM to generate the local quality score. 

 

Results 

We preliminarily evaluated the performance of our four servers on 33 CASP10 target structures 

released by the time of writing the abstract. We evaluated the global quality scores predicted by 

our four servers against the real quality scores according to two metrics: average per target 

correlation and average per target loss. The loss for each target was the difference between the 

GDT-TS score of the overall best model and the top model ranked by the global quality scores. 

For the local quality score, the correlation score for each model was calculated as the correlation 

of the predicted local quality scores for the residues in the model and the real local quality 

scores. The average correlation score for all models associated with a target was used as the 

correlation of the target. The performance of the four servers was reported in Table 1. 

 

Table 1. The average per-target correlation score, average loss, average local quality correlation 

score for stage1 and stage2 models. 

Server Predictors 

Ave. 

Corr. 

Stage1 

(Global) 

Ave. 

loss  

Stage1 

(Global) 

Ave. 

Corr. 

Stage1 

(Local) 

Ave. 

Corr. 

Stage2 

(Global) 

Ave. 

loss 

Stage2 

(Global) 

Ave. 

Corr. 

Stage2 

(Local) 

MULTICOM-REFINE 0.6707 0.0539 0.6223 0.5312 0.0534 0.6621 

MULTICOM-CLUSTER 0.5588 0.0798 0.2774 0.3756 0.0680 0.3341 

MULTICOM-NOVEL 0.5463 0.0852 0.2976 0.3699 0.0693 0.3521 

MULTICOM-

CONSTRUCT 

0.7448 0.0451 0.2970 0.5492 0.0503 0.3328 

 

1 Larsson, P., Skwark, M. J., Wallner, B. & Elofsson, A. Assessment of global and local 

model quality in CASP8 using Pcons and ProQ. Proteins: Structure, Function, and 

Bioinformatics 77, 167-172 (2009). 

2 Zhang, Y. & Skolnick, J. SPICKER: A clustering approach to identify near‐native protein 

folds. Journal of computational chemistry 25, 865-871 (2004). 

3 Cheng, J., Randall, A., Sweredoski, M. & Baldi, P. SCRATCH: a protein structure and 

structural feature prediction server. NAR 33, W72-W76 (2005). 

4 Wang, Z., Tegge, A. N. & Cheng, J. Evaluating the absolute quality of a single protein 

model using structural features and support vector machines. Proteins: Structure, 

Function, and Bioinformatics 75, 638-647 (2009). 
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MULTICOM-NOVEL 

A Conformation Ensemble Approach to Protein Structure Refinement 

Debswapna Bhattacharya
1
 and Jianlin Cheng 

1,2,3,*
 

1
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Improving the overall fold of the initial models is one of the major challenges in protein structure 

refinement field. In CASP10, we tackled this problem by applying a recently developed 

conformation ensemble approach. 

 

Methods 

For each refinement target, we collected all the submitted server tertiary structure predictions for 

the corresponding targets. The complete archive of submitted models by all servers had been 

used as the ensemble. In the first step, the problematic regions (PRs) in the starting models were 

predicted using a newly developed consensus method. A novel hybrid model generation 

approach was then employed using template fed to Modeller [1] by combining the initial model 

and the PR replaced by structures from the ensemble. In the next step, the hybrid models were 

ranked by complementary single-model quality evaluation schemes followed by a weighted rank 

aggregation method to derive the “optimal ranking” through Cross-Entropy Monte Carlo 

algorithm (CE) [2] using the Kendall’s Tau distance for partially ordered lists [3]. A maximum of 

top three models were chosen from the hybrid models ranked above the starting structure in the 

“optimal ranking” as templates to feed into automodel class of Modeller to derive the “improved 

model” for the PR using multiple template alignment. 

We adopted an iterative refinement strategy to gradually improve the initial model with 

each PR getting improved in a single iteration. The PRs were sorted based on their length and 

longer PRs getting higher priority than shorter PRs. After each iteration, the “improved model” 

corresponding to a PR becomes the starting model for the next round of iteration aiming to 

improve the next PR. This process continues until all the PRs in the initial model are consumed. 

Finally, the local structural errors and general physicality of the final “improved model” were 

enhanced by our previously developed refinement method [4] in order to produce the refined 

structure. 

 

Results 

We perform preliminary assessment of our method on 10 refinement targets for which the native 

structures have been released at the time of writing this abstract. The refinement is evaluated 

from two perspectives: (1) similarity to the native structures and (2) physical reasonableness of 

the models.  In order to judge how the overall fold in starting structures were improved by 

refinement, we use TM-score program [5] to compare the RMSD, GDT-HA and TM-score before 

and after refinement against the native structures. The enhancement of physical reasonableness 

and correction of the local errors are evaluated using MolProbity program [6]. 

Table I summarizes the cumulative GDT-HA, cumulative TM-score, average RMSD and 

average MolProbity score of the best of five submissions for all 10 refinement targets. The 

NULL group represents the initial models issued for refinement. Overall, a 21.6% improvement 

in the average RMSD has been observed with GDT-HA score getting improved for 7 out of 10 

targets (70%). Promisingly, our method can consistently rank the best submitted model at the top. 
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For 6 out of 10 targets (60%), the best overall refined model was submitted as model 1. 

A representative example of refinement is shown in Figure 1 for the target TR671 based on the 

first submitted refined model by MULTICOM-NOVEL. The initial model has an RMSD of 

7.716 Å with a large deviation in the N-terminal region compared to the native structure. After 

refinement, the RMSD is improved to 5.008 Å with 2.3%, 2.5% and 14.7% improvement in 

GDT-HA, TM-score and MolProbity score respectively. The improvement in the N-terminal 

region is obvious by visual inspection. 

 

Availability 

 The web server is freely available at http://sysbio.rnet.missouri.edu/REFINEpro/. 

 

1. Fiser, A. and A. Šali, Modeller: generation and refinement of homology-based protein 

structure models. Methods in enzymology, 2003. 374: p. 461-491. 

2. Rubinstein, R., The cross-entropy method for combinatorial and continuous optimization. 

Methodology and computing in applied probability, 1999. 1(2): p. 127-190. 

3. Adler, L.M.K., A modification of Kendall's tau for the case of arbitrary ties in both 

rankings. Journal of the American Statistical Association, 1957. 52(277): p. 33-35. 

4. Bhattacharya, D. and J. Cheng, 3Drefine: Consistent protein structure refinement by 

Table I. Preliminary results for MULTICOM-NOVEL in CASP10 refinement category. 

Group Name No. of Targets
a
 GDT-HA

b
 TM-score

c
 RMSD

d
 MolProbity

e
 

MULTICOM-NOVEL 10 5.552 7.860 3.01 2.5 

Null
f
 10 5.530 7.769 3.66 2.6 

a
 Number of CASP10 targets in the Refinement Experiment. 

b
 Cumulative GDT-HA score for 

best of five submissions. 
c
 Cumulative TM-score for  best of five submissions. 

d
 Average RMSD  

for  best of five submissions with respect to the native structure in Å. 
e
 Average MolProbity score 

for best of five submissions. 
f 
The initial models for the CASP10 refinement experiment. 

http://sysbio.rnet.missouri.edu/REFINEpro/
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optimizing hydrogen bonding network and atomic‐level energy minimization. Proteins: 

Structure, Function, and Bioinformatics, 2012. 

5. Zhang, Y. and J. Skolnick, Scoring function for automated assessment of protein structure 

template quality. Proteins: Structure, Function, and Bioinformatics, 2004. 57(4): p. 702-

710. 

6. Chen, V.B., et al., MolProbity: all-atom structure validation for macromolecular 

crystallography. Acta Crystallographica Section D: Biological Crystallography, 2009. 

66(1): p. 12-21. 
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Three protein residue disorder predictors participated in CASP10 from the MULTICOM group.  

All three were fast, sequence based methods with two of the predictors using machine learning 

techniques and the other being a meta approach. 

 

Methods 
MULTICOM-NOVEL is a new approach to protein residue disorder prediction using deep 

networks (DNs) and boosted ensembles. To construct the predictor, we trained a number of DNs 

by sampling from a pool of training data.  Initially, every example in the training pool had an 

equal probability of being included in the training sample.  After each round of boosting, the 

probability of selecting properly classified examples was decreased while the probability of 

selecting a misclassified example was increased. A number of ensembles were trained using 

various DN architectures and the final prediction for a residue was a performance weighted sum 

of all of the DNs in the ensemble.  Generally speaking the architecture used for the DN was X-

750-750-350-Y where the size of the input window X varied from 644 to 964 for input windows 

of 20, 25 or 30 residues and the target window size of 3, 5 or 7.  Note that inputs used as features 

included predicted secondary structure and solvent accessibility, values from a position specific 

scoring matrix, and a few statistical characterizations of the residues. Each DN was trained layer 

by layer using contrastive divergence
1
 and the final weights fine tuned using a standard back 

propagation algorithm.           

 MULTICOM-REFINE made disorder predictions using 1-dimensional recursive neural 

network (1D-RNN) with input stemming from a sequence profile and predicted secondary 

structure and solvent accessibility
2
. The predicted disorder probabilities were rescaled such that 

the ratio of residues with a probability of disorder greater than or equal to 0.5 was similar to the 

ratio of disordered residues in the training set
3
.        

 MULTICOM-CONSTRUCT is a fast, sequence based meta method which combines the 

predictions of both MULTICOM-REFINE and MULTICOM-NOVEL. Our initial evaluation and 

comparison of both MULTICOM-NOVEL and MULTICOM-REFINE indicated that the disorder 

residues identified by both methods are complementary at times and this lead to the construction 

of a simple meta approach between the two.   

 

Results 
As an initial assessment of our methods, we evaluated the disorder predictions of MULTICOM-

CONSTRUCT, MULTICOM-REFINE and MULTICOM-NOVEL on 30 valid CASP10 targets 

which were solved using X-ray crystallography and available by the time of writing this abstract.  

Any residue which did not have coordinates specified in the PDB file was considered to be 
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disordered.  In all there were a total of 9102 residues in our evaluation set with 978 of them 

being disordered.  The results are summarized in Table 1. 

 

 

 

Table1. Results of our MULITCOM series of disorder predictions on 30 valid CASP10 targets.  

AUC is the area under the ROC curve and ACC is the balanced accuracy.   

Method AUC ACC 

MULTICOM-NOVEL 0.814 0.771 

MULTICOM-CONSTRUCT 0.814 0.751 

MULTICOM-REFINE 0.771 0.728 

 

Availability 
MULTICOM-NOVEL (i.e., DNdisorder) is available as a web service at 

http://iris.rnet.missouri.edu/dndisorder/. MULTICOM-REFINE (i.e., PreDisorder) is available at 

http://casp.rnet.missouri.edu/predisorder.html as a web service and as downloadable software.       

 

1. Hinton, G.E. (2002). Training Products of Experts by Minimizing Contrastive Divergence. 

Neural Computation 14, 30p. 

2. Deng, X., Eickholt, J., & Cheng, J. (2009) PreDisorder: AbInitio Sequence-based Prediction 

of Protein Disordered Regions. BMC Bioinformatics. 10,436. 

3. Hecker, J., Yang, J. & Cheng, J. (2008). Protein Disorder Prediction at Multiple Levels of 

Sensitivity and Specificity. BMC Genomics. 9, S1. 
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OnD-CRF2: Disorder prediction in proteins using Conditional Random Fields 

L. Wang1, 2 and U.H. Sauer1, 2 
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uwe.sauer@chem.umu.se 

 

An increasing number of proteins transfer key biological functions through intrinsically 

unstructured sequence intervals1-2. Finding the disordered regions in proteins will help to reduce 

bias in sequence similarity analysis, to identify protein domains boundaries and to guide 

structural and functional studies3. 

OnD-CRF2 is a newer version of OnD-CRF4 for accurate prediction of Ordered and Disordered 

amino acid regions in proteins by using Conditional Random Fields (CRF). The CRF models 

depend on features which are generated from the amino acids sequence and from secondary 

structure prediction and are able to take into account inter-relation information between two 

labels of neighboring residues.  

 

Methods 
OnD-CRF2 was trained on a new training dataset including a set of around 5367 non-redundant 

sequences with high resolution X-ray structures. Disorder was identified with those residues that 

appear in the sequence records but with coordinates missing from the electron density map. 

Performance is optimized with respect to the Area Under the ROC Curve (AUC) and the average 

of sensitivity and specificity (ACC), which are the measures of the overall predictor quality.  

The OnD-CRF2 method makes use of the open source package CRF++ 

(http://crfpp.sourceforge.net/) to implement Conditional Random Fields (CRF). The template file 

used for training the OnD-CRF2 model contains the rules for generating the features which are 

extracted only from the protein sequence and the predicted secondary structure with the help of 

SSpro5. We use cross-validation to optimize the parameters for CRF++ in order to generate the 

OnD-CRF2 model that achieves the maximal AUC and ACC values. 

 

Results 
We use 10-fold cross validation and find that a sliding window size of nine amino acids 

optimizes the template file. The set of parameters which give rise to the best AUC value of 0.834 

are: 1.0 for the hyper-parameter "C", which trades the balance between over-fitting and under-

fitting and 5 for the parameter "f", which sets the cut-off threshold for the features. For all other 

parameters we use the default CRF++ 0.49 values. 

As a result of the 10-fold cross validation, we find an optimal P-value cut-off of P < 0.10 for 

ordered and P ≥ 0.10 for disordered amino acids(*). Using this cut-off the OnD-CRF2 model 

achieves an ACC of 0.809 which are about 2 points per cent higher than the old version of OnD-

CRF.  

 

Availability 

mailto:uwe.sauer@chem.umu.se
http://crfpp.sourceforge.net/
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OnD-CRF2 server: http://babel.ucmp.umu.se/ond-crf2/ 

 

1. Dunker,A.K., Brown,C.J., Lawson,J.D., Iakoucheva,L.M. and Obradovic,Z. (2002) Intrinsic 

disorder and protein function, Biochemistry, 41, 6573-6582. 

2. Romero,P., Obradovic,Z. and Dunker,A.K. (1999) Folding minimal sequences: the lower 

bound for sequence complexity of globular proteins, FEBS Lett, 462, 363-367. 

3. Ferron,F., Longhi,S., Canard,B. and Karlin,D. (2006) A practical overview of protein disorder 

prediction methods, Proteins, 65, 1-14. 

4. Wang L, Sauer UH. (2008 )OnD-CRF: predicting order and disorder in proteins using 

conditional random fields. Bioinformatics, 24(11), 1401-1402 

5. Cheng,J., Randall,A.Z., Sweredoski,M.J. and Baldi,P. (2005b) SCRATCH: a protein structure 

and structural feature prediction server, Nucleic Acids Res, 33, W72-76. 
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We have developed template-based protein structure modeling protocols based on our profile-

profile alignment method1-2. However, constructing accurate alignment(s) between a target and 

a template is still one of the central issues in protein structure prediction. We developed a novel 

and simple procedure for constructing multiple alignments based on the profile-profile alignment 

method and applied it for regular TS targets of CASP10 and CASP ROLL. 

 

Methods 
To improve alignment accuracy, we used multiple alignments of a target sequence, homologous 

sequences of the target, and sequences of template(s). A multiple alignment is obtained by 

considering minimum inconsistency among all pairwise alignments produced by our profile-

profile alignment method, FORTE, with sequences mentioned above. 

 In addition to the original global-local algorithm of FORTE, we also developed a local 

profile-profile alignment method and employed it in some cases, especially for 'hard' targets.  

 

Results 

As of September 28, 2012, the average TM-score3= 0.528 of our method for available 26 domain 

structures of 20 valid targets in CASP 10 is significantly higher than the one, 0.464, of all 

methods including modern and sophisticated meta-servers and assembling methods, when we 

focus on TS1 models of server predictions (=Tarballs) to briefly assess our prediction results. 

 In the CASP ROLL targets, we could correctly recognize the middle beta-sheet of 

bacteriophage tail fibers (R0001).  

 

Of course, multiple template-based modeling is effective for building accurate 3D-models. 

Therefore, we believe that our new method is useful for protein structure prediction. 

 

Availability 

The FORTE server is available at http://www.cbrc.jp/forte/2. Users can retrieve prediction results 

as both text and HTML. 

 

1. Tomii,K., Hirokawa,T. & Motono,C. (2005). Protein structure prediction using a variety 

of profile libraries and 3D verification. Proteins. 61(S7), 114-121. 

2. Tomii,K. & Akiyama,Y. (2004) FORTE: a profile-profile comparison tool for protein fold 

recognition. Bioinformatics 20, 594-595. 

3. Xu,J. & Zhang,Y. (2010) How significant is a protein structure similarity with TM-score 

= 0.5?. Bioinformatics 26, 889-895. 
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Pcons and PconsQ are model quality assessment methods combining structural consensus 

(Pcons1), and a single model machine learning-based MQAP (ProQ22),  as well as – in case of 

PconsQ – distance-based consensus (PconsD). 

 

Methods 
Structural consensus performs well in terms of ranking protein models, especially given a set of 

predicted models, which is abundant in •gcorrect•h predictions. Pcons (Pcomb in CASP8/9) 

combines structural consensus with an empirical function scoring the objective quality of single 

models (ProQ2). Doing so improves the selectivity properties by allowing to discriminate 

accurately on both ends of quality spectrum, where consensus is less effective: very easy targets 

(most models are very close to each other) and difficult targets (no meaningful consensus in the 

model ensemble).  

On top of the scoring methods used by Pcons, the novel method PconsQ employs an additional 

distance-based metric (PconsD). Use of inter-residue distance matrices allows a greater 

emphasis on correct scoring of well-defined structural elements (e.g. structural domains, 

rigid supersecondary structures etc.) and less on the flexible loop regions.  Models submitted 

on behalf of Pcons and PconsQ groups were selected from the set of all predictions submitted in 

server category in CASP10. The model ensembles obtained from PconsQ has been augmented 

by addition of 10 highest ranked PconsM and PconsD models each.  

The highest ranked models were submitted as predictions for respective methods, without any 

further refinement. 

 

1. Larsson P., Skwark MJ, Wallner B and Elofssson A (2009) Assessment of global and local 

model quality in CASP8 using Pcons and ProQ2 Proteins 77 (S9): 167-172 

2. Ray A., Lindahl E. and Wallner B. (2012) Improved model quality assessment using ProQ2 

BMC Bioinformatics 13, 224- 

3. McGuffin LJ, Roche D. (2010) Rapid model quality assessment for protein structure 

predictions using the comparison of multiple models without structural alignments 

Bioinformatics (26) 182-188 
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PconsD is a meta-prediction method, aiming at utilizing consensus inter-residue distances for 

identification and construction of accurate protein models.  

 

Methods 

The method is a based on the set of models produced by Pcons-net1, albeit without rebuilding of 

unaligned regions. Models are scored by a distance-based model quality assessment approach 

(see below), which attempts to identify the most correct models in the ensemble as well as the 

regions of those models in need of rebuilding. Ten best ranked models are subject to rebuilding 

of identified regions and the resulting ensemble is further rescored by a linear combination of 

structural consensus (Pcons2), distance-based consensus (PconsD) and a single model machine 

learning-based MQAP (ProQ23) – see abstract for PconsQ as MQAP method. PconsD as a 

quality assessment method is based on comparison of inter-residue distance matrices, which 

allows to overcome many limitations of superposition-based consensus methods (e.g. penalizing 

of multi-domain proteins and overemphasis of loop regions).  Additionally, a streaming 

algorithm used in implementing the method makes it significantly faster than other MQAP 

methods available. 

 

Results 
Even though PconsD MQAP scores do not correlate very well with superposition based metrics 

such as GDT-TS, one can observe the increased ability of selecting better models from the 

ensemble, in comparison to superposition-based MQAPs, such as Pcons. 

   

Performance-wise, PconsD can achieve a three orders of magnitude speed up in consensus-based 

model quality assessment in comparison to naïve superposition and approx. 8-fold speed-up in 

comparison to optimized CPU-based structural superposition (Pcons). Additionally, proposed 

approach is approx. 60 times faster than analogous CPU-based methods (ModFOLDclustQ4). 

 

1. Wallner B., Larsson P. and Elofssson A (2007) Pcons.net: protein structure prediction meta 

server. Nucleic Acids Res. 35, suppl 2, W369-W374. 

2. Larsson P., Skwark MJ, Wallner B and Elofssson A (2009) Assessment of global and local 

model quality in CASP8 using Pcons and ProQ2 Proteins 77 (S9): 167-172 

3. Ray A., Lindahl E. and Wallner B. (2012) Improved model quality assessment using ProQ2 

BMC Bioinformatics 13, 224- 

4. McGuffin LJ, Roche D. (2010) Rapid model quality assessment for protein structure 

predictions using the comparison of multiple models without structural alignments 

Bioinformatics (26) 182-188 
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PconsM is a redesigned approach to consensus based protein structure prediction, aiming at 

expansion and diversification of model ensembles by utilizing alternative alignments and 

multiple templates for model building. 

