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Abstract 

Early diagnosis and accurate prognosis of colorectal cancer is critical for determining optimal treatment plans 
and maximizing patient outcomes, especially as the disease progresses into liver metastases. Computed tomography 
(CT) is a frontline tool for this task; however, the preservation of predictive radiomic features is highly dependent 
on the scanning protocol and reconstruction algorithm. We hypothesized that image reconstruction with a high-
frequency kernel could result in a better characterization of liver metastases features via deep neural networks. 
This kernel produces images that appear noisier but preserve more sinogram information. A simulation pipeline 
was developed to study the effects of imaging parameters on the ability to characterize the features of liver metasta-
ses. This pipeline utilizes a fractal approach to generate a diverse population of shapes representing virtual metasta-
ses, and then it superimposes them on a realistic CT liver region to perform a virtual CT scan using CatSim. Datasets 
of 10,000 liver metastases were generated, scanned, and reconstructed using either standard or high-frequency 
kernels. These data were used to train and validate deep neural networks to recover crafted metastases characteristics, 
such as internal heterogeneity, edge sharpness, and edge fractal dimension. In the absence of noise, models scored, 
on average, 12.2% ( α = 0.012 ) and 7.5% ( α = 0.049) lower squared error for characterizing edge sharpness and fractal 
dimension, respectively, when using high-frequency reconstructions compared to standard. However, the differences 
in performance were statistically insignificant when a typical level of CT noise was simulated in the clinical scan. Our 
results suggest that high-frequency reconstruction kernels can better preserve information for downstream artificial 
intelligence-based radiomic characterization, provided that noise is limited. Future work should investigate the infor-
mation-preserving kernels in datasets with clinical labels.
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Introduction
Over the past decade, colorectal cancer has become an 
increasingly prominent medical challenge. Contributing 
annually to approximately 50,000 deaths in the United 
States and 900,000 worldwide, it is now the third most 
commonly diagnosed cancer in the United States and is 
considered the fourth deadliest cancer. Diseased patients 
often die from colorectal liver metastases (CRLM) rather 
than from the primary cancer. Although a multitude of 
treatment options exist, including resection, chemo-
therapy, and ablation, monitoring patient responses and 
choosing the most effective therapies is a complex prob-
lem requiring further research [1–3].

Accurate and continuous monitoring of disease pro-
gression and CRLM is critical for optimizing patient out-
comes. To this end, X-ray computed tomography (CT) is 
one of the best and most widely available imaging modal-
ities for observing CRLM progression. Imaging features 
such as the largest metastasis (met) diameter and num-
ber of hepatic mets have been investigated as prognostic 
markers [4]. In addition, CT image texture analysis of 
hepatic mets and the entire liver has been studied to pre-
dict treatment response [5–8]. Broadly speaking, the frac-
tal dimension of CT tumor images has been investigated 
as a prognostic feature in a variety of oncological con-
texts, including response prediction to chemoradiation 
therapies in patients with locally advanced rectal cancer 
and survival prediction in sunitinib treated patients with 
hepatocellular carcinoma [9–11].

The impact of scan and reconstruction parameters 
on relevant imaging features is an important aspect of 
CRLM prognosis using CT imaging. For example, low-
ering the X-ray tube voltage may improve the contrast, 
better preserving texture details, but it also increases the 
image noise. On the reconstruction side, the kernel used 
to filter sensor data is a tunable factor that can reduce 
noise in the final image to varying degrees, but at the risk 
of over-smoothing details. Despite their importance, the 
scan and reconstruction parameters are heterogeneous 
across studies in the current literature. Both the stand-
ardization and optimization of imaging parameters for 
a given task and the robustification of crucial image fea-
tures to varying conditions are necessary to draw consist-
ent conclusions regarding different biomarkers and their 
relationship with patient outcomes [12–14].

Optimization of the imaging procedure to guide CRLM 
treatment requires extensive exploration of the param-
eter space. Furthermore, images are traditionally opti-
mized for human observers, who may prefer noise and 
artifact suppression over sharp features. The rise of artifi-
cial intelligence (AI) in computer vision has accelerated a 
new paradigm of radiomics, where useful prognostic and 
diagnostic features, which are often inconspicuous to the 

human eye, are learned over a large dataset rather than pre-
determined [15–20].

