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Abstract—We propose a decentralized optimal load control
mechanism that provides contingency reserve in the presence of
sudden demand-supply mismatch. The mechanism takes advan-
tage of flexibility of frequency responsive loads and neighborhood
area communication to solve an optimization problem that
balances demand and supply while minimizing end-use disutility.
Frequency measurement enables individual loads to estimate the
total demand-supply mismatch. Neighborhood area communica-
tion helps mitigate effects of inconsistencies in the local estimates
due to, e.g., frequency measurement noise. Case studies show
that the proposed mechanism can balance demand with supply
and restore the frequency on a timescale of seconds following a
contingency, even when the loads use a highly simplified system
model in their algorithms. We also investigate tradeoffs between
the amount of communication and performance of the mechanism
through simulation-based experiments.

Index Terms—Frequency responsive load, neighborhood area
communication, distributed control, optimization

I. INTRODUCTION

In power systems, contingency reserves restore the gen-

eration and load balance after sudden unexpected loss of a

generator or transmission line; otherwise the frequency may

deviate from its nominal level. Such frequency deviations,

if not resolved in a short period, may lead to instability or

even cause damage to facilities [1]. Hence, deployment of

contingency reserves is important in power systems.

Recovery mechanisms following contingencies have tradi-

tionally been provided by generators. Generators are equipped

with speed governors, which adjust turbines instantaneously

in response to a change in frequency caused by imbalance

between generation and load [2]. Governors provide limited

adjustment around the setpoint of generators. Hence, it is a

resort to maintain machine stability rather than a contingency

reserve. In case of a major generation disruption, spinning

reserve is required where a set of power sources, which have

already been connected and synchronized to the grid, increase

their generation level. Spinning reserve is initiated within

seconds in response to a major generator or transmission

outage, and typically reaches full output within 10 minutes.

However, the grid-connected and partially-loaded generators

providing spinning reserve are of low efficiency and increase

fuel costs and emissions [3]. Other contingency reserves, such

as supplemental reserve and replacement reserve, are provided
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by offline generators. They are much slower with a response

time of 10 minutes to hours [5].

To complement these generation-side measures, loads pro-

vide an attractive alternative toward matching demand with

supply. In 2002, Long Island Power Authority (LIPA) de-

veloped LIPAedge, which was the largest residential load

control program in US. LIPAedge provided 24.9 MW of

demand reduction during hot summer days and could deliver

75 MW of 10-minute spinning reserve [4]. Later studies

demonstrated that loads can provide even faster service and

save large amount of communication by using local frequency

measurement. Through advanced metering, loads can sense the

frequency as a proxy of demand-supply mismatch and respond

accordingly in less than a second [6]. The Grid Friendly

Appliance Controller [7] developed by Pacific Northwest

National Laboratory suggests that appliances can provide fast

reserve within seconds by responding to certain trends in the

frequency. Trudnowski et al. designed a mechanism in which

loads take proportional negative-feedback of frequency devia-

tion [8][9]. Simulation-based studies show that the mechanism

recovers generation and load balance within several seconds

after a sudden generation drop.

In this paper, we propose a frequency responsive load

control mechanism that provides fast contingency reserve

with moderate amount of communication. We formulate an

optimization problem that minimizes global end-use disutility

caused by change in loads, and matches loads with gener-

ation. Then, we develop a decentralized algorithm to solve

the optimization problem. In the algorithm, loads estimate

total demand-supply mismatch from local frequency measure-

ment, based on a power system model characterizing the

dynamics of frequency deviation. Such local estimates are

used as the increments in a distributed gradient method to

solve the dual problem of the proposed optimization problem.

To compensate for inconsistencies between local estimates

caused by, e.g., frequency measurement noise, loads exchange

estimates with their neighbors via a communication network.

With moderate assumptions on the disutility function, dynamic

model, measurement noise and communication graph, the

almost sure convergence of the proposed algorithm is proved.