 

Methods 
The method is a based on the same set of input alignments and models as Pcons-net.  Structural 

templates of 20 best scoring Pcons-net models are then subject to realignment using hhalign 

from HHsuite package, producing alternative alignments.Additionally, alignments producing 

best scoring models are combinatorially merged to form prospective alignments for multi-

template modeling. 

Finally, during model building by MODELLER, we employ comprehensive MD-like 

optimization to ensure good stereochemical features of the model. Models are scored by a linear 

combination of structural consensus (Pcons2), distance-based consensus (PconsD) and a single 

model machine learning-based MQAP (ProQ23) – see abstract for PconsQ as MQAP method. 

 

Results 
According to the internal assessment (http://dany.scilifelab.se/CASP10), as of September 26, 

PconsM group is ranked #5 among all server groups in terms of ƒ° GDT-TS for all non-canceled 

CASP10 targets.  

 

1. Soding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 

21, 951-960 

2. Wallner B., Larsson P. and Elofssson A (2007) Pcons.net: protein structure prediction meta 

server. Nucleic Acids Res. 35, suppl 2, W369-W374. 

3. Larsson P., Skwark MJ, Wallner B and Elofssson A (2009) Assessment of global and local 

model quality in CASP8 using Pcons and ProQ2 Proteins 77 (S9): 167-172 

4. Ray A., Lindahl E. and Wallner B. (2012) Improved model quality assessment using ProQ2 

BMC Bioinformatics 13, 224- 
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The new iteration of pcons.net consensus-based structure prediction server includes multitude of 

improvements in relation to the CASP9 version, significantly improving resulting model 

accuracy.  

 

Methods 

The method is a development of pcons.net1 consensus-based protein structure prediction server 

and as such relies on input from diverse threading methods, such as FFAS, FUGUE, FORTE, 

HHpred, nFOLD4, rpsblast, SAM-T02 and SAM-T08. The CASP10 version of pcons.net also 

use HHsuite 2.04,5, a suite of threading methods contained in LOMETS6 package and relies on 

Rosetta7 for ab-initio prediction. Regions of the homology models missing in the alignment are 

rebuilt by an energy-based method in order to ensure compactness of the model and facilitate 

first-principles based scoring functions.  Finally, models are scored by a linear combination of 

structural consensus (Pcons2) and a single model machine learning-based MQAP (ProQ23) – see 

abstract for Pcons as MQAP method. In MQAP category, quality estimates for Pcons-net 

method are obtained by pure structural consensus (Pcons2). 

 

Results 
According to the internal assessment (http://dany.scilifelab.se/CASP10), as of September 26, 

Pcons-net group is ranked #4 among all server groups in terms of ƒ°GDT-TS and related scores 

for all non-canceled CASP10 targets. Additionally, it is ranked #3 by these criteria for hard 

targets (i.e. those with median GDT-TS of all server predictions below 0.5). 
 

Availability 
The improved pipeline will be incorporated into the default pcons.net pipeline in the near future. 

 

1. Wallner B., Larsson P. and Elofssson A (2007) Pcons.net: protein structure prediction meta 

server. Nucleic Acids Res. 35, suppl 2, W369-W374. 

2. Larsson P., Skwark MJ, Wallner B and Elofssson A (2009) Assessment of global and local 

model quality in CASP8 using Pcons and ProQ2 Proteins 77 (S9): 167-172 

3. Ray A., Lindahl E. and Wallner B. (2012) Improved model quality assessment using ProQ2 

BMC Bioinformatics 13, 224- 

4. Soding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 

21, 951-960. 

5. Remmert M., Biegert A., Hauser A., and S• oding J. (2012)  HHblits: Lightning-fast iterative 

protein sequence searching by HMM-HMM alignment. Nat. Methods, 9, 173-175 
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Phyre2
1
 (http://sbg.bio.ic.ac.uk/phyre2) is an automated method for the prediction of protein 3D 

structure combining de novo and template-based methods using a dynamic model of protein 

synthesis and folding. Template recognition is performed using HMM-HMM alignment.  Models 

based on these alignments are used to derive distance constraints for use in a modified version of 

our de novo folding technique, Poing
2
. Additional distance constraints are included from the 

program PSICOV
3
 when sufficient sequence homologues are available.  

 

Methods 

A protein sequence is initially scanned against a 50% non-redundant sequence database 

(Uniref50) using PSI-Blast
4
 followed by secondary structure prediction using PSI-pred

5
. A 

hidden Markov model of the sequence is generated and scanned against a library of HMMs using 

the HHsearch 2.0.11 package
6
. High scoring templates are chosen to simultaneously maximize 

coverage of the input sequence and confidence in the homology. These templates are then used to 

build a small number (usually <10) of single template models with no further refinement or loop 

modelling. The target sequence is also scanned against a 100% non-redundant sequence database 

using the jackhmmer module of the HMMER3 package
7
. If a sufficiently large number of 

homologous sequences (>500) are detected the resulting alignment is processed by PSICOV
3
 to 

predict residue-residue contacts. 

 Each of these simple template models is used to generate a set of pairwise distances 

between residues in space. These distances are converted into simple springs within a modified 

version of the Poing
2
 de novo modeling tool. Additional weaker springs are included between 

residues predicted to be in contact by PSICOV. Poing then slowly synthesizes the protein from a 

virtual ribosome, adding distance springs as more residues are added to the growing chain. 

Insertions and large missing regions are modeled using the Poing de novo protocol. The Poing 

simulation is repeated between 5 and 100 times depending on factors such as protein length, beta 

structure content and template coverage. Finally, the resulting models are clustered and the 

model with the greatest similarity to all other models in the pool is chosen. This Calpha only 

Poing model has its backbone reconstructed using Pulchra
8
. This full length model is then 

combined with the original template-based input models using Modeller v9.10
9
. Finally 

sidechains are placed using our in-house version of the R3 sidechain placement algorithm
10

.  

 

Availability 

Phyre2 is available at: http://sbg.bio.ic.ac.uk/phyre2. 

 

1. Kelley,L.A. and Sternberg,M.J.E. (2009). Protein structure prediction on the web: a case 

study using the Phyre server. Nature Protocols. 4, 363-371. 

2. Jefferys,B.R., Kelley,L.A. and Sternberg, M.J.E. (2010). Protein folding requires crowd 

control in a simulated cell. J. Mol. Biol. 397, 1329-1338.  

http://sbg.bio.ic.ac.uk/phyre2
http://sbg.bio.ic.ac.uk/phyre2
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POODLE server has participated CASP experiment since CASP7. One of the problems that we 

address is to estimate the regions which prevent protein from crystallizing. These regions are 

often corresponding to intrinsically disordered regions. To date, we have updated POODLE 

programs several times. The successful upgrade version, which is called POODLE-I (where “I” 

stands for integration), employs the workflow approach that was allowed to combine POODLE 

series with structural information obtained by several other prediction tools1. In this round of 

CASP experiment, we try to add some information into the previous method. 

 

 We briefly introduced the original prediction method based on workflow approach. Based 

on the hypothesis that the factor causing short disordered regions and long ones might be 

different, the workflow is divided into two parts. One part predicts long disordered regions 

including unfolded proteins by using POODLE-L, POODLE-W, and COILS (which is coiled coil 

region predictor). The other part detects short disordered regions by using POODLE-S and 

several structural information predictors. In this experiment, two steps were introduced to 

improve performance. In the former part, the domain defined by CATH2 or predicted by domain 

linker prediction3 was assessed whether it was fully disordered or not. In the latter part, we 

considered that the signal peptide predicted by SingalP4 or PrediSi5 are disordered region, 

because it is usually removed in solving protein structure.  

 

Availability 
All POODLE services are available at http://mbs.cbrc.jp/poodle. 

 

1. Hirose,S., Shimizu,K. & Noguchi,T. (2010). POODLE-I: Disordered region prediction by 

intergrating POODLE series and structural information predictors based on a workflow 

approach. In Silico Biol. 10, 185-91. 

2. Pearl,F.M., Bennett,C.F., Bray,J.E., Harrison,A.P., Martin,N., Shepherd,A., Sillitoe,I., 

Thornton,J. & Ogengo,C.A. (2003). The CATH database: an extended protein family 

resource for structural and functional genomics. Nucleic Acids Res. 31, 452-455. 

3. Ebina,T., Toh,H. & Kuroda,Y. (2009). Loop-length-dependent SVM prediction of domain 

linkers for high-throughtput structural proteomics. Biopolymers. 92, 1-8. 

4. Petersen,T.N., Brunak,S., von Heijine,G.. & Nielsen,H. (2011) .SignalP 4.0: discriminating 

signal peptides from transmembrane regions. Nat Methods. 8, 785-786. 

5. Hiller,K., Grote,A., Scheer,M., Munch,R. & Jahn,D. (2004). PrediSi: prediction of signal 

peptides and their cleavage positions. Nucleic Acids Res. 32, 375-379. 
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“prdos-CNF” server is an automated protein disordered region prediction server. The predictor 

was trained by using similar datasets and input vector construction method used in PrDOS 

method1 but employs conditional neural fields (CNFs) 2 instead of support vector machines. 

 

 

Methods 
We used first-order (linear-chain) conditional neural fields to predict intrinsically disordered 

regions. CNF is a supervised machine learning algorithm and an undirected graphical model 

similar to conditional random field (CRF). CNF can deal with not only dependencies among 

labels like CRF, but non-linear relationship between input and output. The marginal posterior 

probability for each position was used as confidence values. 

For constructing training sets, we used a non-redundant protein chain set from the PDB using the 

PISCES server and defined the disordered residues based on the REMARK 465 lines. The input 

vector for a residue in target sequence is composed of the amino acid types and PSSMs of the 

sequence in a 27-residue window centered at the residue and the length of the sequence. 

 

 

1. Ishida. T and Kinoshita K. (2007). PrDOS: prediction of disordered protein regions from 

amino acid sequence., Nucleic Acids Res, 35, W460-464, 2007. 

2. Peng, J. et al., (2009) Conditional neural fields. Advances in Neural Information Processing 

Systems (NIPS), 1419-1427 
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Employing methods to assess the quality of modeled protein structures is now standard practice 

in bioinformatics. In a broad sense, the techniques can be divided into methods relying on 

consensus prediction on the one hand, and single-model methods on the other. Consensus 

methods frequently perform very well when there is a clear consensus, but this is not always the 

case. In particular, they frequently fail in selecting the best possible model in the hard cases 

(lacking consensus) or in the easy cases where models are very similar. In contrast, single-model 

methods do not suffer from these drawbacks and could potentially be applied on any protein of 

interest to assess quality or as a direct scoring function for sampling-based refinement. 

 

Methods 
ProQ2

1
 is an improved single-model quality assessment program, based on ideas from its 

predecessor ProQ
2
. It uses support vector machines to predict local as well as global quality of 

protein models based on structural and predicted features. All features are calculated over 

sequence window to achieve a localized prediction. As target function it uses S-score
3
: 

Si=1/(1+(di/3)
2
), where di is the distance for residue i between the native structure and model, 

based on a superposition and maximize the sum of Si. In short, the structural features are similar 

to the ones used in ProQ: atom-atom contacts, residue-residue contacts, and solvent accessible 

surfaces. The contacts are encoded as fraction of contacts between 13 different atom types (<4Å 

for atom contacts), between 6 residue types (<6Å for residue contacts) and as exposure 

distributions for the same 6 residue types in four exposures bins (<25%, 25%-50%, 50%-75%, 

and >75%).  

In addition to the structural features, predicted secondary structure by PSIPRED
4
 and 

surfaces area by ACCpro
5
 was also included. For the secondary structure, three sets of features 

were calculated: (i) the predicted probability from PSIPRED for the secondary structure of the 

central residue in the sequence window. (ii) correspondence between predicted and actual 

secondary structure over a 21-residue window, and (iii) secondary structure assigned by 

STRIDE
6
, binary encoded into three classes over a 5-residue window. For the surface area the 

correspondence between predicted and actual burial/exposure class over a 21-residue window 

was used. 

Evolutionary information was also included, both directly using sequence conservation 

calculated from a PSSM and as weighting of the residue based structural features according to 

the PSSM. For instance, if a position in the sequence profile contains 40% alanine and 60% 

serine, contacts to this position are weighted by 40% as contacts alanine and by 60% as contacts 

to serine. This effectively increases the amount of training examples and should also make the 

final predictor less sensitive to small sequence changes, since data is extracted from multiple 
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sequence alignments among homologous sequences. 

All features described above are localized to short window in sequence to enable a 

localized prediction. However, it turned out that including the overall correspondence between 

predicted and actual secondary structure and residue exposure calculated over the whole model 

instead of a window, improved the performance even for local quality prediction. 

In CASP10 ProQ2 participated in the MQAP category and the manual TS category, 

submitting the highest-ranking server models. It was also linearly combined with Pcons
7 

in the 

Pcomb method (0.8Pcons+0.2ProQ2) and used in a weighted clustering in the ProQ2clust 

method.  

 

Results 
ProQ2 is significantly better than its predecessors at detecting high quality models, improving 

the sum of Z-scores for the selected first-ranked models by 20% and 32% compared to the 

second-best single-model method in CASP8 and CASP9, respectively. The absolute quality 

assessment of the models at both local and global level is also improved. The Pearson’s 

correlation between the correct and local predicted score is improved from 0.59 to 0.70 on 

CASP8 and from 0.62 to 0.68 on CASP9; for global score to the correct GDT_TS from 0.75 to 

0.80 and from 0.77 to 0.80 again compared to the second-best single methods in CASP8 and 

CASP9, respectively. 

 

Availability 
The method is available as a server and standalone download from http://proq2.wallnerlab.org. 

 

1. Ray, A., Lindahl, E. and Wallner, B. (2012). Improved model quality assessment using 

ProQ2. BMC Bioinformatics. 13(1):224. 

2. Wallner, B. and Elofsson, A. (2003) Can correct protein models be identified? Protein Sci 12 

(5) : 1073-1086. 

3. Levitt M, Gerstein M. (1998). A unified statistical framework for sequence comparison and 

structure comparison. PNAS. 26;95(11):5913-20. 

4. Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring 

matrices. J. Mol. Biol. 292, 195-202 

5. Cheng J, Randall AZ, Sweredoski MJ, Baldi P. (2005). SCRATCH: a protein structure and 

structural feature prediction server. Nucleic Acids Res, 33(Web Server issue):W72–W76.  

6. Frishman D, Argos P: (1995). Knowledge-based protein secondary structure assignment. 

Proteins, 23(4):566–579. 

7. Wallner, B. and Elofsson, A. (2005) Pcons5: combining consensus, structural evaluation and 

fold recognition scores. Bioinformatics 21 (23) : 4248-4254.  
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RaptorX consists of the following major components: single-template protein threading, 

alignment quality assessment (and template selection) and multiple-template threading. 

Compared to CASP9, we have a new probabilistic graphical model for single-template 

threading
1
. Since the alignment quality assessment and multiple-template threading methods are 

almost same as those used in CASP9
2,3

, we only present our new single-template protein 

threading method. In addition, we have also registered another server RaptorX-ZY to test our 

new method for building 3D models from alignments. 

 

Methods 

Given a protein sequence S and a template T, let P(A|S,T) denote the estimated probability of the 

alignment A for two proteins S and T. The alignment potential of A then can be calculated as 

)(

),|(
log

AP

TSAP
where P(A) is the background (or reference) probability of A. In theory, P(A) can be 

calculated by ƩX,YP(X,Y)P(A|X,Y) where X and Y represents two proteins (with the same lengths 

as S and T, respectively) and the summation is calculated over all the protein pairs. In practice, 

P(A) can be approximated by uniformly sampling a few thousand protein pairs. We assume that 

an alignment is the optimal if it maximizes the alignment potential. That is, to find the optimal 

alignment between S and T, we want to maximize
)(

),|(
log

AP

TSAP
.  

To calculate P(A|S,T), we expand A as {a1,a2,…,aL} where L is the alignment length and 

ai is the alignment state at position i. In total there are three possible alignment states M, It and Is. 

Meanwhile, M represents two residues being aligned, It denotes an insertion in the template, and 

Is denotes an insertion in the sequence. We use a recently-developed probabilistic graphical 

model Conditional Neural Field to calculate P(A|S,T) as follows
1
. 

1

1

( | , , ) exp( )( , , , ) / ( , )
L

i i

i

P A T S E a a T S Z T S




             (1) 

where  is the model parameter vector to be trained and Z(T,S) is the normalization factor (i.e., 

partition function) summing over all possible alignments for a given protein pair. The function E 

in Eq. (1) estimates the log-likelihood of alignment state transition from ai-1 to ai based upon 

protein features. We use neural networks to construct the function E. The model parameter vector 

 consists of all the parameters of the 9 neural networks, which are trained by a set of non-

redundant sequence-template pairs. The reference alignments used to train the parameter are 

generated by our in-house protein structure alignment tool DeepAlign.  

 

We construct the function E such that RaptorX has the following properties. 

(1) RaptorX explicitly accounts for correlations among protein features by using a nonlinear 

scoring function (i.e., neural network) to combine a variety of sequence and structure 

information.  
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(2) When a protein has a sparse sequence profile
4
, RaptorX relies more on structural information 

since the sequence profile does not contain sufficient information; otherwise it relies more on 

information in a sequence profile. The structure information includes the 3-class and 8-class 

secondary structure, the 3-class solvent accessibility and also the structure environment.  

(3) RaptorX uses neighborhood information to estimate how likely two residues shall be aligned. 

The neighborhood information includes sequence profile, secondary structure and solvent 

accessibility in a small window (size 11) centered at the residues to be aligned. 

Neighborhood information is especially useful to the weakly similar regions and gap opening 

positions. 

(4) For the disordered regions, RaptorX uses only sequence information since structure 

information is unreliable. For non-disordered regions, RaptorX uses both sequence and 

structure information. 

(5) Unlike many other methods that use an affine gap penalty, RaptorX uses both position-

specific and context-specific gap penalty. The position-specific gap penalty is derived from 

the alignment of the sequence homologs of a given protein while the context-specific penalty 

is based upon amino acid identity, hydropathy index, secondary structure and solvent 

accessibility. When a protein has a sparse sequence profile, RaptorX relies more on context-

specific gap penalty; otherwise on the position-specific penalty. 

  

3D model building. By default, RaptorX uses MODELLER to build a 3D model from an 

alignment. We have also developed a new method for model building, which is tested in another 

CASP10 server RaptorX-ZY. RapotrX-ZY uses a machine learning method to predict distance 

restraints from an alignment and then build the corresponding 3D model based upon the 

predicted restraints. The machine learning method predicts distance restraints using information 

in an alignment including profile similarity and structure similarity. 

 

Results 

The CASP10 result is unavailable yet. Here we only present our own test results of the new 

single-template threading method. In terms of ref-dependent alignment accuracy RaptorX 

is >10% better than the best profile method HHpred regardless of the benchmarks (see Table 1). 

To evaluate the quality of the resulting 3D models, given a protein pair we build a 3D model 

using MODELLER for the target protein based upon its alignment to the template. As shown in 

Table 2, RaptorX obtains much better 3D models than HHpred, MUSTER and BThreader (i.e., 

old RaptorX) regardless of the benchmarks, outperforming HHpred by 7-20%.  

Table 1. Reference-dependent alignment accuracy on the MUSTER benchmark. Columns 2-5 

indicate four different tools generating the reference alignments. Column “BR” indicates the 

reference alignments provided in the benchmark. Bold indicates the best performance. 
Methods TMalign Dali Matt DeepAlign BR 

HHpred(Local) 
HHpred(Global) 

MUSTER 
Old RaptorX 

42.96 
48.82 

- 
47.35 

57.34 
53.13 

- 
51.30 

46.00 
51.48 

- 
50.13 

46.50 
52.48 

- 
50.53 

45.34 
51.48 
46.70 
50.01 

RaptorX 54.17 58.46 57.26 59.14 57.06 
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Table 2. The accumulative model quality, measured by TMscore, on the four benchmarks: In-

House, MUSTER, SALIGN and ProSup. Bold indicates the best performance.  
Methods In-House MUSTER SALIGN     ProSup 
HHpred 

MUSTER 
BThreader 

1522.77 
- 

1537.89 

142.00 
136.47 
143.95 

121.83 
- 

132.85 

56.44 
- 

66.77 

RaptorX 1692.17 152.14 134.50 67.34 

To further evaluate the modeling performance, we use RaptorX and HHpred to predict the 3D 

structure for a set of 1000 target proteins randomly chosen from PDB25. All the ~6000 proteins 

in PDB25 are used as the templates. As shown in Figure 1, RaptorX outperforms HHpred when 

the target protein does not have a close template. One point in the figure represents two models 

of a single target. One is built by HHpred and the other by RaptorX. A point above the diagonal 

line indicates that RaptorX generates a better 3D model. The targets with HHpred TMscore<0.4 

usually have sparse sequnece profiles and thus HHpred does not work well for them. By contrast, 

RapotrX can generate better 3D models for many of them.  

