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A B S T R A C T

This work aims to explore the potential of near infrared (NIR) spectroscopy to quantify volatile compounds in
Vinho Verde wines, commonly determined by gas chromatography. For this purpose, 105 Vinho Verde wine
samples were analyzed using Fourier transform near infrared (FT-NIR) transmission spectroscopy in the range of
5435 cm−1 to 6357 cm−1. Boxplot and principal components analysis (PCA) were performed for clusters
identification and outliers removal. A partial least square (PLS) regression was then applied to develop the
calibration models, by a new iterative approach. The predictive ability of the models was confirmed by an
external validation procedure with an independent sample set. The obtained results could be considered as quite
good with coefficients of determination (R2) varying from 0.94 to 0.97. The current methodology, using NIR
spectroscopy and chemometrics, can be seen as a promising rapid tool to determine volatile compounds in Vinho
Verde wines.

1. Introduction

The control of wines quality and organoleptic characteristics is of
paramount importance for the wine industry. The main constituents of
wine are water, varying between 70 and 90%, ethanol, between 8 and
20%, sugars and acids. However, wines also contain other minor
compounds that might greatly influence the sensory properties of the
final product (Rankine, 1989). The rapid quantification of these com-
pounds in wine is crucial not only to monitoring the fermentation
process and for the final product, but also to detect fraudulent practices.
In fact, it is relatively common for wine to be adulterated with alcohol,
sugar, chalk, colorants, water or other more noxious chemicals to in-
crease profits (Zeldin, 1977). According to these authors, the fraudulent
practices were widespread for many years, mainly because the tools for
its detection were not readily available.

The typical method to analyze wine volatile compounds is gas
chromatography (GC) coupled to at least one detector, such as a flame
ionization detector (GC-FID) or mass spectrometer (GC–MS). The latter
is particularly advantageous as it provides fragmented data useful for
molecular identification (Rebière, Clark, Schmidtke, Prenzler, &
Scollary, 2010). However, the analysis of these compounds by GC re-
quires sample preparation, specific analytical equipment and is time-

consuming. For these reasons, it is necessary to develop rapid de-
termination methods, in order to predict the wine content on chemical
compounds, and able to provide an alternative to the traditional ana-
lysis methods.

The recent developments in both chemometrics and instrumentation
have resulted in rapid methods for predicting the concentration of
specific chemical constituents and helped to reduce the demand for
traditional analysis. Near infrared spectroscopy (NIR) is such a rapid
and non-destructive technique and generally requires minimal sample
processing prior to analysis. NIR is part of the electromagnetic spec-
trum, laying between the visible and IR regions of the electromagnetic
spectrum, usually defined by the wavelength range of 700–2500 nm
(Ye, Gao, Li, Yuan, & Yue, 2016). Many studies have been conducted to
apply NIR to quality and safety measurements for food and agricultural
materials, including fruits, vegetables, food and beverages (Huang, Yu,
Xu, & Ying, 2008). This analytical technique has also been applied to
predict phenolic compounds in red wine fermentations (Cozzolino
et al., 2004), for the rapid measurement of total non-structural carbo-
hydrate concentrations in grapevine trunk (De Bei et al., 2017), to
discriminate Riesling wines from different countries (Liu et al., 2008),
and to determine the technological maturity of grapes and total phe-
nolic compounds of grape skins in red and white cultivars during
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ripening (Nogales-Bueno, Hernández-Hierro, Rodríguez-Pulido, &
Heredia, 2014).

The FT-NIR technique has been already successfully used by several
authors to quantify a number of different parameters from wine fo-
cusing, in general, in the quantification of alcohol, total reducing su-
gars, total acidity, volatile acidity, total and free SO2, glycerol, organic
acids and pH (Cocciardi, Ismail, & Sedman, 2005; Patz, Blieke, Ristow,
& Dietrich, 2004; Urbano-Cuadrado, Luque de Castro, Pérez-Juan,
García-Olmo, & Gómez-Nieto, 2004). However, in most of the published
works so far, little attention has been given to the individual quantifi-
cation of quite relevant wine volatile compounds, encompassing in-
dividual alcohol and esters concentrations. In fact, to the authors’
knowledge, the quantification of volatile compounds by FT-NIR is not
usual, probably due to the diversity and complexity of the chemical
data obtained from the GC analysis.