Case studies show that the proposed mechanism recovers the

balance between generation and load within seconds after a

sudden generation loss. The mechanism is robust to modeling

inaccuracies in the sense that it performs well when loads

use a highly simplified and inaccurate dynamic model to

compute the local estimates. Moreover, tradeoffs between the

amount of communication and performance of the load control

mechanism are discussed. Simulations show that moderate
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Fig. 1. Schematic diagram of the power system under consideration.

amount of communication ensures good performance in the

presence of measurement noise.
The paper is organized as follows. Section II describes a

power system model and the optimal load control problem.

Section III introduces the approach of estimating total demand-

supply mismatch from local frequency measurement. Section

IV presents the decentralized load control algorithm and

proves its convergence. Section V shows the results of case

studies. Finally, Section VI provides concluding remarks and

discusses interesting problems for future work.

II. PROBLEM SETUP

We now introduce a dynamic power system model in which

frequency responsive loads are controlled. We then set up an

optimal load control problem, which is solved by the load

control mechanism that will be proposed later.

A. Setup

We consider a setup of power system model shown in Fig. 1.

In the model, we assume all generators and loads are within

a strongly connected area [10]. Hence, there are negligible

differences between phase angles at different sites, and a

single frequency appears throughout the system. Therefore,

it is reasonable to assume that the model contains a major

generating unit which has equivalent dynamics to all the

generators combined. The major generating unit is equipped

with generation control components, such as a speed governor.

In the model, there are a number of controllable loads, each

of which may also be considered as an aggregate of multiple,

smaller responsive loads that can be controlled [3][6].
Let V = {1,2, ...N} denote the set of loads. In case of a

contingency, a change in real power supply, denoted by ∆g,

occurs. To compensate for ∆g, load i will be changed by ∆di

through load control. Let ∆ω denote the frequency deviation

from its nominal value (e.g., 60Hz). Load i locally measures

this frequency deviation. Let ∆ω i be this measured value,

which may be different from ∆ω by a measurement noise

ξi. Besides, the model contains a stochastic disturbance to

generation, denoted by ζ , which may come from changes in

system parameters caused by environment influence [11].
The load control mechanism we are to propose is a sampled

control system, i.e., loads sample ∆ω and make decisions once

every ∆t time. Hence, we use t = 0,1,2, ... to denote the time

instances t = 0,∆t,2∆t, .... Let ∆di(t) stand for the amount of

decrease in load i at time t. Then, the total mismatch between

demand and supply at time t is

u(t) :=−∑
i∈V

∆di(t)−∆g(t). (1)

The dynamic model of the relation between u, ∆ω and ∆ω i is

described by

x(t +1) = Ax(t)+Bu(t)+ζ (t)

∆ω(t) =Cx(t)

∆ω i(t) = ∆ω(t)+ξi(t),

(2)

where x(t) ∈ R
n is the internal states of the system at time t.

We assume, for all t,s≥ 0 and all i, j ∈V , that the process

disturbance ζ and the measurement noise ξi have zero mean,

and their covariances satisfy

E
[
ζ (t)ζ (s)T

]
= Qδts, E [ξi(t)ξ j(s)] =Wδtsδi j, (3)

where Q ∈ R
n×n is positive semi-definite, W ≥ 0, and δts and

δi j denote the Kronecker delta function.

B. Optimal load control problem

We now present the optimal load control problem. Sup-

pose a sudden change in generation, ∆g < 0 without loss of

generality, occurs at time 0. In response to such a change,

the load control mechanism sheds load i by ∆di ∈ [0,di],
which involves a disutility or service cost Di(∆di), as a result

of interrupting the normal usage or compromising end-use

function of appliances [3][4]. Here di is the maximum decrease

in load i allowed by appliance design or user preference. The

optimal load control problem, denoted by PP, is

PP





min
∆di∈[0,di]

N

∑
i=1

Di(∆di)

subject to
N

∑
i=1

∆di +∆g = 0.