Figure 1. Comparison of RaptorX with HHpred on 1000 proteins. 

 

Availability 

The RaptorX server is available at http://raptorx.uchicago.edu. RaptorX currently is running an 

old protein threading method and we are upgrading it to the new method described in this 

abstract.  
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2011. 

4. Jian Peng and Jinbo Xu. Low-homology protein threading. Bioinformatics (Proceedings of 

ISMB 2010), 2010.  
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Decoys generated during ab initio structure prediction often contain native-like substructures, 

even in early stages of search.  This is to be expected, as native-like substructures represent local, 

energetically favourable spatial arrangements of amino acids. The ability to differentiate between 

native-like and “wrong” substructures in decoys is highly relevant to contact prediction and 

tertiary structure prediction.  

We present a machine learning method to identify native-like substructures from an 

ensemble of decoys. Our method contributes to three of our servers, all described in this abstract. 

The contact prediction server RBO-CON uses the method to predict contacts from an ensemble 

of decoys. To do so, it leverages knowledge of favourable physicochemical interactions and 

occurrence statistics of decoy contacts. In contrast to most existing contact prediction methods, 

our method does not require multiple sequence-alignments. Instead, it predicts contacts solely 

based on the target sequence and an energy function. 

The tertiary structure prediction servers RBO-i-MBS and RBO-i-MBS-BB leverage 

native-like substructures of decoys to guide search. In an iterative process (hence the “i” in the 

server names), the prediction methods generate decoys, identify native-like substructures, extract 

contact restraints from those substructures, and finally use those restraints in the next iteration of 

search. 

 

RBO-CON 

For contact prediction, we seek to learn the relevant properties that identify native-like 

contacts from an ensemble of protein decoys. To learn these properties, we specify features that 

capture physicochemical properties and occurrence statistics of the amino acids in contact. Those 

features include secondary structure, solvent accessibility, chemical properties of the contacting 

amino acids, distance distribution and occurrence frequency. We then use a support vector 

machine (SVM) to learn and predict contacts based on these features.   

To devise the training set, we randomly select 400 small proteins (shorter than 100 amino 

acids) from PDBSelect
1
. We generate decoys for those proteins with our previously developed 

structure prediction algorithm model-based search (MBS)
2
. Features are then built for the 

ensembles of the resulting decoys, using only the best 1% decoys ranked by Rosetta’s all-atom 

energy function
3
. The final training set contains approximately 300,000 contacts.  

In the learning step, we use an ensemble of SVM classifiers with a bootstrap aggregation
4
 

(bagging) scheme. Each SVM is trained with a balanced set of 8000 contacts. Parameters for 

each SVM are tuned to obtain an accurate, but high-variance classifier. The final prediction 

output is generated by a simple voting scheme of the SVM ensemble.  

For each contact prediction, we first perform a structure prediction run with MBS to 

generate decoys for the target protein. Then, features are computed from the 1% lowest-energy 



195 

decoys and predictions are made using the ensemble of SVM classifiers. Predicted contacts are 

ranked by their number of votes from the individual classifiers.  

 

RBO-i-MBS 

 The ability to identify native-like substructures in decoys also has benefits in tertiary 

structure prediction. The tertiary structure prediction server RBO-i-MBS uses the contact 

predictions generated with RBO-CON as constraints for conformational space search. Each 

round of model-based search (MBS) generates a set of decoys. Within those decoys, RBO-CON 

identifies native-like substructures. The contacts contained in these substructures represent 

constraints for the next round of MBS. Thus, the algorithm iterates between structure and contact 

prediction to guide search towards regions of the conformational space likely to contain the 

native state.  

 

RBO-i-MBS-BB 
The same iterative scheme of alternating contract prediction and structure prediction is 

employed in our server RBO-i-MBS-BB. In contrast to RBO-i-MBS, however, it uses a structure 

prediction method based on structural building blocks. These building blocks are reoccurring, 

spatially contiguous, sequence non-contiguous structural elements extracted from the PDB, 

forming a “vocabulary” of protein structure. (For a more detailed description of RBO-MBS-BB, 

please see the corresponding abstract in this book.)  

 

Availability  

A webserver for contact prediction is under development.  

 

1. Griep, S. & Hobohm, U. (2010). PDBselect 1992-2009 and PDBfilter-select. Nucleic 

Acids Res 38, D318-319. 

2. Brunette, T.J. & Brock, O. (2008). Guiding conformation space search with an all-atom 

energy potential. Proteins 73, 958-972. 

3. Rohl, C.A., Strauss, C.E.M., Misura, K.M.S. & Baker, D. (2004). Protein structure 

prediction using Rosetta. Meth. Enzymol 383, 66-93. 

4. Breiman, L. (1996). Bagging predictors. Machine Learning 24, 123-140. 
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Model-based search (MBS) guides the exploration of conformational space based on information 

contained in intermediate decoys generated during search. The main algorithmic features of 

MBS are 1) characterisation of regions as funnels in the energy landscape, 2) accessing the 

quality of these regions by an all-atom energy function and 3) coordination of computational 

resources based on this assessment. 

The structure prediction method running on our server RBO-MBS has been used in 

previous CASP experiments (CASP8 and slightly modified in CASP9, formerly known as RBO-

Proteus). In CASP10, we used a new implementation of the server used in CASP8. MBS is the 

search protocol also underlying our other tertiary structure prediction servers in CASP10 (RBO-

MBS-BB, RBO-CON, RBO-i-MBS, RBO-i-MBS-BB). 

 

Methods  
Model-based search initially computes a number of short Monte Carlo trajectories. The resulting 

conformational space samples are analyzed based on their energy and spatial proximity and then 

clustered into meaningful regions of the search space. These regions are meaningful because they 

contain samples from Monte Carlo trajectories that with high probability would lead to a single 

local minimum in the energy landscape. Model-based search is now able to assess the quality of 

all samples in a region based on the all-atom energy potential. Given a number of regions and an 

estimate of their likelihood to contain the native conformation, model-based search then guides 

the exploration of conformation space by selecting which of the regions to search further and 

how much computational resources to expend per region. Regions are then searched with 

additional short Monte Carlo trajectories and the process continues for a fixed number of times. 

By eliminating regions from the ongoing exploration that are unlikely to contain the native 

structure, model-based search is able to increase the sampling density in the most promising 

regions, thereby actively guiding search based on highly accurate information about the all-atom 

energy landscape.  

In contrast to most Monte Carlo-based search methods, which treat parallel trajectories as 

independent, model-based search effectively monitors the progress of these parallel trajectories 

and aborts some of them in order to restart them in more promising regions of conformation 

space. This selectively increases the sampling density in promising regions of the search space 

without the computational burden associated with increasing sampling density over the entire 

search space.  

Due to our integration with Rosetta
2
, model-based search inherits the following 

algorithmic features. Local search for low-energy conformations starts from an extended 

backbone conformation. The local, Metropolis Monte Carlo-based search progresses in a number 

of stages. As the search progresses through the different stages, the move set changes, the 

number of local search steps are varied, and the accuracy of the energy function is increased. The 
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energy function progresses gradually from a coarse-grained low-resolution energy function that 

considers secondary structure, residue environment, and inter-residue pairing to a full-atom 

energy function that includes side chains and solvation effects.  

Each iteration of model-based search uses the same move set and energy function as the 

corresponding stage in Rosetta. The first stage of model-based search starts after initial 4,000 

Monte Carlo fragment insertions have been attempted for each sample. The remaining 32,000 

Monte Carlo steps inside Rosetta are divided into the 13 stages of Rosetta’s Monte Carlo-based 

search. For these stages, the parameters of model-based search are adjusted so that each run 

finishes in approximately 12 hours on 200 processors. For example, proteins with less than 200 

residues use 2,000 extended proteins and five all-atom evaluations to evaluate a region. Proteins 

larger than 200 residues use 1600 extended structures; proteins longer than 300 residues use 100 

extended structures. Finally, proteins longer than 500 residues use 600 extended structures.  The 

five lowest scoring models are submitted.  

 

Availability 
The code to integrate MBS into Rosetta v2.3 or Rosetta v3.4 is available from the authors on 

request. A webserver is under development. 

 

1. Brunette, T.J. & Brock, O. (2008). Guiding conformation space search with an all-atom 

energy potential. Proteins 73, 958-972. 

2. Rohl, C.A., Strauss, C.E.M., Misura, K.M.S. & Baker, D. (2004). Protein structure 

prediction using Rosetta. Meth. Enzymol 383, 66-93. 
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The PDB is believed to be structurally complete. We therefore mine the PDB for a "vocabulary" 

of naturally occurring substructures and use this vocabulary for protein structure prediction. Our 

vocabulary consists of building blocks: spatially contiguous but not necessarily sequence-

contiguous structural motives that are repeated in the PDB. We present a method to extract 

conserved building blocks from the PDB. To account for the fact that structure is more preserved 

than sequence, this method initially ignores sequence and exclusively operates in the structural 

domain. Once we have identified building blocks and all their occurrences in the PDB, we can 

build profiles of the corresponding sequences. These profiles capture part of the sequence space 

that folds into this unique structure and can later be used for retrieving candidate building blocks 

for a target sequence. Distance constraints derived from these conserved structural blueprints are 

used to guide search towards decoys that fulfill the given restraints. Structure predictions are 

made using our previously introduced search technique model-based search (MBS)
1
. 

 

Methods 
Our method consists of two stages – one preprocessing stage and one prediction stage. In the 

offline preprocessing stage, we select a non-redundant set of proteins spanning the fold space of 

the PDB using the ASTRAL release 1.75
2
. Since we are looking for structurally conserved 

building blocks, they must occur in more than one protein within this dataset. Thus, we detect 

partial structural matches between all pairs of proteins to identify recurring structural units using 

a modified version of Protein3Dfit
3
. These matches consist of several secondary structure 

fragments, excluding loop regions. Finally, we reduce redundancy through several clustering 

steps.  

Later, in the prediction stage, we must retrieve building blocks based on the target 

sequence. In order to increase the sensitivity of retrieval, we enhance the sequences associated 

with each building block with homologous sequences. We generate HMM profiles with HHblits
4 

by matching building block fragments against the Uniprot20 sequence database
5
. We now can 

associate every building block with a set of HMM fragment profiles. 

 Using the HMM fragment profiles, we can now retrieve relevant building blocks to 

predict the structure of a target sequence. We first create an HMM profile for the target sequence 

based on a scan with HHblits against the Uniprot20 database. Then, a matching method based on 

HHsearch
6
 is used to align building block profiles with the target profile. This method allows for 

arbitrary orderings of building block fragments on the target sequence. The specificity of our 

profile/profile matching is increased with a technique based on statistical feature analysis over 

the whole building block database. The resulting retrieval procedure allows us to reliably identify 

the most relevant building block candidates for a specific target sequence. 

 To predict the target structure, we constrain conformational space search using the long-

range contacts contained in retrieved building blocks. As a result, RBO-MBS-BB focuses search 
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on regions of the conformational space that favor the partial topology captured by the building 

blocks. 

 

Availability 
A webserver providing access to spatial information guided MBS structure predictions is under 

development. 

 

1. Brunette, TJ and Brock, O. (2008). Guiding conformation space search with an all-atom 

energy potential. Proteins 73, 958-972. 

2. Chandonia JM, Hon G, Walker NS, Lo Conte L, Koehl P, Levitt M, Brenner SE. (2004). The 

ASTRAL compendium in 2004. Nucleic Acids Research 32:D189-D192. 

3. Lessel, U. and Schomburg, D. (1994). Similarities between protein 3-D structures. Protein 

Engineering, vol. 7, no. 10, pp. 1175 –1187. 

4. Remmert, M., Biegert, A., Hauser, A. and Soding, J. (2011). HHblits: lightning-fast iterative 

protein sequence searching by HMM-HMM alignment.  Nat Meth, vol. advance online 

publication. 

5. UniProt Consortium. (2010). The universal protein resource (uniprot) in 2010. Nucleic Acids 

Res, 38 (Database issue):D124-D148. 

6. Söding,J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics. 

21, 951-960. 
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Because a protein three-dimensional structure is well described by the intra-molecular contacts, 

predicting residue contact from an amino acid sequence would be useful for reconstructing and 

validating the protein structure model. Although recent studies have shown that the predicted 

contact information can be used for inferring the atomic structure, current predictive 

methodology still needs some improvements of prediction accuracy. Here, we incorporate an 

improved correlated mutation analysis method, and develop an automated web-server for 

predicting residue contact by combining the sequence analysis information and SVM method. 

We assess the prediction performance for CASP9 targets with conventional methods. 

 

Methods 
To build a predictive model, we collect 514 proteins from PDB frozen before CASP9 experiment 

period. The non-redundant proteins are selected from high-resolution X-ray structure <2.5 Å 

with no missing residues by limiting the maximum sequence identity 25%. The contacts are 

defined by Cβ-Cβ distance less than 8 Å. For GLY, Cα is used instead of Cβ. In addition, the 

contacts are categorized to long-, medium-, and short-range contacts, according to the sequence 

linear distance between residue pair. Long-, medium-, and short-range contact residues are 

defined as >24, 12-23, and 6-11 aa apart residues in contact, respectively. 

 The training procedure consists of the following steps. First, given a query sequence, the 

multiple sequence alignment is constructed by using HHblits1 with the option “-e 0.001 -n 2,” 

and the profile HMM and the correlated mutation scores are calculated from the multiple 

sequence alignment. Then, features are extracted from the calculated sequence and evolutionary 

information and SVM model is constructed for each contact category by using LIBSVM 2. 

 We calculate 863-dimensional feature vector which represents positional, coevolution, 

separation segment, and whole sequence information. The positional features consist of spacer, 

PSSM value, profile-HMM transition probability, effective number of aligned sequences, and 

predicted secondary structure information. The coevolution features consist of MIp Z-score, MIc 

Z-score, effective number of aligned sequences, pointwise mutual information. The coevolution 

scores such as MIp, MIc, and pointwise mutual information are calculated by using profile-based 

joint probability estimate 3. It has been shown that the use of profile-based joint probability 

estimate significantly improves coevolution measurement in contact prediction. The separation 

segment features consist of within-segment evolutionary amino acid composition, within-

segment predicted secondary structure composition, and segment length. The whole sequence 

features consist of overall evolutionary amino acid composition, overall predicted secondary 

structure composition, and sequence length. To make the SVM training feasible in a given time 

period, we only use randomly selected 100,000 examples, keeping the positive-to-negative 

example ratio as 0.5. Additionally, randomly selected 40,506 examples are used for SVM 

parameter optimization. 

mailto:csjeong@kaist.ac.kr
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We assess the performance of contact prediction for CASP9 dataset. As following the 

procedure of CASP9 assessment 4, 28 difficult target domains from 22 CASP9 targets are used. 

As the main challenge in contact prediction is to improve the long-range contact prediction 

without template information, we compare the long-range contact prediction accuracy with the 

conventional template-free methods. 

 

Results 
We evaluated the accuracies of long-contact prediction at different rank cutoffs for CASP9 

difficult target domains. Our method improves conventional methods at every rank cutoff. 

Specifically, our method increases the average accuracy by 14.3%, 5.3%, and 18.2% at top-L/5, 

L/10, and 5 cutoffs, respectively. Since the compared conventional methods were revealed as to 

outperform other methods in CASP9 results, our method would perform comparably to them. 

 

Availability 
Our contact prediction server is freely available at http://binfolab12.kaist.ac.kr/conti/. 

 

1. Remmert, M., Biegert, A., Hauser, A. & Söding, J. (2011) HHblits: lightning-fast iterative 

protein sequence searching by HMM-HMM alignment. Nat Methods 9, 173-175. 

2. Chang, C.-C. & Lin C.-J. (2011) LIBSVM : a library for support vector machines. ACM 

Transactions on Intelligent Systems and Technology, 2, 27. 

3. Jeong, C.-S. & Kim, D. (2012) Reliable and robust detection of coevolving protein residues. 

Protein Eng. accepted. 

4. Monastyrskyy, B., Fidelis, K., Tramontano, A. & Kryshtafovych, A. (2011) Evaluation of 

residue-residue contact predictions in CASP9 Proteins 79 Suppl 10, 119–125. 
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Methods 

The principal focus of the group is energy-based refinement using Monte Carlo sampling on an 

ensemble of all heavy atom models.  The Monte Carlo moves attempted and the criteria for 

acceptance are cycled through a sequence of alternatives that vary the type/magnitude of the 

move and the selective pressure applied.  With this strategy more diversity can be introduced and 

maintained in the evolving ensemble and arrest of refinement in local minima delayed. 

 Full length automated server models were modified by rebuilding a significant fraction of 

turns using low Ramachandran energy fragments from the PDB.  For refinement targets, the 

template model and 5-10 server models with the lowest RMSD to the template were reworked 

instead.  From an initial population of 250-500, random samples of 50 models were refined 

through 4 generations and the best 25 were saved, growing a stage1 pool of 500 to 1000 models.  

The selective pressure included reducing the atom-atom overlap, which was scored over a 

changing fraction of residues, plus lowering of atom-level and side-chain level interaction 

energies and solvation energies.  All energy terms were scored with statistical potentials.  In 

many instances the CA-distance matrix error to the ensemble averaged matrix for the preceding 

generation was also included in the selection function. 

The pools generated in Stage1 were refined in a similar manner, with manual adjustments 

made to the selective pressure in an effort to maintain roughly uniform rates of improvement in 

all energy terms.  In some instances, a third stage of refinement was carried out on the pool of 

models generated in Stage2.   

Typically, the final ensemble had side-chain interaction and solvation energies in the 

wild-type range, but atom-atom energies and solvation were significantly higher than the typical 

wild type values.  In no case did the Ramachandran energy scored over the turn/loop segments 

come close to wild-type values, suggesting major errors persisted in the backbone geometry in 

turns/loops.  The final ensemble was K-means clustered, and the five cluster central models were 

submitted, in an order based on manual inspection of the structures plus measures of 

compactness and quality of atom packing 

 

Results 

Results are limited, but for the 8 refinement targets for which PDB structures were available in 

mid-September, our best model is closer to the correct structure (by C-RMSD) than the 

template in 5 cases and equal in two.  TR722, a tetramer of monomers comprise of one long and 

one short helix, was the only mis-refined target.  
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Protein disorder prediction is an important step during elucidating protein function and in the last 

years became a standard procedure before protein structure determination.  A plethora of 

programs for protein disorder prediction have been designed. Current state-of-the-art methods 

are based on machine learning and meta approach (consensus of several primary disorder 

methods).  

 On the other hand, protein disorder can be considered as flexible part of a protein which 

is missing in X-ray structure or represented as random ensemble in NMR spectra. This means 

that the gaps in alignments against structural databases (e.g. PDB
1
) can be considered as 

potential disordered regions. Apart from that, the opposite is also possible, i.e. the direct search 

for disorder in DISPROT database
2
 grouping all known disorder proteins. Making use of 

homology should be very useful as ~90 percent of CASP targets are from TMB category.  

 Moreover, our sDisPred method uses two additional trivial features. The first feature is 

the secondary structure. Disordered regions contains considerably less helix and beta sheets 

content. The second feature is the statistical correction for protein termini which are usually 

disordered.  

 sDisPred is an experimental predictor which aim is to establish how well disorder 

prediction can be done using relatively easily accessible features without any sophisticated 

machine learning. It can be used also as a baseline for other disorder predictors to assess if they 

are able to go beyond “trivial” prediction level. 

 

Methods 
First part of sDisPred pipeline is a negative and positive scan through databases, PDB and 

DISPROT respectively, in order to find obvious disorder regions with high homology to those 

which are already known. This part is done by hhblits
3
. If the hits to the templates from the 

databases are good, the annotation about disorder is assigned to the target sequence. The regions 

in the sequence which cannot be reliably aligned to PDB or DISROT templates are considered 

“new” and they are validated by the second part of the pipeline which predicts disorder and 

secondary structure using several known programs which are easy to obtain and install locally. 

For disorder prediction sDisPred uses DISOPRED
4
, DisEMBL

5
, GLOBPLOT

6
, RONN

7
, 

IUPred
8
, DISpro

9
, DISPROT (VSL2)

10
, Metadisorder (by Rost)

11
 and SPINE-D

12
. For building 

secondary structure consensus PSIPRED
13

, Prof
14

, PROTEUS
15

, SSpro4
16

, SOPRANO, 

PSSpred, SPINE-X
17

, RAPTOR-XSS
17

, SPINE
18

 and Netsurfp
19

 are used.  

 In the next part of the pipeline, simple statistical correction for 15 terminal residues is 

made as those residues are usually more disordered. The statistics is based on REMARK465 

annotation taken from PDB header records. 