Therefore, the aim of the present work was to examine the potential
of NIR spectroscopy to determine the concentration of 10 of the most
relevant volatile compounds in white wines from Portuguese Vinhos
Verdes Appellation of Origin at 5 stages of conservation and using dif-
ferent preservation methods. For such purpose, a new approach was
used. First, a box plot procedure was employed in order to determine
(and remove) the Y variables (studied compounds) outliers. Next, a first
principal component analysis (PCA) allowed to both identify sample
clusters and locate X variables (NIR values) outliers. Following the X
outliers’ removal, a second PCA allowed to identify the pruned dataset
sample clusters. Furthermore, the choice of the calibration and vali-
dation data was also performed in order to minimize bias in both sets,
by means of an iterative procedure up to a maximum of 2000 possible
random combinations. The determination of the models was also per-
formed by a new approach, taking into account the wavelength weight
similarity in a first PLS analysis in order to perform a X data reduction
(by grouping similar weights wavelengths) for the final PLS regression.

2. Materials and methods

2.1. Sample preparation and GC analysis

Wines designated ‘‘Appellation of Origin Vinhos Verdes’’ are pro-
duced in Northern Portugal and there are seven recommended white
grape varieties (Alvarinho, Arinto, Avesso, Azal, Batoca, Loureiro and
Trajadura) (Oliveira, Oliveira, Baumes, & Maia, 2008). Must fermen-
tation, using a mixture of grapes from the Vinho Verde appellation of
origin, was carried out in 500L fermenters. Vinifications were per-
formed according to the traditional technology of the Vinhos Verdes
region: the must obtained by crushing, pressing and static sedimenta-
tion was inoculated with Saccharomyces cerevisiae bayanus QA23. Fer-
mentations then took place at 18 °C. Then, five bottles of each assay
were prepared for analysis, in triplicate, at 5 stages of conservation (t0,
t2, t3, t4 and t5) and using 7 different preservation methods. The em-
ployed preservation methods were the addition of SO2 (until a final
concentration of 35mg/L), glutathione (20mg/L) and SO2

(Cf= 35mg/L), caffeic acid (60mg/L) and SO2 (Cf= 35mg/L), gallic
acid (60mg/L) and SO2 (Cf= 35mg/L), ascorbic acid (100mg/L) and
SO2 (Cf= 35mg/L), one bottle without any treatment (only with the
natural antioxidant of wine) and one with glutathione (20mg/L), caf-
feic acid (60mg/L) and gallic acid (20mg/L). All the compounds added
to the wine are antioxidants well known as responsible for wine pre-
servation. Time 0 (t0) – day of antioxidant treatment, t2 – 4months of
storage, t3 – 12months of storage, t4 – 25months of storage, t5 –
42months of storage. A total of 105 samples were analysed.

Major volatile compounds, ethyl acetate, methanol, 2-methyl-1-
butanol, 3-methyl-1-butanol, 2-phenylethanol, were directly analysed
after adding 410 μg of 4-nonanol (internal standard—IS) to 5mL of
wine. A Chrompack CP-9000 gas chromatograph equipped with a split/
splitless injector, a flame ionization detector (FID) and a capillary
column, coated with CP-Wax 57CB (50m×0.25mm; 0.2 μm film

thickness, Chrompack), was used. The temperatures of the injector and
the detector were both set to 250 °C. The oven temperature was initially
held at 60 °C, for 5min, then programmed to rise from 60 °C to 220 °C,
at 3 °C/min, and finally maintained at 220 °C for 10min. The carrier gas
was helium 4 × (Praxair) at an initial flow rate of 1mLmin−1 (125 kPa
at the head of the column). The analyses were performed by injecting
1 μL of sample in the split mode (15mL/min). The quantification of
major volatile compounds, after the determination of the detector re-
sponse factor for each analyte, was performed with the software Star-
Chromatography Workstation version 6.41 (Varian) by comparing test
compounds retention times with those of pure standard compounds.