The objective of the problem is to minimize the global

disutility of shedding the loads in a way that eliminates the

load-generation mismatch u =−
N

∑
i=1

∆di−∆g.

For feasibility of PP, we assume ∑i∈V di + ∆g > 0. This

assumption holds if a large enough group of loads participate

in load control. Additionally, we make the following two

assumptions on the disutility functions Di, so that PP is a

convex problem which can be solved using the decentralized

algorithm proposed later.

Assumption 1: For i ∈ V , Di is increasing, strictly convex

and twice continuously differentiable over [0,di].
Assumption 2: For i ∈ V , there exists αi > 0 so that

D′′i (∆di)≥ 1/αi for ∆di ∈ [0,di].
Power system operators usually solve a problem like PP us-

ing a centralized method, which requires a central coordinator

and two-way communication between loads and the coordi-

nator. Load-to-coordinator communication is used to collect

time-varying information about availability, flexibility or the

disutility function of loads. The coordinator then formulates
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an optimization problem like PP and computes the optimal

dispatch of loads. Then, the dispatch signals are issued to

loads via coordinator-to-load communication. To avoid a large

number of simultaneous connections overwhelming the com-

munication system, the coordinator staggers the time intervals

during which it communicates with different loads. Hence,

it may take a long time for a large population of loads to

respond. For example, it typically requires 90 minutes for

20,000 thermostats to respond in LIPAedge [4].

To speed up load response, we design a decentralized

algorithm where a central coordinator is no longer essential. To

this end, we consider solving the dual problem of PP. Taking

p as the dual variable, the dual problem of PP is

max
p∈R

Ψ(p) :=
N

∑
i=1

Ψi(p)− p∆g, (4)

where

Ψi(p) := min
∆di∈[0,di]

Di(∆di)− p∆di.

Under Assumption 1, given p ∈ R, the problem

min
∆di∈[0,di]

Di(∆di)− p∆di (5)

has a unique minimizer given by

∆di(p) = min{max{(D′i)
−1(p),0},di}. (6)

Note the inverse of D′i exists over [D′i(0),D
′
i(di)] since D′i is

continuous and strictly increasing by Assumption 1. Since Di

is convex for all i ∈V and PP has affine constraints, Slater’s

condition implies that there is zero duality gap between

PP and its dual problem in (4), and the optimal solution of

(4), denoted by p∗, is attained [14, Sec. 5.5.3]. It follows

that ∆d(p∗) := [∆d1(p∗), ...,∆dN(p∗)]T is primal feasible and

optimal [14, Sec. 5.5.2]. Moreover, it is easy to show that, for

any given p and p such that p≤min
i

D′i(0) and p≥max
i

D′i(di),

the problem in (4) has at least one optimal point p∗ ∈ [p, p].
Hence, we can constrain p to [p, p]. Therefore, we focus on

solving the following problem

DP

{
max

p∈[p,p]
Ψ(p) =

N

∑
i=1

Ψi(p)− p∆g. (7)

The decentralized algorithm can be given informally as

follows (see Section IV-A for a formal treatment). Each load

i ∈V updates its value of dual variable p at time t as

pi(t) = max{min{pi(t−1)+ γ(t)u(t−1), p}, p}, (8)

where γ(t) > 0 is some stepsize. Then, load i calculates its

amount of load shedding at time t as ∆di(t) = ∆di(pi(t)),
where ∆di(·) is defined in (6). As shown in [13, Section III-

A], the total demand-supply mismatch at time t−1, denoted

by u(t− 1), is the gradient of the dual objective function Ψ.

Therefore, this decentralized algorithm is essentially a gradient

projection method [14] applied on the dual problem DP.

The decentralized algorithm does not rely on communication

between loads and a central coodinator, thus can improve

load response speed according to the discussion before. To

implement this algorithm with frequency responsive loads,

loads should be able to estimate u from local frequency

measurement. A candidate estimation mechanism is introduced

in Section III.