Filtered back projection (FBP) is the basis for the recon-
struction used in all commercial CT scanners and is a fast, 
analytical conversion from the sensor domain to the image 
domain. However, information is partially lost during this 
transformation (e.g., reprojecting the reconstructed image 
into the sensor domain does not produce the original 
sinogram), increasing the risk of losing prognostic details. 
Meanwhile, extracting radiomic features directly from the 
raw data avoids this issue, but information on a local region 
of interest (ROI, e.g., a met) is distributed throughout the 
sinogram, yielding a high-dimensional, challenging prob-
lem [21]. As such, we propose using a high-frequency ker-
nel for reconstruction, which results in images that appear 
noisier but are in closer agreement with the raw data.

It is hypothesized that an AI observer can better recover 
met features from images reconstructed using a high-fre-
quency kernel as opposed to the standard kernel. As it is 
impractical to initially evaluate this using a large cohort 
of patients, we propose a virtual imaging approach [22] 
to explore various imaging parameters in the context of 
CLRM. In this paper, we define a virtual imaging pipeline 
for simulating CT scans of liver mets with varying scan 
and reconstruction parameters and use this virtual imag-
ing pipeline to compare radiomic performance using FBP 
reconstruction with either a standard or high-frequency 
reconstruction kernel. This approach is illustrated in Fig. 1.

Our met generation process employs a fractal generation 
method along with a post-smoothing operation that mod-
els a diverse distribution of realistic shapes with varying 
edge sharpness. Inside the mets, nested regions with vary-
ing grey scale are also generated to model the internal het-
erogeneity in density. As these mets are synthetic, they do 
not have specific associated prognoses; however, their exact 
characteristics (e.g., edge fractalness) are precisely known 
because these ground-truth images are used as input to the 
CT simulation. Consequently, they are useful for evaluat-
ing different scanning and reconstruction schemes because 
the ability of an imager to preserve these characteristics of 
virtual mets is likely associated with its ability to preserve 
clinically relevant features of real mets. In our experiments, 
we assessed the scheme’s ability to preserve characteristics 
using a deep neural network to recover these characteris-
tics post-reconstruction.

Methods
Met synthesis
Random shape generation
Generating a diverse set of natural-appearing met 
shapes is a non-trivial task. Random initial met shapes 
are synthesized by generating vertices of a random 
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fractal shape using an “infinite detail” method inspired 
by ref. [23] and then smoothing the shape with a mov-
ing average filter applied over the list of vertices. The 
vertex-defined shape is converted into a pixel map of 
values prior to simulation, providing a practical limit 
beyond which additional vertices between adjacent 
pixels are unimportant. Specifically, for fractal shape 
generation, six initial vertices defining a rough hexa-
gon are initialized; the midpoints along each edge are 
then perturbed by random noise sampled from a uni-
form distribution that is scaled by the distance between 
the edge vertices for that mid-point and a roughness 
parameter, doubling the number of edges. The use of a 
distribution function and scaling argument provides a 
range of shapes, each with a different fractal dimension 
when measured. This process is repeated until the sepa-
ration between vertices is less than the resulting inter-
pixel spacing, creating more fractal detail with each 
iteration. To produce diversity in edge smoothness, 
the list of vertex coordinates is convolved with a mov-
ing average filter of random length up to half the num-
ber of vertices (a longer kernel produces a smoother 
shape). We also extend this technique to include an 
internal structure defining new shapes that are seeded 
with an early generation of surrounding shapes scaled 
to a smaller size that are allowed to evolve along a sepa-
rate path but confined to reside within the surrounding 
shape. Table 1 summarizes and illustrates the different 

met parameters used for generation, as detailed in the 
following sections.

Heterogeneity scaling and intensity scaling
The grayscale contrast (difference between met and back-
ground CT numbers) of each met is randomly sampled 
from a uniform distribution between -80 HU and -20 HU 
(Hounsfield Units). In addition to this homogenous base, 
a region of heterogeneity (referred to as the ‘insert’) is 
superimposed over each met. These inserts each consist 
of 2–3 sub-shapes, which are generated using the same 
fractal generation and smoothing method but fit within 
the met boundary. Examples of random met shapes and 
their insets are shown in Fig. 2. This insert is scaled such 
that the maximum difference between an insert point 
and the met background is uniformly sampled between 
0 and 80 HU.