Minor volatile compounds, 3-methylbutyl acetate, ethyl lactate,
ethyl octanoate, diethyl succinate and diethyl malate, were analysed by
GC–MS after extraction of 8mL of wine with 400 μL of di-
chloromethane, spiked with 3.28 μg of 4-nonanol (IS), according to the
methodology proposed by Genisheva, Vilanova, Mussatto, Teixeira, and
Oliveira (2014). A gas chromatograph Varian 3800, with a 1079 in-
jector and an ion-trap mass spectrometer Varian Saturn 2000, was used.
A 1 μL injection was made in splitless mode (30 s) in a Varian Factor
Four VF-Wax ms (30m×0.15mm; 0.15 μm film thickness) column.
The carrier gas was helium 4 × (Praxair) at a constant flow rate of
1.3 mL/min. The detector was set to electronic impact mode with an
ionization energy of 70 eV, a mass acquisition range from 35m/z to
260m/z and an acquisition interval of 610ms. The oven temperature
was initially 60 °C for 2min and then raised from 60 °C to 234 °C at a
rate of 3 °C/min, raised from 234 °C to 250 °C at 10 °C/min and finally
maintained at 250 °C for 10min. The temperature of the injector was
maintained at 250 °C during the analysis time and the split flow was
maintained at 30mL/min. The identification of compounds was per-
formed using the software MS WorkStation version 6.9 (Varian) by
comparing their mass spectra and retention indices with those of pure
standard compounds. The minor compounds were quantified in terms
of 4-nonanol equivalents only.

2.2. Near infrared scanning

Near infrared (NIR) spectra were recorded on a Fourier-transform
near infrared spectrometer (FTLA 2000, ABB, Thermo Electron
Corporation) equipped with an indium–gallium–arsenide (InGaAs) de-
tector, from 14000 to 600 cm−1, in transmitance mode using a flow cell
with a 0.7mm pathlength. For each sample, 32 scans were made with a
spectral resolution of 8 cm−1 and then averaged. Samples were tem-
perature equilibrated at 23 °C (approximately 3min) in the instrument
before scanning. The integration time was adjusted until the peaks at
1100–1200 nm for NIR were close to 60,000 intensity units. Grams/AI
software (Thermo Electron Corporation) was used for spectrometer
configuration, control, and data acquisition. Distilled water was used as
background. Although the entire obtained spectral range
(14000–600 cm−1) was stored for each sample, only a selected interval
(5435–6357 cm−1) was considered to avoid interferences.

2.3. Chemometrics and data analysis

The chemometric analysis was based on a principal component
analysis (PCA) to identify the interrelationships between the samples
and possible clusters and a partial least squares (PLS) regression to
derive the models for each studied compound. Regarding PCA, this
method extracts the most relevant information from an X dataset by
projecting it into latent variables (LVs), by a linear combination of the
original variables, thus reducing high-dimensional and strongly corre-
lated original datasets. In PCA, the objective is to maximize the ex-
plained variance in the new orthogonal space and, thus, each new or-
thogonal space accounts for less explanatory power than the previous.
In this process, this method allows determining the interrelationships
between the original X variables and samples that will appear in the
new LVs space as clusters in the loadings and scores map, respectively.
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With respect to the PLS regression, this method constructs LVs out of
the X data in new, and orthogonal, spaces to maximize the captured
predictive power of the X-space with regard to the Y-space. Matlab 7.11
(The Mathworks, Inc. Natick, USA) was used to that effect.
Furthermore, and in order to remove undesirable variations the X data
matrix was pre-processed using the standard normal variate (SNV)
method. Also cross-validation (CV) was used to test the predictive sig-
nificance of the PLS regression and determine the optimal number of
LVs. Further details for these techniques can be found in Einax,
Zwanziger, and Geiss (1997).