III. ESTIMATING DEMAND-SUPPLY MISMATCH

We now introduce a mechanism through which loads can

estimate total demand-supply mismatch u from measured

frequency deviation. Since u is the input in the model given

by (2), we call this mechanism an input estimator.

The input estimator of load i uses noisy frequency measure-

ment ∆ω i(1), ...,∆ω i(t) to estimates u(0), ...,u(t−1). Consider

the power system model in (2). Use x̂i(t|s) and ûi(t|s) respec-

tively to denote the estimate of x(t) and the estimate of u(t)
with measurement up to time s. Starting from x̂i(0|− 1), the

input estimator of load i is given recursively by

ûi(t−1|t) =M (∆ω i(t)−Cx̂i(t|t−1))

x̂i(t|t) =x̂i(t|t−1)+Bûi(t−1|t)

x̂i(t +1|t) =Ax̂i(t|t),

(9)

where M = (CB)−1. We assume CB 6= 0. As a partial justifica-

tion, this assumption holds for the power system models we

have used, in particular for the model in Section V.

The input estimator is essentially the filter proposed by

Kitanidis [15], which gives unbiased and minimum variance

estimate of the state and the input. The covariance of xi(t|t),
denoted by Σi

t|t ∈ R
n×n, is given recursively by

Σi
t+1|t+1 =(In−BMC)(AΣi

t|tA
T +Q)(In−BMC)T

+BMWMT BT ,
(10)

where Q and W are defined as in (3). Denote the input

estimate error by ei(t) := )ix

i:t x

s
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has a unique, positive definite solution Σ∗. Additionally,

lim
t→∞

Σi
t|t exists and is Σ∗. By (12), we have

lim
t→∞

E

[
(ei(t))

2 |Ft−1

]
=

CAΣ∗ATCT +W

(CB)2
,

where the right hand side is independent of i, and can be

determined from A, B, C, Q and W .

For any power system model in the form of (2), we can

check whether the condition in Proposition 1 is satisfied a

priori. As a partial justification, it holds for the model we

use in the case studies. Understanding implications of this

condition needs future study.

To prove the convergence of Algorithm 1 below, we need

to bound the variance of the input estimate error. The fol-

lowing corollary, which is a straightforward consequence of

Proposition 1, gives such a bound.

Corollary 1: If the condition for Proposition 1 holds, then

E

[
(ei(t))

2 |Ft−1

]
≤ σ2 for all i ∈ V and all t ≥ 0, where σ2

is some constant determined by A, B, C, Q, W and the initial

covariance Σi
0|0 of all i ∈V .

With the input estimator introduced above, we now give

the decentralized load control algorithm formally and prove

its convergence in Section IV.

IV. LOAD CONTROL ALGORITHM

In this section, we first give a formal introduction of the

decentralized algorithm that solves the optimal load control

problem. Then, we discuss the communication architecture

that supports the information exchange in this algorithm.

Finally, we present the main result regarding the convergence

of the proposed algorithm.

A. Decentralized load control algorithm

The decentralized algorithm has already been informally

discussed in Section II-B. The dual variable update in (8) calls

for estimating u locally. As shown in Section III, there may

be inconsistencies between local estimates due to frequency

measurement noise. We use neighborhood communication

between loads to compensate for such inconsistencies. Define

the set of loads that communicate directly with load i at time t

to be N (i, t). Load i assigns a weight ri j(t) for all j ∈N (i, t),
and a weight rii(t) for itself. Conditions on the weights will

be discussed later in Section IV-B. Through neighborhood

communication, load i receives the value of dual variable p j(t)
from all j ∈N (i, t), and calculates an average value of dual

variable, denoted by qi(t), as

qi(t) = ∑
j=i, j∈N (i,t)

ri j(t)p j(t). (15)

This averaging procedure is typically used in consensus al-

gorithms [17]. The load control algorithm with neighborhood

communication is presented formally as follows.