Fractal characterization
In addition to the generative parameters mentioned 
above, we characterize the jaggedness along the outer 
edge of each met with a fractal dimension. Met shapes 
are quantized as a 256× 256 bit map and then processed 
with an edge detector. The nuclear box-counting method 
is then used to calculate the fractal dimension of the 
edge images using box sizes of 1, 2, 4, 8, 16, and 32 pix-
els, with the fractal dimension being the average slope 
of the log–log plot of the box scale ri ∈ {1, 2, 4, 8, 16, 32} , 
where N (r) boxes are required to cover the contour [24]. 

Fig. 1  Flowchart of liver met simulation and radiomic analysis. One the left side, CT image backgrounds are denoised and segmented for liver 
regions, while met shapes are generated using a fractal method. The CT scans of backgrounds and mets are simulated in parallel using 
CatSim. The scan data are reconstructed using FBP with either a standard or high-frequency kernel; image patches of mets are extracted 
from the reconstructions and then used to train deep neural networks tasked with estimating the correct met characteristics



Page 4 of 15Wiedeman et al. Visual Computing for Industry, Biomedicine, and Art            (2024) 7:13 

Table 1  Description and illustration of met parameters and characteristics used in generation

Fig. 2  Samples of generated met shapes. Top row: met background shapes; Middle row: met insert shapes; Bottom row: overall met
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In other words, fractal dimension Df  is calculated by lin-
ear regression:

Background preprocessing
Contrast-enhanced CT scans of stage 1–3 colon can-
cer patients (no liver mets) were sourced from Kingston 
Health Sciences Centre (Queen’s University). Twenty 
512× 512 slices with large liver regions were selected 
as image backgrounds. Because the pre-existing noise 
in these slices was compounded with noise added dur-
ing the CT simulation, the images were pre-processed 
to reduce noise in the input images. The “Reduce Noise” 
filter from Adobe Photoshop Elements 11 was used to 
denoise the clinical background images. Subsequently, 
the liver region of each slice was manually segmented, 
excluding blood vessels, cysts, and other confound-
ing structures (Fig.  3), to identify regions suitable for 

(1)

Df

b
= (A⊤A)−1A⊤N

A =
−logr1 · · · −logr6

1 · · · 1

⊤

,

N = logN (r1) · · · logN (r6)
⊤

synthetic met insertion (mets should be positioned inside 
the liver and not coincide with other structures).

Simulation
CatSim was used to simulate 2D scans of image back-
grounds with superimposed synthetic mets [25, 26]. The 
image backgrounds were converted into water density 
maps based on their CT number. Synthetic mets were 
randomly positioned within the liver segmentation map 
in 25 mm × 25 mm non-overlapping patches. Rather 
than superimposing the mets and clinical backgrounds 
in the image domain, which would limit the met detail to 
the resolution used for the clinical background images, 
the images were reprojected separately and superim-
posed in the sinogram domain. As such, the mets were 
simulated at a much higher resolution (voxel size 0.156 
mm) than the clinical backgrounds (voxel size 0.68  mm 
to 0.82  mm). Ten to twelve mets were superimposed 
on each background. Although the same backgrounds 
were used in multiple scans, the met placement var-
ied between scans, resulting in diverse image patches. 
The scanning parameters were set to mimic those of the 
Lightspeed VCT scanner (GE HealthCare): 1.0239 mm 
detector cell pitch, 888 detector cells, 984 views, 140kVp 
X-ray tube voltage. The source-to-isocenter distance and 

Fig. 3  Sample images illustrating the clinical background image preprocessing. Top row: original clinical images; Middle row: denoised images; 
Bottom row: liver background segmentation
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source-to-detector distance were 538.52 mm and 946.75 
mm, respectively.

Reconstruction
Each scanned slice was reconstructed twice using FBP 
with either the ‘Standard’ or ‘Edge’ (high-frequency) 
GE HealthCare product kernels. Figure  4 illustrates the 
absolute frequency responses of the two kernels for com-
parison. All images were reconstructed with a 40  cm 
field-of-view and 0.2 mm voxel size.