 In the final stage, the information from homology searches, disorder and secondary 

structure consensuses are combined into the ultimate prediction. This is achieved by simple 

majority rule. Disordered regions are those which are predicted to be disordered by majority of 
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disorder predictors and contain small fraction of secondary regions. 

 

Results 
As the 90 percent of CASP targets are from TMB category it is expected that most of the targets 

can be easily predicted based on the information from homologs only. This should be also true 

for disorder prediction. The benchmark based on CASP8 and CASP9 targets confirmed this 

statement.  

 

Availability 
The method will be publicly available in the form of web service if it proves to be valuable in 

terms of disorder prediction in current CASP.  
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Protein model refinement methods have had more difficulties in improving global structure 

quality than in improving local structure quality, according to the assessments of previous 

CASPs. In CASP9, our refinement method could improve global structure quality on average but 

showed poor performance in local structure improvement. This result was partly due to the fact 

that we did not refine the overall model structures but re-modeled loop or terminus regions only. 

In CASP10, we performed both overall structure relaxation and loop modeling, achieving 

consistent improvements in both global and local structure accuracies for the targets whose 

experimental structures have been released so far. 

 

Methods 
As shown in the flowchart of Figure 1, we tried two refinement methods, a mild refinement 

method and a more aggressive refinement method. The model generated by the mild refinement 

method was submitted as model 1, and 4 additional models generated by the aggressive method 

were submitted as models 2~5. Both methods are based on repeated relaxations of model 

structures by molecular dynamics simulations after structure perturbations. Subsequent loop 

modeling was performed only after the mild refinement to save computation time. 

 The energy functions used for the two relaxation methods are linear combinations of a 

physics-based energy function complemented by database-derived terms and a restraint energy 

derived from the given initial model structure. The relative weight of the restraint energy to the 

physics-based energy for the mild relaxation was five times larger than that for the aggressive 

relaxation. The physics-based energy function contains molecular-mechanics bonded energy 

terms, Lennard-Jones potential energy, Coulomb energy, hydrogen bond energy, FACTS 

solvation energy, solvent accessible surface area energy, dDFIRE potential energy, and sidechain 

and backbone torsion angle energy. 

 Structure perturbations were applied only to clusters of side-chains in the mild 

refinement, and more aggressive perturbations to secondary structure elements and loops were 

applied in the aggressive refinement. The triaxial loop closure method1,2 was employed to avoid 

breaks in model structures caused by perturbations to internal torsion angles. 

 An ab initio protein loop modeling was carried out after the mild relaxation for a 

maximum of five unreliable loop or terminus regions detected by a method based on ProQres. 

The loop modeling method searches for the global optimum of another physics-based energy 

enforced by free energy components from database-derived potentials that was designed for 

modeling unreliable protein loops and termini3,4. 

 

 

Results 
Refinement results for the 8 out of 27 refinement targets whose experimental structures have 

been released so far (Sep. 8, 2012) were analyzed. Changes in GDT-HA, GDC-SC, and 
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MolProbity scores were calculated for the models before and after refinement to measure 

improvements in global structure accuracy, local structure accuracy, and physical correctness, 

respectively. For the structures submitted as the first models, average improvements in GDT-HA, 

GDC-SC, and MolProbity scores are 1.55, 3.17, and 1.23, respectively. When the best models 

among the submitted models are considered, our refinement method could improve models for 

all 8 targets in all 3 measures with average improvements of 3.34 (GDT-HA), 4.22 (GDC-SC), 

and 1.55 (MolProbity). 

 

Figure 1. Flowchart of the refinement method tested by the Seok group in CASP10. Two 

relaxation methods, a mild relaxation and a more aggressive relaxation, and loop modeling were 

tested. 

 

Availability 
A web server for this method will be constructed at http://galaxy.seoklab.org. 

 

1. Coutsias,E.A., Seok,C., Jacobson,M.P. & Dill,K.A. (2004) A kinematic view of loop closure. 

J. Comput. Chem. 25, 510-528. 

2. Lee,J., Lee,D., Park,H., Coutsias,E.A. & Seok,C. (2010) Protein loop modeling by using 

fragment assembly and analytical loop closure, Proteins: Structure, Function, and 

Bioinformatics, 78, 3428-3436. 

3. Park,H. & Seok,C. (2012) Refinement of unreliable local regions in template-based protein 

models, Proteins: Structure, Function, and Bioinformatics, 80, 1974-1986. 

4. Park,H., Ko,J., Joo,K., Lee,J., Seok,C. & Lee,J. (2011) Refinement of protein termini in 

template-based modeling using conformational space annealing, Proteins: Structure, 

Function, and Bioinformatics, 79, 2725-2734. 

http://galaxy.seoklab.org/


208 

Seok-server 
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Regions 

Lim Heo, Hahnbeom Park, Junsu Ko, Gyu Rie Lee, Hasup Lee, Woonghee Shin, 

Minkyung Baek and Chaok Seok 

Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea 

chaok@snu.ac.kr 

 

Seok-server performed fully automated tertiary structure modeling from domain parsing to 

homo-oligomer prediction in CASP10. It employed several modules of GALAXY biomolecular 

modeling package such as GalaxyCassiopeia for template-based model building, GalaxyRefine 

for loop/terminus modeling1,2, GalaxyPersus for free modeling, GalaxyGemini for homo-

oligomer structure prediction (manuscript submitted), and GalaxySite for ligand binding site 

prediction (manuscript submitted). HHsearch3 and PROMALS3D4 were used at the initial stages 

of multiple template selection and sequence alignment. 

 

Methods 
The tertiary structure prediction pipeline for Seok-server is shown in Figure 1. For a given query 

sequence, segments of the sequence for which template-based modeling are possible are first 

detected by a method that uses HHsearch results. Such segments are called restraint units (RUs) 

because spatial restraints necessary for template-based model building are derived independently 

for each RU from the corresponding multiple templates. Confidence for each RU is estimated 

from the qualities of the selected templates and their alignments. If more than one RU of high 

confidence is detected, template-based modeling (TBM) is performed. If only RUs of medium 

confidence exist, both TBM and free modeling (FM) are performed. Otherwise, FM is 

performed. 

In the TBM process, alignment of core sequence with those of templates is obtained by 

PROMALS3D, and models are built by a new method called GalaxyCassiopeia which replaces 

MODELLER and MODELLERCSA used by us in the previous CASP. GalaxyCassiopeia first 

derives spatial restraints for model building from templates, performs quick optimizations to 

generate multiple models from the restraints to detect unreliable regions and unreliable side-

chains. More optimization efforts are put to optimize the unreliable side-chains in the following 

stage in which the overall structure is relaxed using a physics-based energy combined with the 

restraints from templates. Long unreliable regions (LURs), which may even correspond to a 

domain of FM target in some cases, are modeled by a method based on our FM method called 

GalaxyPerseus. Short unreliable regions (SURs) are modeled by our ab initio loop/terminus 

modeling method. Homo-oligomer structure is also predicted after tertiary structure models are 

generated by selecting oligomer templates using a new similarity-based method called 

GalaxyGemini. 

 GalaxyPerseus is a structure prediction method for those targets lacking reliable template 

information. In contrast to the other GALAXY methods, GalaxyPerseus uses a coarse-grained 

molecular representation to reduce the conformational search space. Secondary structure 
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elements are first sampled by a Monte Carlo search and then assembled by optimizing a 

physicochemical energy using a genetic algorithm method. 

Finally, ligand binding sites are predicted by the GalaxySite method which performs 

molecular docking simulations for candidate ligands selected by a similarity-based method. 

 

 

Figure 2. Flowchart of tertiary structure modeling and binding site prediction of Seok-server in 

CASP10 

 

Availability 
Some parts of the above method including an older version of template-based modeling, 

loop/terminus modeling, homo-oligomer prediction, and binding site prediction are freely 

available as web servers at http://galaxy.seoklab.org. 

 

1. Park,H. & Seok,C. (2012) Refinement of unreliable local regions in template-based protein 

models, Proteins: Structure, Function, and Bioinformatics, 80, 1974-1986. 

2. Park,H., Ko,J., Joo,K., Lee,J., Seok,C. & Lee,J. (2011) Refinement of protein termini in 

template-based modeling using conformational space annealing, Proteins: Structure, 

Function, and Bioinformatics, 79, 2725-2734. 

http://galaxy.seoklab.org/
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3. Soding,J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 

21, 951-960. 

4. Pei,J., Kim,B.H. & Grishin,N.V. (2008) PROMALS3D: a tool for multiple protein sequence 

and structure alignments. Nucleic acids research, 36, 2295-2300. 
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CASP9 was my first complete “All groups” submission. A ranking around 127 illustrated that 

traditional homology modelling did not work too well into the grey zone. No surprises there for 

anyone, but it was a useful personal exercise. In CASP10 I am trying another “dumb” exercise, 

acting a bit like a minimally intelligent server interface. Hence I have used HMM and automated 

modelling methods to generate 5 possible models per target, just as I might in a real collaboration 

with an experimental group requiring a model in the grey zone. The only additional science is 

that the 5 models were ranked by a combination energy evaluation via our empirical free energy 

forcefield and visual inspection.       

 

Methods 
The HHpred sever was used with default settings to search for appropriate templates. 

MODELLER was used to generate atomic models from hits. Typically the five models generated 

comprised: HHpred's best single template; HHpred's best set of multiple templates; three user 

selected sets of template structures. The models were scored using the BUDE forcefield
1,2

. The 

final ranking was determined by BUDE score and visual inspection.   

 

Availability 
The major tools HHpred and MODELLER are available from the Söding and Sali groups 

respectively. BUDE is available on request to the author.  

 

1. Gibbs,N., Clarke,A.R., Sessions,R.B. (2001). Ab initio protein structure prediction using 

physicochemical potentials and a simplified off-lattice model Proteins. 43, 186-202. 

2. McIntosh-Smith,S., Wilson,T., Avila-Ibarra,A., Crisp,J., Sessions,R.B. (2011). 

Benchmarking energy efficiency, power costs and carbon emissions on heterogeneous 

systems. The Computer Journal. 55, 192-205.  
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H. Zhou and J. Skolnick 
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 Georgia Institute of Technology, 250 14th Street, N.W., Atlanta, GA 30318 

skolnick@gatech.edu 

 

The SP-ALIGN server
 
is an update of the FINDSITE

1
 approach for binding site prediction. 

 

Method 

FINDSITE is a threading-based method that detects binding pockets for small molecules
1
. 

Protein threading is capable of detecting remote, yet evolutionary related homologues. The 

conservation of functional sites among homologous proteins allowed us to develop FINDSITE, a 

highly accurate method for ligand-binding site prediction and functional annotation. FINDSITE 

employs template identification, structure superimposition and binding site clustering as follows: 

First, for a given target sequence, structure templates are selected by three threading procedures: 

PROSPECTOR_3
2
, SPARKS

3
 and SP

34
. Subsequently, template structures bound to ligands are 

identified and superimposed onto the target protein structure using the structural alignment 

algorithm TM-align
5
. Then, the centers of mass of ligands bound to threading templates are 

clustered according to their spatial proximity, using an 8-Å cutoff distance. This cutoff 

maximizes the ranking accuracy and accommodates some structural distortions. The geometrical 

center of each cluster corresponds to the center of a putative binding site. Finally, the predicted 

binding sites are ranked according to the number of threading templates that share a common 

binding pocket (cluster multiplicity).  For the SP-ALIGN server, we use the models predicted by 

the latest version of TASSER methodology TASSER
VMT-

lite
6
 as the reference structures and the 

structural alignment is updated to include a heuristic structure-pocket alignment (SP-ALIGN) to 

filter the template pockets and to derive the rotational and translational matrix of template 

ligands. After the superimposition, putative binding sites are inferred through the clustering of 

the template ligands, and the predicted sites are ranked according to the alignment score of 

structure-pocket alignment. Benchmarking carried out for the 30 binding site prediction targets 

of the 9
th 

Community Wide Experiment on the Critical Assessment of Techniques for Protein 

Structure Prediction (CASP9)(http://predictioncenter.org/casp9/) gives a Matthew’s correlation 

coefficient (MCC) of 0.71 between predicted and observed binding residues. This performance is 

indistinguishable from the best Human prediction in CASP9.  

 

Availability 

The SP-ALIGN web service is available at 

http://cssb.biology.gatech.edu/skolnick/webservice/casp/SP-ALIGN/index.html 

 

 

1. Brylinski M, Skolnick J: FINDSITE: A threading-based method for ligand-binding site 

prediction and functional annotation. Proc Natl Acad Science 2008, 105:129-134. 

2. Skolnick J, Kihara D, Zhang Y: Development and large scale benchmark testing of the 

PROSPECTOR 3.0 threading algorithm. Proteins 2004, 56:502--518. 
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3. Zhou H, Zhou Y: Single-body residue-level knowledge-based energy score combined 

with sequence-profile and secondary structure information for fold recognition. Proteins 

2004, 55 1005--1013. 

4. Zhou H, Zhou Y: Fold recognition by combining sequence profiles derived from 

evolution and from depth-dependent structural alignment of fragments. Proteins 2005, 58 

321--328. 

5. Zhang Y, Skolnick J: TM-align: a protein structure alignment algorithm based on the TM-

score. Nucl Acids Res 2005, 33:2302--2309. 

6. Zhou H, Skolnick J: FINDSITE
X
: A structure based, small molecule virtual screening 

approach with application to all identified human GPCRs. Molecular Pharmaceutics 

2012, 9(6):1775-1784. 
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1
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1
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l.a.kelley@imperial.ac.uk, i.filippis@imperial.ac.uk 

 

Methods 

Human 3D structure predictions were made using structural clustering with a modified version of 

the Poing
1
 de novo modeling tool as described in the Phyre2

2
 CASP10 abstract and structurally 

searching potential models against the PDB. Server models were downloaded from the CASP 

website and clustered using our in-house maxcluster program and ranked using the 3DJury
3
 

protocol. High ranking models that shared significant similarity by visual inspection were then 

selected and used as input to the Poing modeling tool. These models provided distance 

constraints for the Poing simulation. In cases where multiple equally plausible yet structurally 

dissimilar models from different servers were produced, up to 5 runs of poing with different 

combinations of input models were performed. In targets containing multiple domains, clustering 

was performed at the domain level, and the highest ranking domains reconnected using Poing. 

 For very difficult FM targets, between 500 and 10,000 models were produced by Poing 

and clustered. The centroid model from each cluster was then searched against a representative 

database of protein structures using MAMMOTH
4
. High scoring structural matches to known 

structures (MAMMOTH E-value < 10
-3

) were considered as potentially correct and the structural 

alignment from MAMMOTH used to adjust the position of backbone atoms in the final model to 

bring them closer to the matched PDB structure. This process was sometimes iterated 2-3 times 

depending on the connectivity of the resulting backbone. 

 

1. Jefferys,B.R., Kelley,L.A. and Sternberg, M.J.E. (2010). Protein folding requires crowd 

control in a simulated cell. J. Mol. Biol. 397, 1329-1338.  

2. Kelley,L.A. and Sternberg,M.J.E. (2009). Protein structure prediction on the web: a case 

study using the Phyre server. Nature Protocols. 4, 363-371. 

3. Ginalski,K., Elofsson,A., Fischer,D., & Rychlewski,L. (2003) 3D-Jury: a simple approach to 

improve protein structure predictions. Bioinformatics 19, 1015-1018. 

4. Ortiz AR, Strauss CE, Olmea O. (2002) MAMMOTH (Matching molecular models obtained 

from theory): An automated method for model comparison. Protein Sci.11(11):2606-21. 
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1
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1 
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STRINGS is an automated protein 3D structure prediction server made by combining several 

state-of-the-art methods. Specifically, we used a combination of HHSearch
1
, I-TASSER v.1.0 

standalone package
2; 3 

and KoBaMIN standalone package
4; 5

 for generating 3D-structures of 

proteins. Template-based modeling has been the most successful method in recent CASP 

experiments, however template selection still remains a challenge, as it is not always possible to 

identify the best template in the PDB library, due to the limitations of the alignment methods.  

 

Methods 
We address the problem directly in an exhaustive fashion by recursively splitting the query 

protein into several segments and then use HHSearch
1
 to identify the best template match for 

each segment. This procedure helps to identify both the domain boundaries, as well as the 

template with the best alignment for this local region. The final selection of templates and 

domain boundary is done based on the threading alignment Z-score and alignment coverage. 

Once the optimal domains are identified, we model them individually using a modified version 

of I-TASSER v.1.0 standalone package
2; 3

, which includes multiple template identification by 

both LOMETS
6
 and HHSearch threading programs. Top five models generated from this 

approach are refined using the consistent refinement protocol implemented by the KoBaMIN 

refinement server
4; 5

 (http://csb.stanford.edu/kobamin/) and submitted automatically. For cases, 

where no optimal domain boundaries are identified even after splitting the sequence, the entire 

sequence is processed as such by the modified version of I-TASSER v.1.0 standalone package 

and then by KoBaMIN protocol for submission.  

 

Availability 
STRINGS is available as a web sever at http://cando.compbio.washington.edu/casp/strings. 

 

1. Soding, J. (2005). Protein homology detection by HMM-HMM comparison. Bioinformatics. 

21, 951-60 

2. Roy A., A Kucukural A. & Zhang Y. (2010) I-TASSER: a unified platform for automated 

protein structure and function prediction. Nature Protocols. 5, 725-738. 

3. Zhang Y. (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 

9, 40. 

4. Chopra,G., Kalisman,N. & Levitt,M. (2010). Consistent refinement of submitted models at 

CASP using a knowledge-based potential. Proteins. 78, 2668-2678. 

5. Rodrigues, J. P. G. L. M., Levitt, M. & Chopra, G. (2012). KoBaMIN: a knowledge-based 

minimization web server for protein structure refinement. Nucleic Acids Res. 40, W323-

W328. 

http://csb.stanford.edu/kobamin/
http://cando.compbio.washington.edu/casp/strings
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6. Wu S. & Zhang, Y. (2007) LOMETS: A local meta-threading-server for protein structure 

prediction. Nucleic Acids Res 35, 3375-3382. 
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All-Atom Conditioned Self-Avoiding Walk (AA-CSAW) is an ab initio protein folding 

simulation model based on Monte-Carlo (MC) method(Huang, 2007; Huang, 2008; Sun, 2007). 

The polypeptide chain is simulated as effectively rigid cranks  NHCOCa
 units lined by 

covalent bonds. Bond lengths and bond angles are set as fixed optimal values. The structure of 

polypeptide is fully described by backbone dihedral angles ,  and the sidechain dihedral 

angles  . The number of   depends on the type of amino acid.  A trial structure is randomly 

generated by pivoting the polypeptide chain and sidechains.  In the pivot algorithm, the backbone 

dihedral angles ,  for each residue are chosen in Ramachandran plot according to a 

probability distribution derived from 3-residue fragment set. The effective energy of protein 

structure is constructed by considering hydrophobic effect, desolvation effect and hydrogen 

bonding interaction. An appropriate three dimensional structure is accepted with a probability 

according to Metropolis scheme(Metropolis, 1987). In order to evaluate the accepted structures 

in MC simulations, the ratio of secondary structure content to radius of gyration is introduced. 

 

Methods 

Backbone dihedral angle distribution 

By selecting special dihedral angles ii  ,  for residue i , the polypeptide chain will change to a 

different 3D conformation. In general, ii  ,  can be any values in Ramachandran plot except 

those prohibited by steric effect.  However, observations of Protein Data Bank(Berman, et al., 

2000) data show that the distribution of  ii  ,  in Ramachandran plot is far from uniform. It 

seems that the dihedral angle values of residue i  have obvious relations with the amino acid 

types of residue 1i and 1i . We constructed dihedral angle distribution models for all 20 

amino acids based on a high resolution 3-residue fragment database. This prior information 

substantially improve the accuracy and convergence of AA-CSAW method. 

 

Add all-atom side chain to residue 

Since crank model can provide atom locations for backbone atoms, the central problem is how to 

determine the sidechain atom coordinates if the atom coordinates are known for a backbone 

structure in arbitrary orientation. Thanks for the knowledge of amino acid structure, we have the 

atom coordinates for sidechain in some special orientation. As a consequence, we can determine 

the sidechain atom coordinates by matching amino acid to the backbone of a crank. 

As the structure of 20 amino acids are well determined by experiment observation, we have the 

atom coordinates for any type of residues, including backbone 
obs

BBX  and sidechain obs

SCX . The 

only problem is that the observed amino acid structure are usually not in the same orientation as 

in crank model. If the backbone parts N-C-C-O of observed amino acid structure overlap with 
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crank model (Error! Reference source not found.), i.e., 
crank

BB

obs

BB XX  , it is obvious that the 

rank sidechain atom will be determined by obs

SC

crank

SC XX  . By multiplying a rotation matrix 
crankobsM  ,  the observed amino acid structure can easily overlap the crank. 