Algorithm 1: Decentralized optimal load control algorithm

At time t = 0, the following information is known to all

loads i ∈V : the power system model which contains matrices

A, B and C, the lower bound p and upper bound p defined

Fig. 2. (From [16]) The home area network (HAN) involves the communi-
cation between appliances and smart meters. The neighborhood area network
(NAN), which is used in the load control mechanism, aids the communication
between utilities and smart meters within distribution networks. The wide area
network (WAN) aids the long range communication between substations.

in Section II-B, and a sequence of positive stepsize {γ(t), t =
1,2, ...} which is the same for all loads.

Each load i starts from arbitrary initial state estimate x̂i(1|0)
and initial value of dual variable qi(0).

At times t = 1,2, ..., load i:

1) Measures the frequency deviation ∆ω i(t), and calculates

ûi(t−1|t) using the input estimator (9).

2) Updates the dual variable according to

pi(t) =

max{min{qi(t−1)+ γ(t)ûi(t−1|t), p}, p},
(16)

and transmits pi(t) to all loads j ∈N (i, t).
3) Receives the value of p j(t) from all j ∈ N (i, t), and

calculates qi(t) as (15).

4) Computes the change in its load as ∆di(t) = ∆di(qi(t)).

Before presenting the main result regarding Algorithm 1,

we first introduce the neighborhood area communication ar-

chitecture supporting the information exchange in (15), as well

as some conditions on the weights ri j(t) for the convergence

proof of Algorithm 1.

B. Neighborhood area communication

As an example, we take the smart grid communication

architecture proposed by Trilliant Inc. [16] shown in Fig.

2. Algorithm 1 does not rely on communication between

loads and a central coordinator, and instead takes advantage

of communication between a load and its neighbors. This

neighborhood communication uses mainly the neighborhood

area network (NAN). In NAN, reliable, scalable, fast re-

sponding and cost-effective communication technologies such

as 802.2.15.4/ZigBee are widely used [16], which greatly

facilitate the implementation of decentralized load control.

For the convergence proof of Algorithm 1, we make the

following assumptions on the weights ri j(t) in (15).

Assumption 3: There exists a scalar 0 < η < 1 such that for

all i = 1, ...,N and all t ≥ 0, ri j(t)≥ η if j = i or j ∈N (i, t),
and ri j(t) = 0 otherwise.
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Assumption 4: For all i = 1, ...,N and all t ≥ 0,
N

∑
j=1

ri j(t) =

1, and
N

∑
j=1

r ji(t) = 1.

Note that with Assumption 3, equation (15) simplifies to

qi(t) =
N

∑
j=1

ri j(t)p j(t). (17)

Moreover, in order to make the information at load j impact

load i infinitely often, we assume that within any finite period

of time, the set of links which have ever appears form a

strongly connected graph. Define Et := {(i, j)|ri j(t) > 0} to

be the set of links at time t. The connectivity requirement

above is formally stated in the following assumption.
Assumption 5: There exists a integer Q ≥ 1 such that the

graph (V,
⋃

τ=1,...,Q
Et+τ−1) is strongly connected for all t.

Define R(t) to be the matrix with (i, j)-th entry ri j(t), and

define Φ(t,s) := R(t)R(t−1)...R(s+1). The following result

given by [17, Lemma 3.2] will be used in the convergence

proof of Algorithm 1:
∣∣∣∣[Φ(t,s)]i j−

1

N

∣∣∣∣≤ θβ t−s, (18)

where

θ =
(

1−
η

4N2

)−2

, β =
(

1−
η

4N2

) 1
Q
. (19)