The collected NIR spectra used in this analysis ranged between
5435–6357 cm−1 (1573–1840 nm). Initially a boxplot analysis, re-
garding the dependent variables (Y), was performed resulting in Y
outliers’ identification and removal. Next a PCA–X analysis was carried
out, regarding the independent variables (X) for the identification of
distinct clusters and possible X outliers. This led to four different da-
tasets fed to the PLS analysis: [1] – ensemble dataset with no X outliers
removed; [2] – ensemble dataset with X outliers removed; [3] – dataset
divided in 3 groups with no X outliers removed; and [4] – dataset di-
vided in 3 clusters with X outliers removed. Hence, in the performed
analysis, the total number of samples varied between 89 and 99, with
2/3 used for modelling (calibration) purposes and 1/3 for validation.
Regarding the PLS approach, and concerning the choice of the cali-
bration and validation data, a procedure was implemented in order to
select the most unbiased sets, regarding the overall (calibra-
tion+ validation) model results, by screening at 2000 possible random
combinations for the selection of the calibration and validation data. In
this sense, the most unbiased combination, thus resulting in the best
overall (calibration+ validation) results, between the calibration and
validation data was chosen. Next, an iterative method was applied, first
determining the weights of each wavelength for the entire wavelength
values PLS, next grouping the wavelength values together according to
the weights similarity and, finally, recalculating the PLS with the
averaged wavelength values. For all PLS analyses, the maximum
number of PLS components allowed was set at half of the calibration
data.

3. Results and discussion

3.1. Analytical data

The number of volatile compounds present in white and red wines is
quite large and, in this study six of the most significant esters (ethyl
acetate, 3-methylbutyl acetate, ethyl lactate, ethyl octanoate, diethyl
succinate, and diethyl malate) and four alcohols (methanol, 2-methyl-1-
butanol, 3-methyl-1-butanol, and 2-phenylethanol) were selected to
perform the calibration (Oliveira et al., 2008; Vilanova, Escudero,
Graña, & Cacho, 2013). Accordingly, their minimum, average and
maximum values in the samples are presented in Table 1. Each of these

samples was then divided into two groups, the calibration group (ran-
ging from 61 in [2] and [4] to 66 samples in [1] and [3]) and the
external validation group (ranging from 28 in [2] and [4] to 33 samples
in [1] and [3]).

3.2. Boxplot analysis

In order to identify the Y data (volatile compounds concentrations)
outliers, a boxplot analysis was performed and is presented in Fig. 1.
This analysis allowed identifying five outliers subsequently removed,
regarding methanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and ethyl
octanoate concentrations. For this boxplot analysis, the maximum
whisker length allowed was of 3, that is, three times the interquartile
distance between the 25th and 75th percentiles. This resulted in the
identifications of the outliers that fell outside a 99.9% coverage of a
normally distributed data.

3.3. PCA analysis

The performed PCA analysis to the X dataset (wavelengths values)
with no outliers removed allowed identifying three different clusters, as
depicted in Fig. 2a. The first, second and third principal components (or
latent variables – LV) explained 98.2% of the X dataset variance, with
respectively 69.1%, 27.0% and 2.1% for LV1, LV2 and LV3. Further-
more, this PCA analysis also allowed to identify X outliers (represented
within the dotted circles), removed in the subsequent analysis ([3] and
[4]). For this purpose, the 2nd and 3rd LVs were used, given that the
outliers were present mainly in the LV2 vs LV3 axis. In that sense, the
samples presenting a distance above the value of one standard devia-
tion, regarding the LV2 vs LV3 centroid of the respective cluster, were
identified as outliers and removed for the subsequent analysis.