Characterization studies
The goal of the virtual imaging trial was to evaluate how 
accurately heterogeneity, edge sharpness, and edge frac-
tal dimension can be characterized, as defined in Table 1. 
We found that the edge sharpness and fractal dimension 
could not be easily evaluated within the same dataset, 
as blurring the edge of a met would destroy the original 
fractal dimension of the shape. In addition, we observed 
that the preservation of these features was highly sensi-
tive to noise level during the simulation. Consequently, 
the following four studies were conducted separately to 
broadly capture feature preservation effects:

1.	 Noiseless/no-blur: Evaluated for insert heterogeneity 
and fractal dimension.

2.	 Noiseless/blurred: Evaluated for edge sharpness.
3.	 Noisy/no-blur: Evaluated for insert heterogeneity 

and fractal dimension.
4.	 Noisy/blurred: Evaluated for edge sharpness.

No Gaussian blurring was applied to the met shapes 
in the no-blur studies. Poisson noise was simulated with 
a tube current of 600 mA and a rotation time of 1 s for 
the noise studies. The signal-to-noise ratio of these scans 
was calculated to be 48.4143± 0.8139 dB. No noise was 
inserted in the noiseless experiments. Ten thousand mets 
were generated and used in each simulation study. Total 
simulation time was approximately 36 h on a Linux sys-
tem with a 12@Intel(R) Core™ i7-5930 K processor and 
100  GB DDR4 RAM (although shared with other jobs 
running on the same server).

Network architecture and training
The goal of the characterization study was to use a deep 
neural network to estimate the true met parameters from 
reconstructed images. Reconstructions were cropped 
to create 128× 128 image patches centered on each 
met. PyTorch version 1.110 was used with an NVIDIA 
Titan RTX and CUDA 10.2 for deep learning train-
ing and testing. The network architecture was roughly 
based on ResNet V2 [27, 28]. Optuna was used to search 
the hyperparameter space [29]. The final architecture is 
shown in Fig. 5.

Different models were trained and evaluated for each 
characteristic. Edge fractalness and insert heterogene-
ity were evaluated using the datasets without blur, while 
edge sharpness was evaluated on the dataset with blur. 
Each evaluation used a 90/10 training/validation split. 
Random horizontal and vertical reflections, along with 
random image rotations, were used for eight-fold training 

Fig. 4  Comparison of the absolute frequency responses |H(f )| between the standard and high-frequency reconstruction kernels. fs is the sampling 
frequency



Page 7 of 15Wiedeman et al. Visual Computing for Industry, Biomedicine, and Art            (2024) 7:13 	

data augmentation. The data and labels were normalized. 
The Adam optimizer was used with a learning rate of 
4 × 10−5 and mean-squared error loss function.

Each network was trained using a batch size of 40 sam-
ples over 120 epochs. At the end of each epoch, a “bias 
adjustment” was performed, where the parameters of the 
final dense layer were adjusted using a globally computed 
linear regression (across the entire training dataset). This 
adjustment corrects any small bias that could result from 
sampling only a small batch, thereby helping the models 
to converge. After training, we calculated the errors in 
each validation sample as well as the concordance cor-
relation coefficient (CCC) between the validation predic-
tions and labels.

Results
Reconstructions
Figure  6 illustrates full field-of-view reconstructions 
of a liver cross-section using both standard and high-
frequency filtering, along with a magnified window of a 
met region. The mets were randomly placed across the 
liver region while avoiding overlap between mets other 
structures, such as blood vessels. In general, high-fre-
quency images yield sharper edges but at the expense of 
increased aliasing artifacts.

Figure 7 shows several example mets without noise or 
blur, with varying CT number, heterogeneity, and edge 
fractalness. The fractal edges of the shapes are notice-
ably better defined in the high-frequency images, while 
many edge details from the original met are absent in 
the standard reconstruction. Internal heterogeneity is 

generally detectable, although the background texture 
can obfuscate this trait.

Similarly, Fig.  8 illustrates several examples of mets 
without noise and with varying amounts of blur (or edge 
sharpness). The degree of edge sharpness (blur) appears 
easier to distinguish in the high-frequency reconstruc-
tions, especially in instances of minimal blur, because the 
standard reconstruction adds its own blur to the image. 