C. Convergence of Algorithm 1

Now we present some results regarding the convergence of

Algorithm 1. We first consider the case where the stepsize

sequence {γ(t), t = 1,2, ...} converges to some nonnegative

constant. Theorem 1 gives a bound between the maximum

expected value of the dual objective function Ψ and the

optimal value of DP, denoted by Ψ∗.
Theorem 1: Suppose Assumptions 1-5 hold. If lim

t→∞
γ(t) =

γ ≥ 0 and
∞

∑
t=1

γ(t) = ∞, then, for all i ∈V ,

limsup
t→∞

E[Ψ(pi(t))]≥Ψ∗−
γ(G2 +σ2)

2

− γG(αNL+G)

(
2+

Nθβ

1−β

)
,

(20)

where G := max{|
N

∑
i=1

di +∆g|, |∆g|}, and L := p− p. Recall

that α = max
i∈V

αi, with αi defined in Assumption 2, and σ2 is

defined in Corollary 1.
Due to space limitation, we skip the proof of Theorem 1 and

have it in our technical report [19, Appendix A].
Taking γ = 0 in (20), it implies that when the stepsize γ(t)

diminishes with increasing t, the maximum expected value of

Ψ achieved by Algorithm 1 is exactly the optimal value of the

dual problem DP.
Corollary 2: Suppose Assumptions 1-5 hold. If lim

t→∞
γ(t)= 0

and
∞

∑
t=1

γ(t) = ∞, then, for all i ∈V ,

limsup
t→∞

E [Ψ(pi(t))] = Ψ∗.

With further restrictions on the stepsize γ(t), the sequence

generated by each load using Algorithm 1 almost surely

converges to the same optimal point of the dual problem DP.

In addition, the change in load ∆di(t) almost surely converges

to the solution of the optimal load control problem PP. This

result is formally stated in Theorem 2.

Theorem 2: Suppose Assumptions 1-5 hold. When ∑
t

γ(t) =

∞ and
∞

∑
t=1

γ(t)2 < ∞, the sequence {qi(t), t = 1,2, ...} of each

load i ∈ V converges to the same optimal point of the dual

problem DP with probability 1 and in mean square. More-

over, define ∆d(t) = [∆d1(t), ...,∆dN(t)]
T . Then the sequence

{∆d(t), t = 1,2, ...} converges to the optimal point of the

primal problem PP with probability 1.

Proof: With Assumptions 1-5, Equation (11) and Corol-

lary 1, the conditions for [17, Theorem 6.2] are satisfied. We

follow the same technique and get that for all i ∈ V , the

sequence {qi(t), t = 1,2, ...} converges to the same optimal

point of the dual problem DP with probability 1 and in mean

square. Define ∆d(q(t)) = [∆d1(q1(t)), ...,∆dN(qN(t))]
T . By

Section II-B, the sequence {∆d(q(t)), t = 1,2, ...} converges to

the optimal point of the primal problem PP with probability

1. By ∆d(t) = ∆d (q(t)), the theorem follows.

In Algorithm 1, communication is used to mitigate the effect

of measurement noise. Now we show a special case where the

disturbance ζ and the measurement noise ξi for all i ∈V are

small enough to be omitted. In such a case, Algorithm 1 still

converges while no communication between loads is required.

This result is formally stated as follows.

Theorem 3: Suppose ζ (t) = 0 and ξi(t) = 0 for all i ∈ V

and t ≥ 0. Suppose Assumptions 1 and 2 hold. In Algorithm

1, load i ∈V has rii(t) = 1 and N (i, t) = Ø for all i ∈V and

t ≥ 0. If constant stepsize γ(t) = γ is used, where γ satisfies

0 < γ < 2
αN

, then the sequence {qi(t), t = 1,2, ...} for all i ∈V

converges to the same optimal point of the dual problem DP.

Moreover, the sequence {∆d(t), t = 1,2, ...} converges to the

optimal point of the primal problem PP.

Due to space limitation, we skip the proof of Theorem 3 and

have it in our technical report [13, Appendix A].