 

Secondary structure definition 

Each residue of protein can be in helix, strand, turn or coil structure. The secondary structure 

property (SSP) of  a residue is important for monitoring the folding stage. The SSP is usually 

determined by hydrogen bonding interactions. In AA-CSAW, we use the algorithms described in 

Stride method(Frishman and Argos, 1995) .   

 

Effective structure energy  

The effective structure energy is composed of three parts: hydrophobic effect, hydrogen bonding 

and desolvation energy.  

 

(a) Hydrophobic effect 

In AA-CSAW, the hydrophobicity of each residue depends on the corresponding amino acid 

type. The hydrophobic energy is estimated based on two factors: the solvent accessible surface 

area (SASA) and residue types. For residue i , if it has more neighbors, it is buried in protein and 

has less SASA. In addition, if the surrounding residues are all hydrophobic residues, the 

hydrophobic energy of residue i is high.  A pair of residues are considered in contact if any two 

non-hydrogen side chain atoms (NHSA) from residues ji,  are within a specified cutoff distance. 

In AA-CSAW, we use the Atom Distance criteria (ADC) model(Sun and He, 2010; Sun and He, 

2011) in residue contact determination. 

The ‘dewetted’ phenomenon near the surface between large nonpolar groups and water is 

considered in AA-CSAW. In conventional continuum water solvent models, hydrophobic effect 

is always overestimated for the reason that  water molecules are more dilute near  large nonpolar 

groups. We introduce a scheme to decrease the hydrophobic energy when the aggregation of 

hydrophobic residue grows to large size. This method provide more chances to open the 

hydrophobic core, which is essential for misfolded intermediate structures.  

 

(b) Hydrogen bonding (HB) 

Each residue carries both HB donor and HB acceptor. We scan NH , CO  groups in every residue 

and check if these groups between residue i and j ( 1 ij ) satisfy the HB conditions. In AA-

CSAW, the DSSP (Kabsch and Sander, 1983) method is used as HB criterion. The total number 

of hydrogen bonds is a measurement of HB energy. Since the stability of hydrogen bond may 

depend on it location, a optimal HB strength parameter is used as a weight. If  the hydrogen bond 

is buried in protein interior, the weight value is high. Otherwise, the peptide-peptide hydrogen 

bond is exposed to water and can be easily destroyed. Thus the weight value is low.  

 

(c) Desolvation energy 

Hydrophobic effect leads to a fast collapse of  polypeptide chain. Hydrogen bonding interactions 

cause the emergence of secondary structures. However, a collapsed chain with hydrophobic core 

but without hydrogen bond is usually in high free energy state.  In order to prevent the formation 

of tight hydrophobic core without hydrogen bonding, we introduce a penalty to buried NH , CO  

groups that can’t form hydrogen bonds for some reasons. 
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Structure evaluation parameter 

The AA-CSAW is now a parallel code and can produce many candidate structures. We find that 

the ratio of secondary structure content to radius of gyration is a pretty good indicator for 

evaluating a structure. This value  usually depends on the length of a protein.  For the same 

protein, the higher this ratio, the better the predicted structure. 

 

Results 

All results, intermediate data files, and performance analysis documents will soon be available 

on the web at http://zcam.tsinghua.edu.cn/~sunwt/aacsaw.htm.  

 

 

Availability 

The AA-CSAW version 1.0.0 is written in C++ and have been compiled and tested on both 

WindowsXP and LINUX systems. The software is to be downloaded at 

http://zcam.tsinghua.edu.cn/~sunwt/aacsaw.htm soon, as well as the manuals and FAQ. 

 

1. Berman, H.M., et al. (2000) The Protein Data Bank, Nucleic Acids Res, 28, 235-242. 

2. Frishman, D. and Argos, P. (1995) Knowledge-based protein secondary structure assignment, 

Proteins, 23, 566-579. 

3. Huang, K. (2007) CONDITIONED SELF-AVOIDING WALK (CSAW): STOCHASTIC 

APPROACH TO PROTEIN FOLDING, Biophysical Reviews and Letters 2, 139-154. 

4. Huang, K. (2008) PROTEIN FOLDING AS A PHYSICAL STOCHASTIC PROCESS, 

Biophysical Reviews and Letters 3, 1-18. 

5. Kabsch, W. and Sander, C. (1983) Dictionary of Protein Secondary Structure - Pattern-

Recognition of Hydrogen-Bonded and Geometrical Features, Biopolymers, 22, 2577-2637. 

6. Metropolis, N. (1987) The Beginning of Monte Carlo Method, Los Alamos Science, 15, 125–

130. 

7. Sun, W. (2007) Protein folding simulation by all-atom CSAW method. 2007 Ieee International 

Conference on Bioinformatics and Biomedicine Workshops, Proceedings. 

8. Sun, W. and He, J. (2010) Understanding on the Residue Contact Network Using the Log-

Normal Cluster Model and the Multilevel Wheel Diagram, Biopolymers, 93, 904-916. 

9. Sun, W.T. and He, J. (2011) From Isotropic to Anisotropic Side Chain Representations: 

Comparison of Three Models for Residue Contact Estimation, Plos One, 6. 
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The Human expert group TASSER has submitted predictions for protein structures and explored 

a number of refinement protocols for refinement targets.  

 

Method 

Our human expert prediction is semi-automated. For a given target, we download all models of 

all CASP structure prediction servers. Based on the coverage of top models of our threading 

method SP
3
 
1
, the target is divided into domains. Then, the downloaded structures are parsed into 

corresponding domains. Three model quality assessment prediction methods: (a) GOAP
2
, (b) 

FTCOM
3
 and (c) TASSER-QA

4
 are used to rank the domain structures. Targets are also 

classified into Easy, Medium and Hard categories if the Z-score of the first SP
3
 threading 

template is >6.0, 4.5 <= Z-score <=6.0 and < 4.5 respectively. For each ranking method, we 

select the top 30 ranked structures for further TASSER refinement
5
. Tertiary restraints and 

contacts are then derived from those selected models. For Medium/Hard targets, additional 

chunk models from chunk-TASSER
6 

are also included to derive restraints and contacts. The 

distance restraints and contacts are then fed into TASSER to refine the selected models. We 

performed a single long simulation of TASSER followed by SPICKER
7
 clustering for each 

domain and each ranking method. The top first cluster centroid model is selected from each 

TASSER simulation.  The models only contain Cs and usually contain C atom clashes and 

have bad geometry. We fix these problems by rebuilding the full backbone with ideal bond 

lengths and bond angles starting from the TASSER model that is closest to the cluster centroid.  

We then relax the built models using the C-only model as a constraint and energy functions that 

contain all TASSER’s energy terms and an H-bond score given by the number of hydrogen 

bonds. Side-chains are built on those relaxed models with an in-house template-based approach.  

For each target, the top five template alignments are used for side-chain building. Starting from 

the top template model, if the aligned template residue is identical to the target, the side-chain 

rotamers of the template are copied to the target. For those residues in the target without an 

identical aligned residue in any of the five templates, we build the side-chains by optimizing the 

DFIRE
8
 energy function with a simple sampling procedure by the changing side-chain 

conformations sequentially along the chain. Final model ranking is based on a benchmarking 

study of CASP9 targets: For Easy targets, the first model is the refined model from GOAP 

selection,  the second is from FTCOM, the third is from TASSER-QA, the fourth is the top 

unrefined GOAP selection and the fifth is the top unrefined TASSER-QA selection. For 

Medium/Hard targets, the first model is the refined model from TASSER-QA selection, the third 

is from GOAP and the rest are the same as for Easy targets. 

We have used two methods for refinement targets. One is loop modeling by generating a 

large number of alternative loop conformations based on the information provided by CASP 

organizers if available or secondary structure predictions and using the GOAP energy function to 
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select top 5 unique models. We then use the 5 models as effective multiple template models in 

MODELLER
9 

to build final model. The other is to select top 30 closest models to the refinement 

target from all CASP servers and feed them into TASSER for refinement.  

 

Result 

The predicted structures by TASSER human expert have better quality than our TASSER-VMT 

server predictions by about 13% as assessed by their GDT-TS-score to native for the top first 

models of the released 30 human targets/domains (by Sept. 20, 2012).  This is mainly due to the 

better pool of structures from the CASP servers and reliable GOAP and TASSER-QA model 

selections. The TASSER prediction is also slightly better than the top server for these 30 

targets/domains (total GDT-TS-score 15.19 vs. 14.91). 

 

Availability 

TASSER related programs as well as their services are available through our webpage at 

http://cssb.biology.gatech.edu/ 

 

1. Zhou, H. and Zhou,H. (2005) Fold recognition by combining sequence profiles derived from 

evolution and from depth-dependent structural alignment of fragments. Proteins 58, 321--

328. 

2. Zhou, H. & Skolnick, J. (2011). GOAP: A Generalized Orientation-Dependent, All-Atom 

Statistical Potential for Protein Structure Prediction. Biophysical Journal 101, 2043-2052. 

3. Zhou,H  and Skolnick, J. (2010) Improving threading algorithms for remote homology 

modeling by combining fragment and template comparisons. Proteins. 78, 2041-8. 

4. Zhou,H. and Skolnick,J.(2007) Protein model quality assessment prediction by combining 

fragment comparisons and a consensus Cα contact potential. Proteins 71,1211--1218. 

5. Zhang, Y. and J. Skolnick(2004) Automated structure prediction of weakly homologous 

proteins on genomic scale. Proc. Natl. Acad. Sci. (USA) 101,7594--7599. 

6. Zhou, H and Skolnick, J.  (2007)  Ab initio protein structure prediction using chunk-

TASSER.. Biophysical Journal. 93,1510-8. 

7. Zhang, Y. and Skolnick,J. (2004) SPICKER: a clustering approach to identify near-native 

protein fold. J. Comput Chem 25, 865--871. 

8. Zhou, H., and Y. Zhou. 2002. Distance-scaled, finite ideal-gas reference state improves 

structure-derived potentials of mean force for structure selection and stability prediction. 

Protein Science 11 2714--2726. 

9. Sali,A., et.al. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 

1993;234:779--815. 
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TASSER-VMT 

TASSER-VMT server for protein structure prediction in CASP10 

H. Zhou and J. Skolnick 

Center for the Study of Systems Biology, School of Biology 

 Georgia Institute of Technology, 250 14th Street, N.W., Atlanta, GA 30318 
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The TASSER-VMT server implements the latest variants of the TASSER methodology for 

automated protein structure prediction
1,2

. 

 

Method 

Based on the observation that multiple template-based methods often perform better than single 

template-based methods, we explore the use of a Variable number of Multiple Templates (VMT) 

for a given target in the latest variant of TASSER
2
, TASSER

VMT
. We first develop an algorithm 

that improves the target-template alignment for a given template. The improved alignment, 

called the SP
3
 alternative alignment, is generated by a parametric alignment method coupled with 

short TASSER refinement on models selected using knowledge-based scores. The refined top 

model is structurally aligned to the template to produce the SP
3
 alternative alignment. Templates 

identified using SP
3
 threading

3
 are combined with the SP

3
 alternative and HHEARCH 

alignments to provide target alignments to each template. These template models are then 

grouped into sets containing a variable number of template/alignment combinations. For each 

set, we run short TASSER simulations to build full-length models. Then, the models from all sets 

of templates are pooled, and the top 20-50 models selected using FTCOM
4
 ranking method. 

These models are then subjected to a single longer TASSER refinement run for final prediction. 

We benchmarked our method by comparison with our previously developed approach, pro-sp3-

TASSER
5
, on a set with 874 Easy (defined as having SP

3
 Z-score >=6) and 318 Hard targets (SP

3 

Z-score < 6). The average GDT-TS score improvements for the first model are 3.5% and 4.3% 

for Easy and Hard targets, respectively. When tested on the 112 CASP9 targets, our method 

improves the average GDT-TS scores as compared to pro-sp3-TASSER by 8.2% and 9.3% for 

the 80 Easy and 32 Hard targets, respectively. It also shows slightly better results than the top 

ranked CASP9 Zhang-Server, QUARK and HHpredA methods.              

 

Result 

An in-house assessment of TASSER-VMT’s performance for the 56 released targets/domains by 

Sep. 20, 2012 shows that TASSER-VMT performs among the top servers. 

 

 

 Availability 

The TASSER-VMT service is available through our webpage at http://cssb.biology.gatech.edu/ 

 

1. Zhou, H, Skolnick, J. (2012)  Template-based protein structure modeling using TASSER
VMT

. 

Proteins: Structure, Function, and Bioinformatics. 80(2):352-361 

2. Zhang, Y. and J. Skolnick(2004) Automated structure prediction of weakly homologous 

proteins on genomic scale. Proc. Natl. Acad. Sci. (USA) 101,7594--7599. 
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328. 

4. Zhou,H  and Skolnick, J. (2010) Improving threading algorithms for remote homology 

modeling by combining fragment and template comparisons. Proteins. 78, 2041-8. 

5. Zhou,H and  Skolnick, J. (2009)  Protein structure prediction by pro-sp3-TASSER. 

Biophysical Journal. 96, 2119-27. 
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TSAILAB 

Hand Building Predictive Models Using An Amino Acid Structural Code 

Archana G. Chavan, Hyun Joo, Jamie Phan, Jerry Tsai 

University of the Pacific, Stockton CA 95211 

In an exhaustive analysis of packing in the Protein Data Bank, the knob-socket tetrahedral 

construct was identified as a fundamental principle underlying protein structure (1,2). 

Application of this knob-socket principle to classification of protein structure reveals distinct 

amino acid preferences for certain knob-socket arrangements. These preferences define a discrete 

amino acid code for the relative spatial arrangement of protein residues in secondary and tertiary 

structure. Amino acid composition of 3-residue sockets specifies secondary structure, while 

interaction of the 3-residue socket with a fourth residue indicates tertiary packing.  Our approach 

applies this amino acid code to adjust secondary structure predictions and precisely pack these 

secondary structure elements in an essentially hand building process.  

 

Methods 

In this past CASP10 experiment, 54 regular target sequences were modeled: 21 template-based 

models (TBM) and 33 free models (FM). In our approach, secondary structure is first identified 

and refined. For TBM targets, secondary structure is obtained from structural template 

identification using PSI-BLAST (3). For FM targets, an initial secondary structure analysis is 

performed using PSIPRED(4) and/or FFAS(5). Primary sequence alignment and secondary 

structure are then modified based on the 3-residue socket propensities. The next step involves the 

topological assembly of these secondary structure elements. Our knob-socket based amino acid 

code was used to map out patterns of knob residues packing into particular 3 residue sockets 

between secondary structure elements. The TBM targets largely involved rearrangements of the 

template knob-socket patterns, while FM targets required de novo identification of knob-socket 

patterns. The UCSF Chimera package (6) was used to place secondary structure elements, and 

the Modeller (7) package was used to build final models. In a similar fashion, predictions were 

constructed for 5 refinement and 9 assisted modeling targets. 

 

Availability 

As this approach based on a knob-socket defined amino acid code is still under development, a 

defined package of code is yet to be developed. However, the knob-socket propensities are 

available upon request. 

 

1. Joo,H., Chavan,A.G., Phan,J., Day,R. and Tsai,J. (2012). An amino acid packing code for 

&#945;-helical structure and protein design. J. Mol. Biol. 419, 234-254. 

2. Day,R., Lennox,K.P., Dahl,D.B., Vannucci,M. & Tsai,J.W. (2010). Characterizing the 

regularity of tetrahedral packing motifs in protein tertiary structure. Bioinformatics 26, 3059–

3066. 

3. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. & Lipman,D.J. 

(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. 

Nucleic Acids Res. 25, 3389-3402. 

4. McGuffin,L.J., Bryson,K. and Jones,D.T. (2000). The PSIPRED protein structure prediction 
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profile-profile sequence alignments. Nucl. Acids Res. 33, W284-W288. 

6. Pettersen,E.F., Goddard,T.D., Huang,C.C., Couch,G.S., Greenblatt,D.M., Meng,E.C. and 

Ferrin,T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. 

J. Comput. Chem. 25, 1605-1612. 
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TSlab-psQA 

Single-model quality assessment based on a distance map prediction 

Genki Terashi, Yuuki Nakamura, Hiromitsu Shimoyama and Mayuko Takeda-Shitaka 

School of Pharmacy, Kitasato University 

shitakam@pharm.kitasato-u.ac.jp 

 

In the previous CASP experiments, the consensus based method has been shown to outperform 

other method for Quality Assessment (QA) category. The top performed QA groups used very 

similar strategies (consensus method) and obtained very similar results. On the other hands, 

according to the correlation-based assessment in CASP9, single model methods were far behind 

the consensus methods and it indicated that there is room to improve the single model method. 

Therefore, in CASP10, we participated with TSlab-psQA (pure-single Quality Assessment 

program) in QA category. Our goals were to estimate the quality score which has high correlation 

with the actual quality (GDT_TS) and to identify the best model from the model set, without 

using the consensus method. The TSlab-psQA estimates the quality of a single model based on 

the contact prediction method, secondary structure prediction method and the neural network 

training-prediction method without using any template information and consensus based score 

(i.e. pure-single model quality assessment method). Based on TSlab-psQA method, we 

developed another QA method TSlab-tbQA (quasi-single model method) that uses template-

based evaluation score. Methods and Results of TSlab-tbQA are shown in the method abstract of 

TSlab-tbQA. 

 

Methods 

The psQA employed the four steps for each target as follows: (1) HHblits1 was executed against 

UniProt20 to build a multiple sequence alignment (MSA). (2) The residue-residue contact 

prediction was performed from the MSA by PSICOV2 , and the secondary structure prediction 

for each amino acid residues were performed by PSIPRED3. (3) From the features of local 

window (such as amino-acid type, secondary structures prediction, secondary structure and 

residue-residue contact prediction), an artificial neural network predicted the distance map of the 

all residues pairs of the target. In CASP10, we used the distance between the side-chain centers, 

not Cα atoms. The neural network was trained on 5664 targets (clustered PDB30 training data 

sets). (4) The estimated quality score was calculated by comparing the predicted distance map 

and the actual distance map of the model to be evaluated. All of the parameters of TSlab-psQA 

were optimized from CASP9 data and PDB30 data. 

 

Results 
Our preliminary results based on released 49/114targets in Sep 2012 were shown in the Table 1. 

 

Table 1. Our preliminary analysis on 49 CASP10 targets 

 Average(r) Overall(r) Delta GDT_TS # 

TSlab-psQA_stage1 0.62 0.47 7.9 44 

TSlab-psQA_stage2 0.31 0.45 5.1 44 
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1. Remmert, M., Biegert, A., Hauser, A. & Soding, J. (2012). HHblits: lightning-fast iterative 

protein sequence searching by HMM-HMM alignment. Nat Methods 9, 173-5. 

2. Jones, D. T., Buchan, D. W., Cozzetto, D. & Pontil, M. (2012). PSICOV: precise structural 

contact prediction using sparse inverse covariance estimation on large multiple sequence 

alignments. Bioinformatics 28, 184-90. 

3. Jones,D.T. (1999) Protein secondary structure prediction based on position-specific scoring 

matrices. J. Mol. Biol. 292, 195-202.  
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TSlab-refine 

Conformation sampling with weakened repulsive force and selection from the ensemble 

Hiromitsu Shimoyama, Genki Terashi , Yuuki Nakamura and Mayuko Takeda-Shitaka 

School of Pharmacy, Kitasato University 

shitakam@pharm.kitasato-u.ac.jp 

 

We participated in the refinement category of CASP10. Our method can be divided into two 

parts. First, all-atom molecular dynamics (MD) simulations were performed in order to sample 

various conformations around starting structure. Second, qualities of the conformations were 

evaluated by using several descriptors. Here we describe original part of our method briefly.  

 

Methods 
Potential surfaces of proteins are expected to be rugged and complicated: for example, steric 

clashes among atoms cause such surfaces. In order to sweep conformation space quickly, our 

group performed MD with weakened repulsive force: Lenard-Jones potentials are partially 

linearized as follows. 

 
 is an energy coefficient,  is a distance between atom  and ,  is equilibrium distance.  is an 

energy coefficient and .  is distance parameter at which outer- and inner-

potential coincide with each other. 

 The energy coefficient  was taken to be a time-dependent parameter, i.e. 

. The parameters are taken to be  kcal/mol/Å,  

kcal/mol/Å, and  psec. Ordinary structures are probably obtained at least every  

seconds. In addition to the linearization, temperature was also increased every  second, i.e. 

:  K and  K. These methods were implemented in a 

program myPresto 1. 

By these modifications, our MD simulation can sample more quickly than ordinary MD. 

Next problem is how to select better structures from the ensemble. In order to assess the quality, 

three parameters were considered, (1) TSlab-psQA score, (2) DFIRE2 potential, (3) solvent 

accessible surface area (SAS). The TSlab-psQA score is a single-model quality assessment score 

which was developed and used for quality-assessment category by TSlab-psQA group (see detail 

in abstract by the group). SAS was used in order to select compact structure. Z-score of these 

variables was obtained from MD ensemble and averaged. We selected a structure of the highest 

averaged Z-score as the best structure. 