Figures  9 and 10 show the corresponding sample 
patches for noisy no-blur and blurred images. Edge 
sharpness and details are difficult to detect in both recon-
structions, and the added noise particularly affects the 
appearance of the high-frequency images, with edge 
details being heavily degraded. In these noisy instances, 
mets with lower density and heterogeneity are easier 
to detect because they are more distinct from their 
backgrounds. 

Deep characterization performance
The performance of deep characterization using standard 
and high-frequency reconstructions is reported across 
all studies by visualizing scatter plots of actual vs pre-
dicted labels on the validation datasets. Figure 11 shows 
these plots for insert heterogeneity, edge sharpness, and 
fractal dimension in the noiseless studies, while Fig.  12 
shows the same results for the noisy studies. CCC are 
also included in the evaluation. Heterogeneity is char-
acterized comparably between the standard and high-
frequency methods, but fractalness and edge sharpness 
show superior fits with the high-frequency reconstruc-
tion (Fig. 11). This superior fit is largely due to samples 
with high fractalness, where the standard method tends 

Fig. 5  Diagram of the deep neural network architecture used for all characterization tasks. Conv(n) signifies a convolutional layer with n output 
filters
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to underestimate this trait, and samples with sharp edges 
(low blur), where the standard method overestimates the 
blur. This is likely due to the standard kernel’s degrada-
tion of high-frequency details, which is critical for proper 
characterization in these instances. However, these 
regressions are much worse when noise is introduced 
(Fig. 12). Figure 13 summarizes the average squared error 
of the validation label prediction for each instance. Two-
tailed paired t-tests were performed, showing a signifi-
cant difference in squared error when using standard vs 
high-frequency reconstruction for predicting edge sharp-
ness ( α = 0.012) and fractal dimension ( α = 0.049) . No 
significant differences were observed in any of the char-
acteristics in the noisy studies (Fig. 14). A comparison of 
noiseless and noisy performance yielded significant dif-
ferences for all three metrics with either reconstruction 
method. 

Discussion
Generating a realistic but diverse population of mets for 
image simulation is an outstanding problem, and the 
increasing complexity and variety of imaging systems 
have increased the demand for virtual clinical trials [22]. 
Previous studies explored complex solutions to this topic 
by generating adequate data for AI image analysis [30, 

31]. Although our approach does not perfectly model 
real liver metastases, it can efficiently produce a diverse 
set of varying features that is sufficiently large and repre-
sentative to explore the original hypothesis. Furthermore, 
unlike methods that superimpose shapes over recon-
structed images, our approach generates shapes at a high 
resolution prior to scanning and reconstruction. As such, 
the pre-scan shape information is known precisely, allow-
ing the evaluation of how different imaging and recon-
struction settings preserve or degrade these features.

Placing as many mets within a background as possible 
without overlapping (Fig. 6) reduces the number of scans 
required to generate sufficiently large datasets. The over-
all size of each met was restricted due to this considera-
tion. This highlights a tradeoff between simulation speed 
and magnitude/diversity in met size.

Although this simulation approach is advantageous 
for investigating the impact of higher-resolution imag-
ing methods for more accurate characterization of 
representative but hypothetical radiomics features, 
this study did not aim to train or evaluate a radiom-
ics approach for predicting clinical outcomes from 
real patient images. By nature, the generated mets 
have well-defined anatomical characteristics, but clini-
cal labels differentiating met behavior and malignancy 

Fig. 6  Sample abdominal reconstruction from the noiseless/no-blur study using standard (left) and high-frequency (right) filtering
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Fig. 7  Samples of met patches pre-simulation (left) and after reconstruction using standard (middle) and high-frequency (right) kernels 
for the noiseless/no-blur study. Characteristics are on the left. Window and level are 200 and 0 HU, respectively, for all images

Fig. 8  Samples of met patches pre-simulation (left) and after reconstruction using standard (middle) and high-frequency (right) kernels 
from noiseless/blurred study. Characteristics are on the left. Window and level are 200 and 0 HU, respectively, for all images
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inherently cannot be generated in this manner. How-
ever, as previously discussed, many anatomical features 
of mets, such as fractalness and texture, are related 
to their clinical classification. Consequently, imag-
ing methods that better preserve these features are 

assumed to contain more clinical information; however, 
a direct evaluation on a real, clinically labelled dataset 
is required to validate this. As such, given its efficiency, 
the proposed pipeline is best suited for representa-
tive but hypothetical experiments (e.g., optimizing 