V. CASE STUDIES

In this section, we take a relatively detailed power system

model for simulation-based experiments. We use Algorithm 1

to control the loads when a sudden generation drop occurs,

and observe frequency, change in load and global end-use

disutility to evaluate its performance. Additionally, we test

the robustness of Algorithm 1 to modeling inaccuracies by

making the loads use a simplified power system model. We

also discuss tradeoffs between the amount of communication

and performance of Algorithm 1.

A. System settings

We now present the power system model under considera-

tion as shown in Fig. 3. The model contains a speed governor

with the transfer function

Ggov(s) =−
1

R(1+ sTG)
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Fig. 3. Power system model used in the case studies.

TABLE I
PARAMETERS USED IN THE CASE STUDIES

Param. Value Param. Value (s) Param. Value (s)

KA 200 H 5 T1 0.2

K1 1.0755 TA 0.04 T2 0.02

K2 1.2578 TB 12 T3 0.4

K3 0.3072 TC 1 T4 0.04

K4 1.7124 τ ′d0 5.9 Tw 10

Param. Value Param. Value (s) Param. Value (pu)

K5 -0.0409 TG 0.2 D 1

K6 0.4971 TCH 0.3 R 0.05

Kw 20 TRH 7 FHP 0.3

and a turbine with the transfer function

Gturb(s) =
(1+ sFHPTRH)

(1+ sTCH)(1+ sTRH)
.

The generator is equipped with a power system stabilizer

(PSS) with the transfer function

Gstab(s) =
sKw(1+ sT1)(1+ sT3)

(1+ sTw)(1+ sT2)(1+ sT4)
.

The output voltage of the generator is regulated via an IEEE

AC4A exciter [2], which has the transfer function

Gx(s) =
KA(1+ sTC)

(1+ sTA)(1+ sTB)
.

Moreover, the flux decay transfer function of the generator is

G f lux(s) =
K3

1+K3τ ′d0s
.

Table I gives parameters used in the transfer functions above.

We take a sampling time ∆t = 0.5 s. With the given parameters,

we calculate the matrices A, B and C in (2), using the technique

in [13, Section II-A].

There are N = 100 loads. Each load i ∈ V = {1,2, ...,N}
communicates directly to loads max{i − K,1}, ...,min{i +
K,N}, as shown in Fig. 4. Load i has a disutility function

Di(∆di) = (∆di)
2/(2α i), where α i is a random positive num-

ber, e.g., uniformly distributed on [1,3] in our experiments.

The baseline power is Pbase = 200 MVA. For i ∈ V , ∆di ∈

Fig. 4. Communication graph of loads in the case studies.

[0,di]. In the case studies, we let di to be a positive random

number and choose ∑i∈V di = 0.30 per unit (pu). The change

in generation ∆g(t) contains two step drops resembling sudden

generation loss events:

∆g(t) =





0 0≤ t < 20 s

−0.05 pu 20 s≤ t < 50 s

−0.15 pu t ≥ 50 s.

Process disturbance ζ has covariance Q = B(0.002 pu)2BT

for B obtained above. Measurement noise ξi for all i ∈ V

has variance W = (0.001 pu)2. In Algorithm 1, loads use a

diminishing stepsize γ(t) = γ(0)/(t0.8) for some arbitrarily

selected γ(0)> 0, so
∞

∑
t=1

γ(t) =∞ and
∞

∑
t=1

γ(t)2 <∞. Therefore,

all the conditions in Theorems 1 and 2 are satisfied.

B. Performance and robustness to modeling inaccuracies

We compare the performance of Algorithm 1 between the

settings of “accurate modeling” and “simplified modeling”.

Under the setting of accurate modeling, loads use the accurate,

high-order power system model given by matrices A, B and

C in Algorithm 1. Under the setting of simplified modeling,

loads use a highly simplified, second-order model instead.