A second PCA analysis was then performed to the X dataset with
outliers removed that also allowed to identify three different clusters, as
depicted in Fig. 2b. The 1 st, 2nd and 3rd principal components (or
latent variables – LV) explained 98.1% of the X dataset variance, with
respectively 89.0%, 7.5% and 1.6% for LV1, LV2 and LV3. As discussed
in the PLS analysis, the identification of these three clusters was fun-
damental for the best model choice regarding the ethyl acetate, me-
thanol and ethyl lactate compounds.

3.4. PLS regression

Calibration models based on the GC–MS analysis and FT-NIR spectra
were developed using partial least squares regression (PLS) for all the
studied compounds. In order to determine the best model results for
each compound, the root mean square error (RMSE) values (in relative
percentage of the mean concentration value for each compound) of the
overall (calibration+ validation) model results were taken into con-
sideration. Thus, the best models were identified, and are presented in
Table 2.

For all the studied compounds, the best coefficients of determina-
tion (R2) were equal or above 0.94. Regarding the RMSE values, two (2-
methyl-1-butanol and 3-methyl-1-butanol) were below 5% of the
sample average values, four (ethyl acetate, methanol, 2-phenylethanol
and ethyl lactate) were between 5% and 10%, three (ethyl octanoate,
diethyl succinate and diethyl malate) were between 10% and 15%, and
only one (3-methylbutyl acetate) was slightly above 20%. Although no
significant differences were found, between the studied alcohol and
ester groups, regarding the R2 values (with both presenting an average
R2 of 0.96), regarding the RMSE, the alcohols presented better results
with an average value of 5.4% (against 12.8% for the esters). The same
conclusion can be withdrawn regarding the major vs. minor volatile
compounds, with the major compounds presenting an average RMSE
value of 5.8% against 13.9% for the minor compounds. Given the prior
results, this comes as no surprise since 4 out of the 5 studied major
volatile compounds were alcohols.

Table 1
Minimum (Min.), maximum (Max.) and average (Avg.) values of the studied wine com-
pounds.

Compound Values (mg L−1)

Min. Avg. Max.

Ethyl acetate 6.7 63.1 99.4
Methanol 8.6 31.7 75.6
2-Methyl-1-butanol 8.7 16.6 24.6
3-Methyl-1-butanol 65.6 127.7 191.7
2-Phenylethanol 0.0 18.6 34.3
3-Methylbutyl acetate 0.0 522.3 2001.3
Ethyl lactate 228.2 453.8 898.9
Ethyl octanoate 70.2 241.2 782.0
Diethyl succinate 323.0 2497.7 5758.0
Diethyl malate 579.7 6297.9 14657.5
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The residual predictive deviation (RPD), defined as the ratio be-
tween the standard deviation of the population (SD) and the standard
error of cross validation (SECV) for the NIR predictions was also cal-
culated and is presented in Table 2. According to Fearn (2002), an RPD
value greater than 3 is considered fair and recommended for screening
purposes, and an RPD value greater than 5 is considered good for
quality control. All the RPD values calculated in the present report are
higher than 3 confirming the good performance of the developed
models.

In most cases (seven out of the ten studied compounds), no ad-
vantage was found by identifying first the different clusters, and next
proceeding with individual calibrations for each cluster. Only in three
cases (ethyl acetate, methanol, and ethyl lactate), this procedure gave
better model results. Likewise, only for three initial datasets (2-methyl-
1-butanol, ethyl lactate, and ethyl octanoate), the X outliers’ removal
procedure was found advantageous.

The best prediction model results for the studied compounds are
next presented in Fig. 3. Analysing this figure it is apparent that both
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Table 2
Coefficient of determination (R2), root mean square error (RMSE) (%), number of PLS components (n) and residual predictive deviation (RPD) of the PLS analysis for the overall
(calibration+ validation) model results.