 

References 
1. Fukunishi,Y., Mikami,Y. & Nakamura,H (2003). The filling potential method: A method for 

estimating the free energy surface for protein-ligand docking. J. Phys. Chem. B. 107, 13201-

13210. 
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Single-model quality assessment method using template-based evaluation score 

Yuuki Nakamura, Genki Terashi, Hiromitsu Shimoyama and Mayuko Takeda-Shitaka 

 School of Pharmacy, Kitasato University 

shitakam@pharm.kitasato-u.ac.jp 

 

In CASP10, we participated with TSlab-psQA and TSlab-tbQA in Quality Assessment (QA) 

category. TSlab-psQA estimates the quality of a single model based on the contact prediction 

method and the neural network training-prediction method without using any template 

information and consensus based score (pure-single model method) (see method abstract of 

TSlab-psQA). In order to improve accuracy to estimate the quality of the model that has high 

correlation with the actual quality, TSlab-tbQA (quasi-single model method) calculates the score 

by combining template-based evaluation score with the TSlab-psQA score. 

 

Methods 
TSlab-tbQA employed the three steps for each target as follows: (1) search for homologous 

templates: HHblits
1
 was used to search sequence, alignment, and construct coarse structure 

models which were composed of only aligned Cα atoms. Each residue was weighted by 

confidence value of secondary structure estimated by PSIPRED
2
. (2) Calculate structural 

similarity score between the given model and homologous templates: the three coarse structure 

models from the top three templates were used as the homologous templates. As the structural 

similarity score, GDT
3
 between the given model and the each coarse structure models was 

summed, and normalized to the dimension of the GDT_TS
3
 value. (3) Calculate the final score 

by combining the above score with the TSlab-psQA score: the two scores were combined by 

linear combination. As dataset for the normalization and the linear combination, server models in 

the CASP9 were used. 

 

Results 

Our preliminary results (Table 1) show that TSlab-tbQA has better average correlation values 

than TSlab-psQA. 

 

Table 1. Our preliminary analysis based on released 49/114 CASP10 targets in Sep 2012 

 

 Average(r) Overall(r) Delta GDT_TS # 

TSlab-

psQA_stage1 

0.62 0.47 7.9 44 

TSlab-

psQA_stage2 

0.31 0.45 5.1 44 

TSlab-

tbQA_stage1 

0.70 0.84 5.7 49 

TSlab-

tbQA_stage2 

0.40 0.82 6.8 49 
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Models were constructed using Foldit, the online multiplayer game at http://fold.it. CASP10 

targets shorter than 170 residues were given to Foldit players as puzzles to solve. Foldit allows 

players to form teams for cooperative gameplay; in this case predictions were selected from 

members of the Foldit team Void Crushers.  

 

Methods 
Foldit uses the Rosetta protein modeling software package

1
 and allows players to modify and 

visualize protein structures in real time
2
. Foldit players are provided with tools that allow them to 

move the protein structure manually, such as directly pulling on any part of the protein. They are 

also able to rotate helices and rewire beta-sheet connectivity. Players are able to guide moves by 

introducing soft constraints and fixing degrees of freedom, and have the ability to change the 

strength of the repulsion term to allow more freedom of movement. Available automatic 

moves—combinatorial side-chain rotamer packing, gradient-based minimization, fragment 

insertion—are Rosetta optimizations modified to suit direct protein interaction and simplified to 

run at interactive speeds.  Each CASP10 puzzle was typically accessible to Foldit players for 8-9 

days. 

For CASP10 targets shorter than 170 residues in the “All Groups” category, two different 

Foldit puzzles were given to the players. One puzzle started from an extended chain, with 

alignments to known templates taken from the RAPTOR
3
, SPARKS

4
, and HHsearch

5
 servers 

provided. Foldit players were able to modify alignments between the query and template 

sequences within the game. They could then build models based on these alignments by 

threading the query sequence onto the templates and refining these models using the in-game 

tools listed above. For the second puzzle, models were constructed using the QUARK
6
 and 

Zhang-Server
7
 predictions. These server models were initially minimized using Rosetta and then 

given as starting points for the Foldit players to refine. This same protocol was used for CASP10 

targets in the “Refinement" category, where server models were first minimized with Rosetta 

before being given to the Foldit players. 

 

Quality and ranking of individual models was determined initially by the Rosetta full-

atom energy. Submissions were then selected from Void Crushers predictions (that were not 

submitted from group FOLDIT already) based on: 

 

 (for refinement targets) the fit between actual difference (GDT_TS) of the prediction from 

the starting model and expected difference of a good solution from the starting model. 

(GDT_TS calculated by TM-Score
8
) 

 the Rosetta energy score 

 (for normal targets) the diversity from starting structures provided by servers and from other 

http://fold.it/
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models submitted by our group (compared visually and by RMSD through PyMOL
9
) 

 the probability of the secondary structures of a model (compared with the predictions by the 

SAM-T08 server
10

) 

 (for cysteine heavy targets) the number of disulfide bonds 

For de-novo targets models folded from scratch or using templates did get boni compared to 

models based on server models. 

 

Availability 
Foldit is available through the Rosetta Commons at http://tinyurl.com/academic-foldit   
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Popović,Z., Havranek,J., Karanicolas,J., Das,R., Meiler,J., Kortemme,T.,  Gray,J.J., 

Kuhlman,B., Baker,D. & Bradley,P. (2010) ROSETTA3.0: An Object-Oriented Software 

Suite for the  Simulation and Design of Macromolecules. Methods in enzymology 487, 

545-74. 
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3. Peng,J. & Xu,J. (2009) Boosting Protein Threading Accuracy. Research in Computational 

Molecular Biology (RECOMB), 5541, 31-45.  

4. Yang,Y., Faraggi,E., Zhao, H. & Zhou,Y. (2011) Improving protein fold recognition and 
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dimensional structural properties of the query and corresponding native properties of 

templates. Bioinformatics 27, 2076-2082. 
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21(7), 951-60. 

6. Xu,D. & Zhang,Y. (2012) Ab initio protein structure assembly using continuous structure 

fragments and  optimized knowledge-based force field. Proteins 80, 1715-35  
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WeFold is a group branch of the WeFold collaboration (http://www.wefold.org). It tests the 

combination of model selection from all CASP servers by APOLLO model quality assessment 

prediction method and the TASSER refinement protocol. 

 

Methods 

All models from all CASP servers were assessed by the APOLLO model quality assessment 

prediction method. APOLLO
1
 first filters out illegal characters and chain-break characters in the 

models predicted for a target. And then it performs a full pair-wise comparison between these 

models by calculating the GDT-TS scores between each pair of models using the tool TM-

Score
2
. The average pair-wise GDT-TS score between a model and all other models is used as the 

predicted GDT-TS score of the model. Subsequently, TASSER
3
 method was employed to refine 

the top 30 selected models. First, TASSER extracts distance and contact restraints based on 

consensus conformations of the 30 selected structures. Then, it starts from the 30 structures and 

moves them to satisfy the distance and contact restraints using replica exchange Monte Carlo 

simulation
4
 and Cα representation. Low energy trajectories were output at fixed step intervenes. 

At the end of simulation, these trajectories were clustered using the SPICKER approach.
5
 

Models selected for submission are the top cluster centroids with rebuilt main-chain and side-

chain atoms. 

 

Availability 

APOLLO (Quality-assessment) http://sysbio.rnet.missouri.edu/apollo/ 

TASSER (Refinement): http://cssb.biology.gatech.edu/ 

WeFold (Collaborative Protein Folding): http://www.wefold.org/ 

 

1. Wang, Z., Eickholt, J. & Cheng, J. (2011). APOLLO: A Quality Assessment Service for 

Single and Multiple Protein Models. Bioinformatics 27, 1715-1716. 

2. Zhang, Y.  & Skolnick, J. (2004). Scoring function for automated assessment of protein 

structure template quality. Proteins: Structure, Function, and Bioinformatics 57, 702-710. 

3. Zhang, Y. & Skolnick, J. (2004). Automated structure prediction of weakly homologous 

proteins on a genomic scale. Proceedings of the National Academy of Sciences of the 

United States of America 101, 7594-7599. 

4. Gront, D., Kolinski, A. & Skolnick, J. (2001). A new combination of replica exchange 

Monte Carlo and histogram analysis for protein folding and thermodynamics. Journal of 

Computational Physics 115, 1569-1574. 

5. Zhang, Y. & Skolnick, J. (2004). SPICKER: A clustering approach to identify near-native 

protein folds. Journal of Computational Chemistry 25, 865-871. 
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WeFoldMix 

Application of Replica Exchange Molecular Dynamics with Implicit Solvation for 

Refinement of Collaboratively Generated and Ranked Models 

 

L.O. Bortot¹, R.A. Faccioli², A.C.B. Delbem²  & the WeFold Community
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1: Laboratory of Biological Physics, Faculty of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, 
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WeFold is an open collaboration initiative bringing together a dozen labs from all over the world 

through the science community gateway http://www.wefold.org. It enables the interaction among 

various groups that work on different components of the protein structure prediction pipeline, 

making it possible to leverage expertise at a scale that has never been done before. The 

collaboration resulted in five different branches, each submitting their own models. Here we 

describe the WeFoldMix branch.  

 The focus of this branch was to refine models which had already passed through all steps 

of the prediction pipeline as described in the other branches (wfFUIK, wfCPUNK, wfFUGT), 

e.g. prediction from hybrid homology/ab initio approaches, clusterization, refinement and 

ranking, each step using multiple methods and metrics. Specifically, we applied Replica 

Exchange Molecular Dynamics to the top ranked models for some targets aiming to further 

improve their quality. 

 

Methods 

A small set of high quality models collaboratively generated and ranked were chosen for 

applying the methodology described below. Each starting model was submitted to a two-step 

energy minimization with the steepest descent algorithm¹. While in the first step no constraints 

were applied to the protein, in the second one all covalent bonds were constrained with the 

LINCS algorithm². 

 In conventional Molecular Dynamics (MD) simulations the atoms are moved along time 

according to the potential energy calculated with the equations and parameters of the chosen 

forcefield³. Because of the rugged nature of the potential energy landscape that describes the 

conformational behavior of proteins, they usually get trapped in local minima, which hinders the 

adequate sampling of the conformational space. The Replica Exchange Molecular Dynamics 

(REMD) algorithm tries to overcome this by allowing the system to diffuse through temperature 

space, facilitating the overcoming of potential energy barriers. When this algorithm is employed, 

multiple conventional MD simulations - called replicas - are done simultaneously at different 

temperatures and they are allowed to exchange temperatures at a given frequency according to 

Metropolis criterion
4-5

. 

 We used a temperature range of 309 to 373K with 8 replicas. After 1 to 3 nanoseconds of 

REMD, the 309K trajectory portion which reached convergence was used for cluster analysis 

using a single linkage algorithm. Each cluster centroid was submitted to the same previously 

described two-step energy minimization process and each minimized cluster centroid was ranked 

based on several structural and energetic metrics, such as potential energy, number of intra-

protein hydrogen bonds and hydrophobic solvent accessible surface area. Those with the best 

compromise among all the metrics were sent to CASP10. 
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 All simulations were carried out with the GROMACS 4.5.5 simulation suite
6-7 

using the 

AMBER99SB-ILDN forcefield
8
. In order to speed up the simulations the GBSA implicit 

solvation model
9
 was used with the OBC algorithm for calculating the Born radii

10
. 

 

Availability 

The GROMACS software suite is freely available at www.gromacs.org 
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WeFold is an open collaboration initiative bringing together a dozen labs from all over the world 

through the science community gateway http://www.wefold.org. It enabled the interaction among 

groups that work on different components of the protein structure prediction pipeline, thus 

making it possible to leverage expertise at a scale that has not been done before. The 

collaboration resulted in five different branches, each submitting their own models. Here we 

describe the wfCPUNK branch. 

 

Methods 
The structures of the target proteins were predicted by a procedure which consists of the 

following four steps. First, coarse-grained simulations with the UNRES force field, with 

dihedral-angle and distance restraints imposed on the virtual-bond dihedral angles between the 

consecutive -carbon (C) atoms and virtual side-chain distances, respectively, were employed 

to carry out Multiplexed Replica Exchange Molecular Dynamics (MREMD)
1
 for target proteins. 

The restraints were obtained by using CONCORD
2
 for secondary-structure prediction, BeST

3
 for 

beta-sheet topology prediction, and a physics-based method of inter-residue contact prediction.
4; 5

 

Second, based on MREMD simulation results, Weighted-Histogram Analysis Method (WHAM) 

analysis was used to calculate relative free energy of each structure of last slice of MREMD 

simulation; the respective procedure is described in ref. 6. Third, cluster analysis was employed 

to cluster the structures from a MREMD simulation. Five clusters with lowest free energies were 

chosen as prediction candidates. The conformations closest to the respective average structures 

corresponding to the found clusters were converted to all-atom structures
7; 8

 and energy 

minimized using a knowledge-based potential followed by stereochemical correction 

implemented in the KoBaMIN server.
9
 This knowledge-based potential has been benchmarked 

using an extensive set of decoys
10

 and previous CASP models.
11

 

 In the UNRES model, a polypeptide chain is represented by a sequence of -carbon 

atoms connected by virtual bonds with attached side chains. Two interaction sites are used to 

represent each amino acid: the united peptide group (p) located in the middle between two 

consecutive -carbon atoms and the united side chain (SC). The interactions of this simplified 

model are described by the UNRES potential derived from the generalized cluster-cumulant 

expansion of a restricted free energy (RFE) function of polypeptide chains. The cumulant 

expansion enabled us to determine the functional forms of the multibody terms in UNRES. In 

http://www.wefold.org/
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this CASP exercise we also introduced correlation terms that couple the backbone and side chain 

local-interaction energies. The effective energy function depends on temperature and has been 

parameterized to reproduce structure and thermodynamics of selected training proteins.
6; 12

 

 

Availability 
The components of the methods used are available by the developers of each method at the 

following webpages. 

UNRES (Package to perform coarse-grained simulations of protein structure and dynamics): 

http://www.unres.pl  

CONCORD (2°structure prediction): http://helios.princeton.edu/CONCORD/ 

BeST (β-sheet topology prediction):  http://selene.princeton.edu/BeST/ 

KoBaMIN (refinement): http://csb.stanford.edu/kobamin 

WeFold (Collaborative protein folding effort): http://www.wefold.org 
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A hybrid method using structures constructed by 

human players via Foldit and selected by a 

consensus of state-of-the-art in-house 

computational methods from 7 research groups was 

used for the prediction of human and refinement 

CASP targets as part of the WeFold collaboration. 

WeFold is an open collaboration initiative bringing 

together a dozen labs from all over the world 

through the science community gateway 

http://www.wefold.org. It enables the interaction 

between groups that work on different components 

of the protein structure prediction pipeline, making 

it possible to leverage expertise at a scale that has 

not been done before. The collaboration resulted in 

five different branches, each submitting their own 

models. Here we describe the wfFUIK branch. 

Team members from the different labs 

adapted the in-house methods designed to operate 

on smaller datasets to be able to tractably perform 

the corresponding calculations with the large 

datasets within each deadline. Furthermore, 

methods were adapted to be able to handle systems 

containing structural symmetry. The methodology 

for filtering, clustering, ranking, and selection was 

conceived collaboratively using the strengths of 

each contributing group. 

 
Figure 1: Graphical representation of wfFUIK procedure 

mailto:george@titan.princeton.edu
http://www.wefold.org/
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Methods 
Figure 1 represents the combined methodology. (A) Human players generated an ensemble of 

protein models using the online multiplayer game Foldit
1
 (http://fold.it) on the order of 10

6
 

models per target. (B) Structural filtering was performed to eliminate duplicates (RMSD ≤ 

cutoff) as well as those with unrealistic SASAs, and those lacking relevant secondary structure 

elements, resulting in an enriched set on the order of 10
4
-10

5 
structures. (C) The iterative 

traveling salesman based clustering algorithm, ICON
2
 was used to select less than 100 models 

representing the entire conformational space including the lowest energy structures based on the 

Rosetta
3
 and dDFIRE

4
 energy functions. (D) These models were refined using a knowledge-

based potential followed by stereochemical correction implemented in the KoBaMIN
5; 6; 7

 server. 

(E) Finally, GOAP,
8
 an orientation-dependent, all-atom statistical potential and APOLLO,

9
 a 

quality-assessment method were used to rank the models, leading to a consensus. 

  

Availability 
The individual methods contributing to the collaborative effort (http://www.wefold.org) are 

available online: 

Foldit (Online multi-player game to solve folding puzzles): http://fold.it 

Rosetta (Scientific machinery behind Foldit): http://www.rosettacommons.org/ 

ICON (TSP-based clustering): http://helios.princeton.edu/ICON/ 

KoBaMIN (Refinement): http://csb.stanford.edu/kobamin 

GOAP (Scoring): http://cssb.biology.gatech.edu/GOAP/index.html 

APOLLO (Quality-assessment): http://sysbio.rnet.missouri.edu/apollo/ 
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This branch of the WeFold collaborative protein folding initiative (http://www.wefold.org) is 

similar to  the branch wfFUIK in that it starts with a filtered set of protein structures generated by 

the online multiplayer game Foldit. However, it deviates from that branch in the subsequent steps 

to select and refine the chosen models. The wfFUGT branch tests the combination of sampling 

by human Foldit players coupled with filtering algorithms, model selection by the knowledge-

based potential GOAP (not of a consensus-based kind such as clustering) and the TASSER 

refinement protocol. These methods are from different active groups and the experiment would 

be impossible without the Wefold collaboration. 

 

Methods 

Humans from all over the world playing the online multiplayer game Foldit
1
 first generate 

protein structure models (http://fold.it). This step produces models on the order of 10
6 

per target. 

A structural filtering step was then performed to eliminate duplicate structures (RMSD ≤ cutoff), 

structures with unrealistic solvent-accessible surface areas,
2
 and structures lacking relevant or 

any secondary structure elements.
3
 This resulted in an enriched set of models on the order of 10

4
-

10
5 

structures.  Subsequently, the knowledge-based potential GOAP
4
 was used to select the top 

30 models from the enriched set. TASSER
5
 was employed to refine the selected models. 

TASSER is primarily developed for refining template models built upon PDB structures found 

by threading methods. Here, we applied it to artificially generated Foldit structures driven by the 

knowledge-based potential Rosetta.
6
 First, it extracts distance and contact restraints based on 

consensus conformations of the 30 selected structures. Then, it starts from the 30 structures and 

moves them to satisfy the distance and contact restraints using replica exchange Monte Carlo 

simulation
7
 and Cα representation. Low energy trajectories were output at fixed step intervenes. 

At the end of simulation, these trajectories were clustered using the SPICKER approach.
8
 

Models selected for submission are the top cluster centroids with rebuilt main-chain and side-

chain atoms. 

 

Availability 

The individual methods contributing to the wfFUGT collaborative effort are available online at 

the following websites: 

Foldit (Online multi-player game to solve folding puzzles): http://fold.it/ 

Rosetta (Scientific machinery behind Foldit): http://www.rosettacommons.org/ 
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GOAP (Selection): http://cssb.biology.gatech.edu/GOAP/index.html 

TASSER (Refinement): http://cssb.biology.gatech.edu/ 

WeFold (Collaborative Protein Folding): http://www.wefold.org/ 
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Like in CASP9, the 'YASARA Structure' server (www.yasara.org/homologymodeling) submitted 

predictions for those targets that could be built reliably using known template structures. CASP9 

evaluation identified alignment accuracy and model hybridization from multiple templates as the 

main bottlenecks, which have therefore been the development focus, while hires refinement 

needed less attention1. 

 

Methods 

As in previous CASPs, our method targets classic homology modeling with a focus on high-

resolution refinement. This involves running PsiBLAST with Uniref90 profiles to identify the 

top 20 templates, using stochastic2 profile-profile alignments including SSALN features3 to 

arrive at alternative high-scoring target-template alignments, building models for all of them 

(using SCWRL4 rotamer libraries, but additional energy terms), scoring them, and fusing the 

best parts to a hybrid model. For CASP10, the focus was on better template profiles, which are 

now based on 'PSSP files' (Profiles from Sequence- and Structurally related Proteins), that use 

twisted structural alignments to go beyond what HSSP files offer (soon available for download). 

Additionally, a new hybrid modeler was developed, which combines the best parts from multiple 

models to hopefully get closer to the target. The following special features were handled 

automatically: inclusion of ligands in the model (as long as they interact well and stabilize the 

structure), automatic oligomerization to capture stabilizing effects of quaternary structure and 

pH-dependent hydrogen bonding networks that include ligands to aid hires refinement. 

 

Results 

The recipe above yielded homology models with reliable quality scores for 77 CASP10 targets. 