By comparison, we test the robustness of Algorithm 1 to

modeling inaccuracies due to practical consideration that the

utility company may not reveal the exact system information to

users for privacy reasons. There are multiple ways to simplify

the system model. For example, using the technique in [13,

Section IV-B], we derive a simplified transfer function

G̃(s) =−
0.1555s+0.0222

s2 +0.9918s+0.4666

for the model shown in Fig. 3.

Fig. 5-7 respectively show frequency, total change in load

and global end-use disutility with loads using the accurate

model or the simplified model, all with K = 5 in the commu-

nication graph. All the results under simplified modeling are

quite close to those under accurate modeling, which suggests

the proposed mechanism is robust to modeling inaccuracies.

The results also show that load control drives frequency around

60 Hz, makes load following generation and minimizes global

end-use disutility within seconds following generation drops,

much faster than the case without load control.

The main reason for the high recovery speed is that loads are

capable of sensing frequency locally and adjusting their power

consumption more rapidly than synchronous machines with

large inertia can ramp up. The decentralized computation and

short-distance communication required in our frequency-based

load control ensures that its implementation will be practical.
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Fig. 5. Frequency curve. The dotted line is the curve without load control.
The solid and dash-dot lines are the curves with loads using different models.
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Fig. 6. Change in load. The dotted line is the change in generation. The solid
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Fig. 7. Global end-use disutility. The dotted line is the minimal disutility.
The solid and dash-dot lines are disutility achieved by the load control with
loads using different models.

C. Tradeoff between communication and performance

Theorem 3 states the convergence of Algorithm 1 without

communication between loads in the ideal case where there

is no disturbance and measurement noise. However, com-

munication is required to guarantee satisfactory performance

of the proposed mechanism under practical settings where

measurement noise cannot be omitted. Fig. 8-10 respectively

show frequency, change in load and global end-use disu-

tility when loads perform Algorithm 1 with K = 0, i.e.,
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Fig. 8. Frequency curve without communication. The dotted line is the
curve without load control. The solid line and the dash-dot line respectively
correspond to the case with and without frequency measurement noise.
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Fig. 10. Global end-use disutility without communication. The dotted line is
the minimal disutility. The solid and dash-dot lines are respectively disutility
achieved by the load control with and without frequency measurement noise.
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Fig. 11. Global end-use disutility with different connectivity in the commu-
nication graph. The dotted line is the minimal disutility. The solid line, the
dash-dot line and the dashed line respectively correspond to the case K = 0,
K = 1 and K = 40.

the frequency measurement noise effectively using a moderate

amount of neighborhood communication.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an optimal load control mechanism for

contingency reserve. In case of a sudden drop in generation,

loads are shedded to match demand with supply and minimize

global end-use disutility by a decentralized algorithm. In the

algorithm, loads estimate global demand-supply mismatch

from local frequency measurement and accordingly shed their

power. To mitigate the estimation inaccuracy caused by fre-

quency measurement noise, inter-load communication is used.

The convergence of the proposed algorithm has been proved.

Simulation-based experiments have shown that the proposed

mechanism could match change in load with change in genera-

tion and restore frequency to nominal value on a timescale of

seconds following a contingency event, faster than spinning

reserve via generators. Moreover, the proposed mechanism

perform well even when loads use a simplified power system

model instead of the accurate model. We have discussed the

necessity of communication under measurement noise, and

showed tradeoffs between the amount of communication and

performance of the proposed mechanism. Case studies have

indicated that a moderate amount of communication could

improve performance significantly.

Currently the load control is in a strongly connected area

that contains dynamics of a single frequency. In the future,

we will work on multiple interconnected areas with different

frequencies at different sites. In that case, the external input of

each area, denoted by ∆g(t) in this paper, becomes the power

interchange between control areas. Distributed algorithm and

communication requirement under such settings remain to be

explored. Besides, physical network constraints such as line

capacity constraints, voltage level constraints, KCL and KVL

will add extra correlations between loads. We will study how

the load control problem will change and what will be an

effective solution when more practical network settings are

taken into consideration.
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