Compound [1] [2] [3] [4]

R2 RMSE(%) n RPD R2 RMSE(%) n RPD R2 RMSE(%) n1, n2, n3 RPD R2 RMSE(%) n1, n2, n3 RPD

Ethyl acetate 0.88 11,4 25 2,7 0.79 13,8 15 2,3 0.95 7,6 10, 10, 9 3,9 0.91 9,7 13, 9, 7 2,9
Methanol 0.90 13,6 18 2,9 0.92 11,7 24 3,2 0.96 8,5 8, 10, 9 4,4 0.92 11,7 11, 7, 7 3,2
2-Methyl-1-butanol 0.96 4,2 23 4,5 0.96 3,6 19 4,7 0.92 5,4 9, 9, 9 3,1 0.91 5,4 11, 8, 7 3
3-Methyl-1-butanol 0.96 3,9 20 4,7 0.95 4,5 18 3,9 0.92 5,6 9, 9, 8 3,1 0.91 5,7 9, 8, 7 3
2-Phenylethanol 0.97 5,4 19 4,8 0.94 6,5 17 3,8 0.92 7,5 10, 7, 8 3,2 0.91 8,1 11, 9, 7 2,8
3-Methylbutyl acetate 0.96 23,0 21 4,4 0.96 23,0 27 4,1 0.95 25,7 10, 9, 8 3,7 0.83 42,5 11, 9, 6 2,2
Ethyl lactate 0.90 9,8 18 3 0.94 7,7 21 3,6 0.95 7,1 9, 10, 7 4 0.96 5,9 12, 8, 7 4,5
Ethyl octanoate 0.91 15,6 18 3,2 0.94 13,4 19 3,7 0.92 15,4 8, 8, 9 3,1 0.93 14,2 11, 9, 7 3,3
Diethyl succinate 0.97 12,4 20 4,9 0.94 16,7 22 3,5 0.92 18,8 8, 8, 10 3,1 0.92 18,5 8, 9, 7 3,1
Diethyl malate 0.95 14,5 16 4,1 0.95 13,6 20 4,2 0.93 17,2 7, 8, 9 3,8 0.95 13,9 9, 7, 7 4,1
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Fig. 3. Best model results for the studied compounds. The grey circles represent the calibration data and the white circles represent the validation data.
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the calibration data (represented by the grey circles) and the validation
data (represented by the white circles) are in good agreement with the
resulting model. This conclusion is reinforced analysing the obtained R2

values for the calibration data and validation data alone (also presented
in Fig. 3).

3.5. Novelty and advantages of the presented methodology

As explained previously in the Introduction section, the FT-NIR
technique is commonly used, by a number of authors, to quantify sev-
eral wine compounds. In fact, taking into account the studied para-
meters, and the presented results by these authors, it can be concluded
that fair to good calibration models were obtained for most of the
components and parameters tested. Therefore, these results validate, at
some extent, the feasibility of using FT-NIR spectra data for monitoring
some of the most important wine compounds and parameters. However,
as previously mentioned, the individual alcohol and ester concentra-
tions have been given little attention, although a few works deserve a
more detailed discussion. Such is the case of the work published by
Dambergs, Kambouris, Francis, and Gishen (2002) which studied the
quantification of methanol by NIR and was able to obtain a good cor-
relation (R2 value of 0.98) with the conventional GC analysis. Taking
into account that the present work allowed for an R2 value of 0.96,
which is not too distant from the result obtained by Dambergs et al.
(2002), it should also be stressed that the studied methanol range in the
current work is quite narrower, and thus, with a wider set of con-
centrations the presented methodology can be expected to perform
better.

Smyth et al. (2008) tested this technique to quantify eleven volatile
compounds from Riesling wine and obtained R2 values of 0.74 for the
overall quantification of esters (ethyl butanoate, ethyl hexanoate, ethyl
decanoate, ethyl octanoate, and ethyl dodecanoate), 0.90 for mono-
terpene alcohols (linalool, geraniol, and nerol) and 0.80 for short-chain
fatty acids (hexanoic, octanoic, and decanoic acids). Comparing these
authors’ results with the ones obtained by the current methodology, a
large improvement is obtained regarding the esters determination. In
fact, an average R2 value of 0.96 was obtained by the proposed meth-
odology, which compares quite favorably to the 0.74 value of Smyth
et al. (2008).