The server was deliberately configured not to submit models that were considered incorrect and 

is therefore incompatible with a ranking scheme that simply sums up GDT_TS values over all 

targets including fold recognition and de novo folding. The current focus is just on high-

resolution homology modeling needed e.g. for drug design. 

 

Availability 

The homology modeling module described here is available as part of YASARA Structure from 

www.yasara.org 
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The procedures we used for the human (as “Zhang”) and server (as “Zhang-Server” and 

“QUARK”) predictions are depicted in Figure 1. Methods used by “Zhang” and “Zhang-Server” 

are based on I-TASSER
1; 2; 3

 which are essentially the same, except for that the human prediction 

exploited the templates in CASP10 Server Section, while Zhang-Server used our in-house 

threading programs. QUARK is a pipeline developed for ab initio protein folding,
4; 5

 which was 

recently extended to template-assisted structure assembly (Xu & Zhang, in preparation). All the 

procedures are fully automated, in the sense that no human intervention is needed. 

 
Figure 1. Flowchart for automated structure modeling generated for “Zhang”, “Zhang-Server”, 

and “QUARK” in CASP10. 

Compared to our previous prediction procedures,
2; 6; 7

 the major new developments in 

CASP10 are in the ab initio modeling procedure where we found that combining QUARK with 

threading alignments can improve model quality for both free-modeling (FM) and template-

based modeling (TBM) targets. In the model selection, a new MQAP procedure is developed for 

final model selection, which includes multiple consensus- and physics-based model selectors. 

The overall structure prediction pipelines include three general steps: template identification, 

structure re-assembly, model selection and refinements.  

 

Template identification.  The target sequences are first threaded through non-redundant PDB 

structure libraries for identifying appropriate template alignments by LOMETS,
8
 a meta-server 

approach containing 8 locally installed threading programs. In human prediction, we additionally 

include the models generated by other groups in the Server Section into the template pool. 

Having more threading templates from the Server Section is the only source of differences 

between Zhang and Zhang-Server predictions. The degree of structural consensus of multiple 

templates, assessed by the average TM-score, is used to categorize the targets into “Easy” or 

“Hard”. 
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Template-based and ab initio structure assembly.  The template-based modeling is mainly 

implemented by I-TASSER, where continuous fragments excised from the threading templates 

are exploited to assemble full-length models
1; 3; 9

 with unaligned loop regions built by ab initio 

modeling.
10

 The simulations are implemented in a modified replica-exchange Monte Carlo 

protocol.
11

 The I-TASSER potential includes four components: (1) general knowledge-based 

statistics terms from the PDB (Cα/side-chain correlations
10

, H-bond
12

 and hydrophobicity
13

); (2) 

spatial restraints from threading templates
8
; (3) sequence-based Cα contact predictions by 

SVMSEQ;
14; 15

 (4) distance map from segmental threading
16

.  

QUARK
4; 5

 was originally developed for ab initio protein structure prediction without using 

global template structures, where short fragments of 1-20 residues are taken from unrelated 

proteins which are used to assemble the structural models under the guide of an optimized 

knowledge-based force field containing general statistical potentials and a protein-specific 

distance profile potential extracted from short fragments. In the new development, spatial 

restraints extracted from the LOMETS threading alignments are exploited to assist the QUARK 

structural assembly simulations. Depending on how the templates and restraints are used, four 

different version of QUARK programs were implemented in CASP10, i.e. QUARK-I: the default 

simulation without using threading templates; QUARK-II: default simulations but with initial 

conformation starting from threading template; QUARK-III: similar to QUARK-II but with 

distance profile restraints taken from the threading alignments; QUARK-IV: similar to QUARK-

III but with the full-set of spatial restraints (Cα distance map and side-chain contacts, similar to 

I-TASSER restraints
3
) exploited in QUARK simulations. 

Different procedures were used to generate models for different category of protein targets. In 

the QUARK server, for Hard targets, the programs QUARK-I and II are implemented; for Easy 

targets, QUARK-III and IV are implemented. In Zhang and Zhang-Server, for Hard targets, the 

models generated by QUARK-I and II simulations are used to sort the LOMETS templates, 

where the top templates which are structurally closest to the QUARK ab initio models are used 

by I-TASSER for the further structure assembly; for Easy targets, the default I-TASSER 

simulations are implemented to generate the structural decoys with the QUARK TBM models 

added in the starting conformation pool which are treated as 9
th

 set of threading templates in 

addition to LOMETS templates (see Figure 1). 

 

Model selection and refinements.  The structures in low-temperature replicas of I-TASSER and 

QUARK simulations are clustered by SPICKER.
17

 The atomic models are constructed by 

REMO
18

 from the cluster centroids by the optimization of the hydrogen-bonding network which 

is predicted by secondary structure assignments and the 3D backbone model. Finally, all the 

models are submitted to FG-MD
19

 and ModRefiner
20

 for structure refinement, with the purpose 

of improving local geometry and H-bonding, and reducing steric clashes of the models. 

To select models generated from different pipelines, we implement a set of seven MQAP 

programs, including the I-TASSER C-score, structural consensus measured by pair-wise TM-

score, and five statistical potentials (RW, RWplus, Dfire, Dope and verify3D). Finally, a MQAP 

consensus score is defined as the sum of the rank of the seven MQAP scores and models of the 

lowest consensus scores are finally selected for submission. 

 

Availability 

The on-line I-TASSER and QUARK servers are available, respectively, at: 
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http://zhanglab.ccmb.med.umich.edu/I-TASSER 

http://zhanglab.ccmb.med.umich.edu/QUARK.  
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The binding sites predictions for our human (“Zhang_FUNCTION”) and server (“I-

TASSER_FUNCTION”) predictions are both based on COACH, a consensus approach for 

ligand-binding sites prediction. Since some components of COACH relies on 3D structure of the 

target proteins, the Zhang_FUNCTION used multiple 3D models predicted by other servers in 

CASP10 Server Section and the I-TASSER_FUNCTION exploited only the 3D models predicted 

by the “Zhang-Server”. 

 

COACH combines the binding-site prediction results of five methods: COFACTOR
1,2

, 

FINDSITE
3
, ConCavity

4
, TMSITE, and SSITE. The first three are published methods and have 

been systematically benchmarked in a recent study
1
. TMSITE and SSITE are two recently 

developed methods to predict ligand-binding sites by the complementary structural alignment 

and sequence profile-profile alignment search, respectively. A recently developed database 

BioLiP
5
 for biologically relevant ligand-protein interaction is used as the template library for 

COFACTOR, TMSITE and SSITE. The overall architecture of COACH is demonstrated in 

Figure 1. 

 

 
Figure 1. The architecture of COACH for binding sites prediction. 

 

Given a query sequence, the structure prediction pipeline I-TASSER
6
 is used to build 3D 

structure model. At the same time, the query sequence is submitted to the sequence-based 

approach SSITE to predict its binding site residues. Once the structure modeling is done, query’s 

3D models are submitted to four structure-based methods to predict binding site residues. The 

top predictions from COFACTOR, TMSITE, SSITE, FINDISTE, and ConCavity are then 

combined using Support Vector Machine (SVM). The probability of each residue to be a binding 
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site residue provided by each method is collected, which is used to construct a feature vector for 

each residue. Finally, the feature vector is fed into SVM to make consensus prediction. 

 

Availability 

The COACH algorithm is available at http://zhanglab.ccmb.med.umich.edu/BioLiP/coach.html 
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Conformational sampling is one of the bottlenecks in fragment-based protein structure 

prediction approaches. They generally start with a coarse-grained optimization where main chain 

atoms and centroids of side chains are considered, followed by a fine-grained optimization with 

an all-atom representation of proteins. It is during this coarse-grained phase that fragment-based 

methods sample intensely the conformational space. If the native-like region is sampled more, 

the accuracy of the final all-atom predictions may be improved accordingly. We have proposed a 

new method for fragment-based protein structure prediction based on an Estimation of 

Distribution Algorithm, which we refer to as EdaFold
1
.  

 

Methods 

EdaFold is a fragment-based protein structure prediction algorithm. Similarly to Rosetta
2
, it is 

decomposed in two stages. First, 9-mers followed by 3-mers are assembled together to create 

coarse-grained models. 9-mers and 3-mers are taken from a fragment library which is created 

from protein structures available in the PDB. The fragment library we used was constructed 

using Rosetta's fragment picking method
3
. During the second stage, models are represented at 

atomic detail, and side chains are packed to minimize an all atom energy function. We use 

Rosetta Relax protocol to perform this operation. 

 EdaFold is an iterative process. Instead of randomly selecting fragments from the library, 

we use the Estimation of Distribution Algorithm to learn from previously generated decoys and 

steer the search toward native-like regions by constructing a non-uniform probability mass 

functions over the fragment library. At each iteration, the probabilities of selecting fragments for 

insertion are updated according to the observed frequency of each fragment in low energy 

models from the previous iteration. We perform 4 iterations, and models generated at each of 

them are present in the final population. At the first iteration, the fragments are selected 

randomly with a uniform probability mass function. This probability mass function is then 

updated according to the frequency of occurrences of each fragment in a subset of 15% lowest 

energy all-atom models.  At the next iteration, fragments will be picked according to this new 

probability mass function and used to generate coarse-grained models. The coarse-grained 

models will be refined by an energy minimization process that relies on simulated annealing and 

iterated hill climbing. All the coarse-grained models will be turned into all-atom models and 

refined by the fast relax protocol in Rosetta. 

 EdaFold was used to predict the structures of targets from the “all groups” category in 

CASP10. We submitted models for 46 targets of this category. The number of models generated 

for each target ranges from 35 000 to 200 000 depending on the length of the sequence and 

computational resources. The models were clustered with a 3 Angstrom radius. One model was 

selected out of each of the top 5 clusters after visual inspection. When no cluster could be 

identified, models were ranked by energy. Up to 5 models were selected out of the 200 lowest 

energies after visual inspection. 
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Availability 

The source code of a version of EdaFold producing coarse-grained models is available on our 

website: http://www.riken.jp/zhangiru/software.html 
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QUARK program was originally developed for template-free protein structure prediction.
1
 We 

have recently extended it for template-based modeling as well. In CASP10, we keep using the 

default program for modeling targets which are defined as “hard” by LOMETS.
2
 For other 

targets, QUARK starts from threading templates and use external distance and contact restraints 

as an energy term for restricted Monte Carlo structural assembly simulations. In the following, 

we mainly focus on the description of the second procedure. 

 

Methods 

Given the multiple threading templates by LOMETS, which have often alignment gaps, we first 

build the full-length backbone models by filling the gaps using a random walk procedure. 

QUARK then treats each of full-length models as the initial conformation of individual replicas 

in the Replica-exchange Monte Carlo simulation. Alternatively, we use up to 150 server models 

in Stage 2 as initial models of QUARK, when the CASP server models become available. 

For the targets with threading templates, the distance profiles are extracted from multiple 

threading alignments; this term was obtained from the ab initio short fragments in the default 

QUARK program.
3
 An energy term is designed in QUARK for evaluating the fitness of the 

decoy structures with the distance profiles. 

If native distance/contact restraint information is provided (i.e. in the Contact-Assisted target 

category), we will add the information as an additional energy term to guide the QUARK 

simulation. During the procedure, we also manually check the distance profiles to examine 

whether some residue pairs have high probability to form beta pairs. The distance restraint data 

are then extracted from the distance profiles of the residue pairs which are used for the restricted 

Monte Carlo simulation. 

Free-modeling targets are the major focus of this human group. We run four independent 

QUARK simulations based on the availability of distance/contact restraints. 

(1) Default QUARK free modeling 

(2) QUARK + distance restraints 

(3) QUARK + LOMETS templates as initial conformations + distance restraints 

(4) QUARK + CASP server models as initial conformations + distance restraints 

After the Monte Carlo simulation, we use SPICKER
4
 to generate five cluster centers by 

clustering all structural decoys. Since these models contain only backbone atoms, ModRefiner
5
 is 

used to build the full-atomic models and refine their physical quality. 

 

Results 

We examined the modeling results for the free-modeling targets that have experimental structure 

released by the time this abstract was prepared. With the help of a few true contact restraints 
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which were provided for the Contact-Assisted targets, several free-modeling targets converted 

from ‘non-foldable’ to ‘foldable’ in our procedure (see Table 1). 

Table 1. TM-score of the best QUARK model with and without true contact restraints. 

Target Without With Target Without With 

Tc649 0.32 0.43 Tc658-D1 0.24 0.49 

Tc673 0.39 0.48 Tc676 0.27 0.43 

Tc678 0.36 0.64 Tc680 0.70 0.84 

Tc705-D1 0.58 0.61 Tc735-D1 0.26 0.56 

Tc735-D2 0.37 0.44    

 

For Tc680 which is a tetramer protein, we first modeled the monomer structure as guided by 

default intra-chain distance restraints. In the second step, a linker of 34 alanines was generated to 

connect each of the monomer pairs so that the tetramer could be treated as an artificial monomer 

in our simulation. During the simulations, the inter-chain distance restraints were converted to 

intra-chain distance restraints. Each of the monomers was kept rigid and only the linker region 

was flexible. The best tetramer model for this target has a TM-score=0.65 to the native. 

 

Availability 

The default QUARK prediction and that with by distance/contact restraints are available as an 

online server at http://zhanglab.ccmb.med.umich.edu/QUARK/. 
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This group (‘Zhang_Refinement’) mainly focuses on the refinement category of the CASP10 

although 3D models were submitted for all targets. Two programs, ModRefiner
1
 and FG-MD

2
, 

were implemented to refine the protein structures. 

ModRefiner is a hierarchical program for protein structure refinement. It first constructs and 

refines the backbone structures with the consideration of only backbone atoms and side-chain 

center. In the second step, the full-atomic structures are relaxed during the repacking simulations 

(named ‘Flexible ModRefiner’). It has an option to allow input of a reference model, where 

distance/contact restraints can be extracted, to guide the refinement simulations (named 

‘Restrained ModRefiner’). 

FG-MD refines the models based on molecular dynamics simulations, where spatial restraints 

and a backbone-orientation specified hydrogen-bonding potential are used to guide the MD 

simulations. For a given target model, FG-MD exploits TM-align
3
 to collect the fragments from 

the PDB library that are structurally similar to the target models. These fragments were used to 

extract the spatial restraints including Cα distance and contact restraints. 

 

Methods 

We submitted five refined models for each target, which were generated using different 

strategies. 

(1) Run the Flexible ModRefiner program for 100 times with different random numbers. 

Select the model with the lowest ModRefiner energy. 

(2) Run the Restrained ModRefiner program once to get the model. Then run FG-MD to 

further refine the ModRefiner model. 

(3) Run the Restrained ModRefiner program for 100 times with different random numbers. 

Select the model with the lowest energy. 

(4) Run the Restrained ModRefiner program for 100 times with different random numbers. 

Select the model with the lowest MolProbity score.
4
  

(5) Run the Flexible ModRefiner program for 100 times with different random numbers. 

Select the model with the lowest MolProbity score. 

When we run the flexible ModRefiner, there is one parameter which controls the weight of the 

spatial restraints. This parameter is in [0,100]. Since GDT-TS score to the native was given for 

each CASP10 refinement target, we used the GDT-TS score as the weight in CASP10, which is 

proportional to the quality of the target reference model. 

For the targets where the regions needed to rebuild are informed by the organizers, we kept 

these regions completely flexible during the ModRefiner energy minimization. 

 

 

 

Results 
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We tested our procedures on the 35 refinement targets from CASP8 and CASP9. It was shown 

that the five models, generated by the procedures as described above, are generally better than 

the initial model in most of the features of GDT score and MPscore (see Table 1). 

Table 1. Refinement result on 35 CASP8 and CASP9 targets 

 GDT-HA GDT-SC RMSD MPscore 

Initial 56.330 31.283 3.400 Å 2.627 

Model 1 58.096 33.675 3.411 Å 2.434 

Model 2 58.195 31.475 3.369 Å 2.524 

Model 3 57.817 33.354 3.370 Å 2.434 

Model 4 57.661 33.454 3.371 Å 2.257 

Model 5 57.506 33.264 3.454 Å 2.261 

 

Availability 

ModRefiner server and the package are available at 

http://zhanglab.ccmb.med.umich.edu/ModRefiner/. FG-MD server is at 

http://zhanglab.ccmb.med.umich.edu/FG-MD/. 
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Fold recognition refers to recognizing the structural fold of a protein from its sequence. In recent 

CASP tests, although the best structure prediction servers involve some post-treatment of 

predicted models, the prediction quality of these methods is mostly determined by the quality of 

the template recognized. A series of successful single fold-recognition methods were developed 

in our group (SPARKS, SP2, SP3, SP4, SP5, and SPARKS-X
1
) that use both sequence profiles 

from multiple sequence alignment, and structure profiles, including secondary structure (SS), 

solvent accessible surface area (ASA) and main-chain torsion angles (φ/). Here, we further 

improve the method by employing statistical error potentials to estimate the agreement between 

the native template structure and improved predicted structural properties of the query sequence 

such as SS, φ/, and ASA. 

 

Methods 
1. Structural model: The query sequence was aligned with pre-compiled structural library, and 

the template with the highest alignment scores is selected for model building.  The model is built 

by modeller9v7 using the alignment generated by SPARKS-X. When there are gaps of more than 

30 residues in the termini, the procedure will be reused to build a separate model for the missing 

part. Subsequently, a refinement program was used to link the models of different parts of the 

query sequence and remove clashes by using the DFIRE potential function
2
. 

 

2. Sequence-based contact prediction: We predict contact map by using 78 features including the 

direct information
3,4

, sequence profile by HHblits
5
, and predicted SS, main-chain torsion angles, 

and ASA. The predictor is trained using libsvm on all 129 CASP9 protein targets. 

 

Availability 

The SPARKS-X structure prediction server is available on http://sparks.f3322.org/sparks-x, and 

the contact prediction server is in built. 

 

 

1. Yang Y, Faraggi E, Zhao H, Zhou Y. Improving protein fold recognition and template-

based modeling by employing probabilistic-based matching between predicted one-
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The ability to evaluate protein models against the experimentally determined reference structure 

is crucial for the development and benchmarking of protein structure prediction methods. 

Although a number of evaluation scores have been proposed to date, many aspects of model 

assessment still lack desired robustness. To remedy the situation we developed CAD-score 1 

(contact area difference score), a new evaluation function quantifying differences between 

physical contacts in a model and the reference structure.   

 

Methods 
The new score uses the concept of residue-residue contact area difference (CAD) introduced by 

Abagyan & Totrov 2. Contact areas, the underlying basis of the score, are derived using the 

Voronoi diagram of spheres that correspond to heavy atoms of van der Waals radii. The Voronoi 

diagram of spheres is constructed by an algorithm that is especially suited for processing 

macromolecular structures. The newly introduced CAD-score is a continuous function, confined 

within fixed limits, free of any arbitrary thresholds or parameters. The built-in logic for treatment 

of missing residues allows consistent ranking of models of any degree of completeness.  

 

Results 
We tested CAD-score on a large set of diverse models and compared it to GDT-TS, a widely 

accepted measure of model accuracy. Similarly to GDT-TS, CAD-score showed a robust 

performance on single-domain proteins, but displayed a stronger preference for physically more 

realistic models. Unlike GDT-TS, the new score revealed a balanced assessment of domain 

rearrangement, removing the necessity for different treatment of single-domain, multi-domain 

and multi-subunit structures. Moreover, CAD-score makes it possible to assess the accuracy of 

inter-domain or inter-subunit interfaces directly. In addition, the approach offers an alternative to 

the superposition-based model clustering.  

 

Availability 
The CAD-score implementation is available both as a web server and a standalone software 

package at http://www.ibt.lt/bioinformatics/cad-score/. 

 

1. Olechnovič K, Kulberkytė E, Venclovas Č. (2012) CAD-score: A new contact area 

difference-based function for evaluation of protein structural models. Proteins, doi: 

10.1002/prot.24172. 

2. Abagyan RA, Totrov MM. Contact area difference (CAD): a robust measure to evaluate 

accuracy of protein models. J Mol Biol 1997;268(3):678-685. 
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The concept of homology is at the heart of most studies dealing with protein sequence, structure 

and function. In the absence of protein structure, inference of homology usually has to rely 

exclusively on sequence data. At present, most sensitive sequence-based methods use 

comparison of multiple sequence alignments represented as sequence profiles. Sensitivity of such 

methods strongly depends on algorithms of profile construction and comparison. 

 

Methods 

We propose scoring and comparison of profiles based on statistical theory: The multivariate t-

distribution is used to describe the distribution of target profile probabilities. Relating to this type 

of distribution, we develop a new expression of log-odds scores to score a pair of profiles. To 

reveal the utility of the new scoring method, we perform a benchmark test on a set of distantly 

related proteins and compare the results with the existing profile comparison methods by the 

ROC analysis. 

 

Results 

The proposed paradigm of scoring has several important and useful features. By using either the 

multivariate or matrix-variate t-distribution, the paradigm can be easily extended to the level of 

profile contexts. Moreover, it can be readily included in Bayesian non parametric statistics. The 

latter enables statistical clustering of profile segments, thus making profile-pair scores group-

oriented and more sensitive.  
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CAMEO (http://www.cameo3d.org)  is a service for continuous automated model assessment. 

The first category within the framework assesses protein structure prediction servers. Protein 

structure modeling is widely used in the life science community to build models for proteins, 

where no experimental structures are available. However, depending on the specific target 

protein and the applied modeling approach, the accuracy of computational models may vary 

significantly between different modeling servers. 

CAMEO uses the amino acid sequences of the weekly PDB releases to continuously 

assess the accuracy and reliability of protein structure modeling servers. Retrospective evaluation 

of prediction accuracy allows users of models to select the most suitable tool for a given 

modeling problem. 

CAMEO evaluates prediction accuracy, and hence provides an independent blind 

benchmark to document the performance of new algorithms. Since the accuracy requirements for 

different scientific applications vary, CAMEO offers a variety of scores assessing different 

aspects of a prediction (coverage, local accuracy, completeness, etc.) to reflect these 

requirements. 

A second category for continuous assessment are the Ligand Binding Site Residue 

Predictions, which just has opened, along with the possibility to annotate ligands within CAMEO 

and thus aid the method developers, which in turn can produce more refined predictions for the 

user of these services. 

CAMEO has been inspired by EVA
1
 and LiveBench

2
 among others. 

 

1. Eyrich, V.A., Marti-Renom, M.A., Przybylski, D., Madhusudhan, M.S., Fiser, A., Pazos, 

F., Valencia, A., Sali, A., Rost, B. Bioinformatics (2001) 17(12): 1242-1243. 

2. Bujnicki, J. M., Elofsson, A., Fischer, D. and Rychlewski, L. (2001), Protein Science, 10: 

352–361. 
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The task of predicting binding sites from a protein’s sequence is of high relevance for life science 

research, ranging from functional characterization of novel proteins to applications in drug 

design. Consequently, the development of automated methods for predicting ligand-binding sites 

has received increasing attention over the past years. 

In order to help addressing relevant biological questions, the predictions need to be 

specific and accurate. Thus, in the CAMEO (http://www.cameo3d.org) ligand binding category 

we continuously assess ligand binding site predictions to evaluate the current state of the art of 

prediction methods, identify possible bottlenecks, and further stimulate the development of new 

methods. On average 44 targets with relevant ligands are assessed per week, which allows to 

draw statistically significant conclusions. 

As not all ligands are biologically relevant, CAMEO now features a Structure Annotation 

system, where ligands are annotated following a classification ontology to distinguish between 

irrelevant (e.g. buffer, solvent or covalent post translational modification) and relevant ligands 

(e.g. non-covalently bound natural or synthetic ligands).  

The CAMEO framework has been inspired by EVA
1
 and Livebench

2
 among others. 

 

1. Koh, I. Y., et al. Nucleic acids research 2003, 31(13): 3311-3315 

2. Bujnicki J.M., Elofsson A., Fischer D., Rychlewski L. Protein Sci. 2001, 10(2): 352–361. 
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Model quality evaluation plays a central role in protein structure prediction, and during the last 

decade, various approaches for estimating the quality of a model (MQAPs) enabling global 

and/or local (or per-residue) quality estimation have been developed.  

According to the CASP9 assessment, the best scoring global MQAPs are nowadays able 

to perform a nearly optimal relative distinction between “good” and “bad” models, however, 

local quality estimation still shows significant room for improvement. Given the need of having 

reliable MQAPs to evaluate a priori the usefulness of a model for the biological problem at 

hand, the community is currently directing its efforts toward the improvement of approaches to 

estimate the quality of models at a residue level. 

Thus, to help both users and MQAP developers we have envisioned an automated way 

to  continuously assess the accuracy of local quality estimation (QE) tools and have added a new 

category “CAMEO-QE” to the Continuous Automated Model EvaluatiOn (CAMEO [1]) 

framework, which is inspired by EVA [2] and Livebench [3]. CAMEO so far performs blind 

assessments of protein structure prediction and ligand binding site prediction methods on the 

weekly pre-released sequences of the PDB.  

As initial proof of concept, we have benchmarked four widely used tools for local model 

quality evaluation (QMEAN [4], Prosa2003 [5], Dfire [6] and Verify3D [7]) using CAMEO 

modeling data collected over 1 year, comprising ~11000 models of diverse accuracy.  

Residues in the models were classified as “correct” and “incorrect” applying different thresholds 

for lDDT scores, S-scores and Cα-distances based on least squares superposition relative to the 

target structures. Based on this assignment, the performance of the various local MQAPs was 

evaluated through ROC analysis, as this measure does not dependent on the exact nature of the 

different MQAP functional forms. Here, we present the outcome of this study, including an 

analysis of differences in accuracy for functionally interesting regions (interface regions, ligand 

binding sites, etc.) as well as the overall difficulty of the modelling task (easy / hard TBM 

targets). 

 

1. http://www.cameo3d.org/ 

2. Eyrich VA, Martí-Renom MA, Przybylski D, Madhusudhan MS, Fiser A, Pazos F, Valencia A, 

Sali A and Rost B. “EVA: continuous automatic evaluation of protein structure prediction 

servers.”, Bioinformatics. 2001 Dec;17(12):1242-3. 

3. Rychlewski L and Fischer D. “LiveBench-8: the large-scale, continuous assessment of 

automated protein structure prediction.”, Protein Sci. 2005 Jan;14(1):240-5. 

4. Benkert P, Biasini M and Schwede T. “Toward the estimation of the absolute quality of 

individual protein structure models.”, Bioinformatics. 2011 Feb 1;27(3):343-50. 
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5. Wiederstein M and Sippl MJ. “ProSA-web: interactive web service for the recognition of 

errors in three-dimensional structures of proteins.”, Nucleic Acids Res. 2007 Jul;35(Web 

Server issue):W407-10. 

6. Zhang C, Liu S, Zhou H and Zhou Y. “An accurate, residue-level, pair potential of mean force 

for folding and binding based on the distance-scaled, ideal-gas reference state.”, Protein Sci. 

2004 Feb;13(2):400-11. 

7. Eisenberg D, Lüthy R and Bowie JU. “VERIFY3D: assessment of protein models with three-

dimensional profiles.”, Methods Enzymol. 1997;277:396-404. 

 
  



267 

 

CASP-related: DisMeta 

DisMeta – a Meta Server for Construct Optimization 

Y. J. Huang and G. T. Montelione 

Center for Biotechnology and Medicine, Rutgers University 

Northeast Structural Genomics Consortium 

679 Hoes Lane, Piscataway, NJ 07076 

yphuang@cabm.rutgers.edu 

 

Natively disordered or unstructured regions in proteins are both common and biologically 

important, particularly in modulating intermolecular recognition processes. From a practical 

point of view, however, such disordered regions often can pose significant challenges for 

crystallization.  Disordered regions are also detrimental to NMR spectral quality, complicating 

the analysis of resonance assignments and three-dimensional protein structures by NMR 

methods. Identification of such disordered regions, by either experimental or computational 

methods, is a fundamental step in the NESG (Northeastern Structural Genomics Consortium) 

structure production pipeline, allowing the rational design of protein constructs that have 

improved expression, better solubility, improved crystallization, and which provide better quality 

NMR spectra. The DisMeta Server has been developed by NESG as a construct design and 

optimization tool.  

 

Methods 

The DisMeta Server runs several different disorder prediction software, including DISEMBL(1),  

DISOPRED2 (2), DISPro (3), FoldIndex (4), GlobPlot2 (5), IUPred (6), RONN (7), VL2 (8). 

The DisMeta Server also provides sequence-based structural prediction results from other 

bioinformatics software, including PROF (9), PSIPred (10), SignalP (11), TMHMM (12), Coils 

(13), SEG (14) and ANCHOR (15). In CASP10, the disorder predictions are calculated based on 

the Disorder Consensus and SEG results.   

 

Results 

The DisMeta results were compared with experimental NMR and HDX-MS data and had a very 

good agreement in general. We are also using this round of CASP as a performance evaluator. 

 

Availability 

The Dismeta server is available at this site: www-nmr.cabm.rutgers.edu/bioinformatics/disorder.  

 

1. Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., and Russell, R. B. (2003) 

Structure 11, 1453-1459 

2. Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F., and Jones, D. T. (2004) J Mol 

Biol 337, 635-645 

3. Cheng J, S. M., Baldi P. . (2005) Data Mining and Knowledge Discovery 11, 213-222 

4. Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, 

J. S., Silman, I., and Sussman, J. L. (2005) Bioinformatics 21, 3435-3438 

5. Linding, R., Russell, R. B., Neduva, V., and Gibson, T. J. (2003) Nucleic Acids Res 31, 
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8. Vucetic, S., Brown, C. J., Dunker, A. K., and Obradovic, Z. (2003) Proteins 52, 573-584 

9. Rost, B., Yachdav, G., and Liu, J. (2004) Nucleic Acids Res 32, W321-326 

10. Jones, D. T. (1999) J Mol Biol 292, 195-202 

11. Emanuelsson, O., Brunak, S., von Heijne, G., and Nielsen, H. (2007) Nat Protoc 2, 953-

971 

12. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) J Mol Biol 305, 

567-580 

13. Lupas, A., Van Dyke, M., and Stock, J. (1991) Science 252, 1162-1164 

14. Wootton, J. C., and Federhen, S. (1996) Methods Enzymol 266, 554-571 
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EVfold: de novo protein 3D structure from sequence variation 
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We use a new method for contact prediction from multiple sequence alignments to compute 3D 

structure models. The method is based on the well known idea that correlated mutations may be 

indicative of residue contacts. We address the confounding effect of transitive correlations in 

chains of pairs, higher order correlations and statistical noise by a maximum entropy approach. 

The resulting global probability model aims to capture true evolutionary couplings in residue 

pairs, useful for the discovery of functionally and structurally important interactions. 

As a test, we report the accuracy of the method as evaluated for cases of known 3D 

structures in blinded fashion, both for globular proteins and for alpha-helical trans-membrane 

proteins. The improvement in prediction accuracy for contacts and for 3D structures compared to 

earlier methods provides encouragement to apply the method to completely unknown structures.  

As genuine predictions in unknown territory, we report a set of predicted 3D structures of 

medically interesting trans-membrane proteins, such as the adiponectin receptor. The current 

requirement of at least hundreds of sequences in an iso-structural family limits the applicability 

of the method, e.g., to fewer than 10% of human proteins.  

In the future, methods of this type should be increasingly useful, as current sequencing 

technology will rapidly increase the number of sequences in protein families. The method will be 

applied in rolling CASP and will be made available on a web server. 

 

 

1. First EVfold 3D structures: DS Marks, LJ Colwell, R Sheridan, TA Hopf, A Pagnani, R 

Zecchina, C Sander. Protein 3D structure computed from evolutionary sequence variation. 

PLoS One 6, e28766, doi:10.1371/journal.pone.0028766 (2011). 

2. Maximum entropy method development: F Morcos, A Pagnani, B Lunt, A Bertolino, DS 

Marks, C Sander, R Zecchina, JN Onuchic, T Hwa, M Weigt. Direct-coupling analysis of 

residue coevolution captures native contacts across many protein families. Proc Natl Acad 

Sci U S A 108, E1293-1301, doi:10.1073/pnas.1111471108 (2011). 

3. EVfold_membrane 3D structures: TA Hopf, LJ Colwell, R Sheridan, B Rost, C Sander, DS 

Marks. Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing. 

Cell, doi:10.1016/j.cell.2012.04.012 (2012). 

4. Review of co-variation methods: DS Marks, TA Hopf, C Sander. Predicting Protein Structure 

from Sequence Variation.  Nature Biotechnology, 15 Nov 2012  
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Measuring the structural similarity of protein models is central to the CASP experiment. 

Traditionally, such comparisons are carried out using superposition-based similarity scores 

(Global Distance Test; GDT) on Cα atoms. GDT quantifies the number of corresponding atoms 

in two structures that can be superposed within a set of predefined tolerance thresholds. 

However, being based on rigid-body superposition, they cannot account for changes of relative 

domain orientation in multi-domain proteins, requiring each domain to be compared separately. 

The time-consuming domain splitting procedure needs to be carried out manually by the 

assessors. Additionally, as a Cα measure GDT does not account for accuracy differences of non- 

Cα atoms, which constitute almost 90% of all atoms in a protein model. 

To overcome these limitations, we introduced the local Distance Difference Test (lDDT) 

score in our assessment of the CASP9 TBM category, which evaluates how well inter-atomic 

distances in the target protein structures are reproduced in the predicted models. Being 

superposition-free, the lDDT score can be used to compare multi-domain structures without any 

prior processing. Furthermore, due to its focus on the conservation of the chemical environment 

including all atoms, it naturally lends itself to compare functionally relevant regions of the 

structure (i.e. binding sites or interaction surfaces) locally.  

Here, we introduce the improved version of the DDT score, which was applied in the 

CASP10 assessment: it includes checks of the stereo-chemical quality of the protein structures 

being compared, and allows the use of multiple reference structures. We show its low sensitivity 

to domain movements and demonstrate how local DDT scores can be directly used to highlight 

problematic regions even in multi-domain protein models. We also discuss the significance 

attached to absolute lDDT score values, and their dependence on the architecture of the proteins 

being compared.  Finally, we show how the use of multiple references removes the need to 

choose arbitrarily a single reference structure, e.g. in case of assessing against NMR ensembles. 

 

Availability 

www.openstructure.org/lddt 

  

http://www.openstructure.org/lddt
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Several groups in CASP have shown that expert modelers can often outperform automatic 

methods by "manually" selecting templates and refining target-template alignments. Moreover, 

human intervention into modeling process is often necessary in practical biological applications 

where, for example, templates in a particular functional state must be selected. 

To enable more accurate "manual" modeling with less effort, we developed Modorama - 

an integrated web platform for interactive protein homology modeling and analyzing protein 

families in general. Using Modorama, protein modelers can perform template search and 

selection, refine target-template alignments, and build and evaluate models starting from the 

sequence, or evaluate and refine existing target-template alignments.  

Modorama is composed of two interconnected applications: MODexplorer
1
 and 

MODalign
2
. MODexplorer takes as input the target protein sequence and finds structures that 

could serve as templates for modeling. The best templates and alignments can be selected based 

on a wide variety of sequence, structural and functional annotations. These annotations include 

template structural features, sequence conservation, quality assessment scores of the alignments 

and resulting models, as well as ligand, DNA, and RNA binding sites. After selecting the 

templates, a structural model can be constructed and evaluated using QMEAN energy function. 

Optionally, target-template alignments can be manually refined prior to modeling using an 

interactive alignment editor - MODalign. During the refinement, changes in alignment quality 

scores are automatically updated and potential errors are automatically detected and highlighted. 
 

 

1. Kosinski, J., Barbato A. & Tramontano A. MODexplorer: an integrated tool for exploring protein 

sequence, structure and function relationships (submitted to Oxford Bioinformatics) 

2. Barbato, A., Benkert, P., Schwede, T., Tramontano, A. & Kosinski, J. Improving your target-template 

alignment with MODalign. Bioinformatics 28, 1038–9 (2012). 
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Membrane proteins are an important class of biological macromolecules involved in many 

processes of the living cell. They account for one third of genes in the human genome and more 

than 50% of todays drug targets.  The unique physico-chemical properties of biological 

membranes favor interactions that are energetically discouraged in soluble proteins and vice 

versa.  However, most scoring functions employing potentials of mean force have been trained 

on soluble proteins. Thus, they perform poorly when applied to membrane proteins.  

We have developed QMEANbrane, a parameterization of QMEAN targeted at the quality 

evaluation of membrane protein models. We combine potentials of mean force, trained on 

oligomeric membrane protein structures with a per-residue weighting scheme. We show that 

reliable local quality estimation of these models is possible. Additionally, we argue that the 

rapidly increasing number of experimentally available membrane protein structures allows for 

training of membrane-specific potentials of mean force close to statistical saturation. 
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In CASP9, one of the approaches to assess the effectiveness of QA methods was to compare their 

performance to that of a naïve predictor, which used a simple clustering technique to calculate 

quality scores
1
. The assessment showed that the best MQA methods could not outperform the 

naïve predictor - a rather disappointing result. To estimate performance of quality assessment 

methods in CASP10, we ran a similar experiment and compared CASP10 MQA results to those 

of two naïve consensus methods that use identical methodology but different clustering datasets.  

 

Methods 

The Davis-QAconsensusALL and Davis-QAconsensus naïve predictors are clustering methods 

that assign quality score to a model based on the average pair-wise similarity of the model to 

other models submitted on that target. For ranking, the Davis-QAconsensusALL predictor uses 

all server models submitted on a target (ca. 300 models per target), while the DavisQA-

consensus predictor uses best 150 models according to the Davis-QAconsensusALL estimate (or, 

alternatively, just 20 models selected by the Prediction Center for the stage1 QA experiment - see 

predictioncenter.org/casp10/#predictions). Both methods superimpose all models in the input set 

with each other using the LGA algorithm in the sequence dependent mode (with default 

parameters). Next, for each model the quality score is calculated by averaging the GDT_TS 

scores from all pair-wise comparisons in the set, followed by model completeness scaling.  

Note that the Davis-QAconsensus method had access to the same information as all 

registered QA predictors, while Davis-QAconsensusALL method used extra models (usually of 

poorer quality) for generating its rankings. Even though this may seem as a substantial 

advantage, the results of the two methods differ only marginally as the final correlation 

coefficients are calculated on the identical subsets of 150 (or 20) models.  

 

Results 

As in CASP9, simple clustering methods proved to be on par with leading quality assessment 

techniques. In the per-target assessment mode (QA1.1, see [1]), the Davis-QAconsensusALL 

method reached the weighted mean Pearson’s correlation coefficient (wmPMCC) of 0.62 (0.59 

for Davis-QAconsensus) in ranking the suggested 150 server models, which is equal to the 

highest wmPMCC for the participating CASP10 QA groups. Results of both naïve methods 

appeared to be statistically indistinguishable from those of the twelve top-performing groups. In 

the QA1.2 mode (models for all targets pooled together), both naïve methods attain PMCC of 

0.93 (again, the highest value) and are statistically indistinguishable from the five top-performing 

groups both according to the correlation-based and ROC-based analyses. 

 

1. Kryshtafovych A, Fidelis K, Tramontano A. (2011) Evaluation of model quality predictions in 

CASP9. Proteins 79 (S10), 91-106.  

2. Zemla A. (2003) LGA: A method for finding 3D similarities in protein structures. Nucleic 

Acids Res 31 (13), 3370-3374.  
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The vast majority of software tools to measure similarity between protein models and 

experimental structures used in CASP and elsewhere are based on a single global superposition 

or a series of global superpositions (as in the basic CASP score, the GDT_TS
1
). In CASP6, a 

non-rigid body structure comparison tool and measure – the Descriptor ALignment (DAL)
2,3

, 

which focused on finding correct structural alignments in the sense of Local Descriptors of 

Protein Structure
4
, was introduced. This measure was used for evaluation of model-target fitness 

in CASP6-8. In CASP9 we suggested a conceptually simpler tool for comparing structures using 

local superpositions - the Sphere Grinder. This tool was tested by the CASP9 refinement and free 

modeling assessors, and seemed effective in cases of weak model-target similarity, significant 

structural shifts, or predictions on multi-domain targets, where it oftentimes helped identify 

models with better structural characteristics. 

  

Methods 
The main idea behind the SphereGrinder approach is to use local structure superpositions 

calculated within spheres centered on all the CAs to compare model and target structures. 

RMSDs are then calculated between all atoms falling within each sphere in the target and the 

corresponding atoms in the model. Sphere radii may be selected by the user. Different models 

can then be ranked by the percentage of residues for which the local structure (i.e. the structure 

within a sphere centered on that residue) does not deviate from target by more than a pre-defined 

RMSD cutoff. Two scores are implemented - an all-atom score showing fitness within local 

spheres normalized by the percentage of atoms predicted by the model and a raw score ignoring 

atoms missing in the prediction. Alternatively, to provide a fuller picture, a range of radii may be 

used to calculate a map of model quality.   

 

Results 
In CASP10 we report scores calculated for spheres of a 6A radius and an RMSD cutoff of 2A. 

These scores were used by the TBM and refinement assessors as integral part of their ranking of 

models. The scores are reported for each target and each model submitted. While SphereGrinder 

may be used to report a scalar measure of model quality calculated for a single sphere radius and 

a single RMSD cutoff, it is probably more effective in visualizing results for a range of sphere 

sizes and RMSD cutoffs all at once, providing a single glance picture of model quality. These 

results may be visualized using an interactive Sphere Grinder Viewer, via the CASP10 results 

page. 
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