Also Lorenzo, Garde-Cerdán, Pedroza, Alonso, and Salinas (2009)
have essayed to determine red wine volatile compounds by NIR ana-
lysis, studying mostly individual esters (ethyl octanoate, ethyl decan-
oate, ethyl 2-phenylacetate, diethyl succinate, diethyl glutarate, and 2-
phenylethyl acetate), alcohols (2-phenylethanol) and organic acids
(hexanoic and octanoic acids) composition. In addition, although the
calibration models, against the GC analytical data, were near to perfect
in all cases (with R2 values around 0.99), when subjected to a full cross
validation procedure, the prediction ability steeply decreased. In fact,
even when dividing the data by zone of origin, the prediction R2 value
did not surpass 0.94 in all cases (and presented a lower of 0.42 for ethyl
decanoate). In fact, the largest R2 values obtained for ethyl octanoate
(0.85), diethyl succinate (0.86), and 2-phenylethanol (0.83) were quite
below the current results (respectively 0.94, 0.97, and 0.97).

In another study, Ye et al. (2016) tested the detection of volatile
compounds in 42 apple wines samples using FT-NIR spectroscopy, re-
garding a number of esters, higher alcohols and fatty acids. The pre-
diction ability found by these authors with respect to the studied esters
group (ethyl acetate, ethyl caprylate, ethyl butyrate, ethyl hexanoate, 2-
phenethyl acetate, ethyl laurate, ethyl decanoate, and hexyl acetate)
presented an average R2 value of 0.90 (and a maximum of 0.92 for ethyl
acetate). Therefore, the esters results obtained by the current metho-
dology can be considered better, ranging from 0.94 to 0.97, with an
average value of 0.96. Regarding the alcohols group (isobutanol, hex-
anol, 2,3-butanediol, 2-phenethanol, and 3,4,5-trimethyl-4-heptanol)
studied by Ye et al. (2016), presented an average R2 value of 0.92 (and
a maximum of 0.95 for hexanol). Again, the current methodology

allowed obtaining better alcohols prediction abilities ranging from 0.96
to 0.97, with an average value of 0.96.

It should also be emphasized that almost all the referred authors
used a similar procedure to analyze the spectral data. This procedure
aims at: a) pre-process the data to minimize the spectra baseline var-
iation and b) enhance spectra differences. In order to do so, most
methodologies apply a number of the following steps: multiplicative
scatter correction; first and/or second derivative; vector and/or min/
max normalization; constant offset elimination. Finally, the develop-
ment of the calibration models is usually performed by PLS regression.
Considering this, the chemometric approach used in the present work to
correlate the FT-NIR spectra and GC data, explained in the materials
and methods section, can be considered as novel and, furthermore, al-
lowed to obtain good prediction abilities for the parameters tested.

4. Conclusions

This work addressed the potential of NIR transmission spectroscopy
to quantify ten different volatile compounds in Vinho Verde wines,
namely ethyl acetate, methanol, 2-methyl-1-butanol, 3-methyl-1-bu-
tanol, 2-phenylethanol, 3-methylbutyl acetate, ethyl lactate, ethyl oc-
tanoate, diethyl succinate, and diethyl malate. For this purpose, a
chemometric approach was used employing first boxplot and PCA
analysis for outliers’ removal and clusters identification. Next a new
iterative PLS procedure was used with a twofold objective: a) first re-
duce the NIR dataset and b) construct the calibration models based on
standard GC–MS analysis. This procedure resulted in high coefficients
of determination (R2), and low root mean square errors (RMSE), for the
prediction ability of the 10 studied volatile compounds. In conclusion,
this study has shown that NIR spectroscopy can be used in Vinho Verde
wines to determine volatile compounds in a simple and fast way, thus
avoiding the traditional costly, complex and time-consuming analytical
techniques. Furthermore, this procedure has also the advantage of
being a non-destructive and non-contaminating method, avoiding the
need for prior sample treatment.
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