Fig. 9  Samples of met patches pre-simulation (left) and after reconstruction using standard (middle) and high-frequency (right) kernels 
from the noisy/no-blur study. Characteristics are on the left. Window and level are 200 and 0 HU, respectively, for all images

Fig. 10  Samples of met patches pre-simulation (left) and after reconstruction using standard (middle) and high-frequency (right) kernels 
from the noisy/blurred study. Window and level are 200 and 0 HU, respectively, for all images
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parameters that extract targeted features, such as frac-
talness and texture), rather than clinical experiments, 
which require real scans specific to a medical task. 
Hence, future studies should test whether high-fre-
quency kernels can produce more accurate prognostic 
labels for liver mets in low-noise situations.

Compared with the standard kernel, high-frequency 
kernel reconstructions feature aliasing-like noise pat-
terns (Figs. 7 and 8). This is expected because the high-
frequency kernel preserves frequencies higher than those 
classically permitted by the Nyquist theorem. Standard 
filtering removes this high-frequency noise but inevitably 
destroys the high-frequency features of the underlying 
signal in this process.

The results shown in Figs. 11 and 13 indicate that deep 
learning methods can more accurately recover high-
frequency characteristics, such as edge sharpness and 
fractal dimension, compared to standard kernel recon-
structions. Although the noise patterns from high-fre-
quency filtering are less appealing to human observers, 
sufficiently trained deep learning models can leverage 
the underlying high-frequency signal that is preserved in 
high-frequency filtering. This advantage is apparent from 
the noiseless studies, but prediction of high-frequency 
features is considerably degraded when Poisson noise is 
introduced (Fig. 12). Unlike the aforementioned aliasing 
noise, which is an artifact of sampling and reconstruc-
tion, Poisson noise is innate to raw data and cannot eas-
ily be circumvented. As such, neither reconstruction 

Fig. 11  Actual vs predicted regression plots on validation dataset in the noiseless studies for heterogeneity (top), edge sharpness (middle), 
and fractal dimension (bottom). All label ranges are normalized to [0, 1]
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method shows a distinct advantage, as the raw data itself 
limits the recoverability of high-frequency features, as 
opposed to the reconstruction method (Fig. 13). The sig-
nificant difference in performance between noiseless and 
noisy data, which is observed in all metrics with either 
reconstruction, reinforces the importance of noise level 
in characterizing these features. Future research should 
investigate the use of high-frequency reconstruction in 
low-noise tasks, such as imaging over a small ROI where 
high resolution is required. High-frequency reconstruc-
tion can also be used in conjunction with downstream 
data-driven processing, such as other analysis tasks or 
deep image denoising [32–34].

In future work, FBP with alternative kernels should be 
compared to iterative reconstruction within our frame-
work. Iterative reconstruction algorithms are generally 
more robust against common CT image artefacts and 
quantum noise [35]. Therefore, iterative reconstruction 
could potentially better preserve the met features assessed 
in these experiments. However, one associated pitfall is 
the extended time requirement for iterative methods; 
testing iterative reconstruction over many scans with 
our pipeline would likely take much more time. An ideal 
target from such experiments could be an optimized fil-
ter kernel that produces results close to those of iterative 
reconstruction while maintaining the efficiency of FBP.

Fig. 12  Actual vs predicted regression plots on validation dataset in the noisy studies for heterogeneity (top), edge sharpness (middle), and fractal 
dimension (bottom). All label ranges are normalized to [0, 1]
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Conclusions
In this study, we investigated FBP with a high-frequency 
kernel, which better preserves scan data, and compared 
it with a standard filter kernel for feature preservation 
of virtual CT CRLM. The virtual imaging framework 
used to explore this quickly generated a diverse popula-
tion of met shapes via a fractal-based method, which 
are superimposed on real clinical backgrounds. This 

method was able to simulate 10,000 CT met images for 
both high-frequency and standard kernel reconstruc-
tions in approximately 36  h with a 12@Intel(R) Core™ 
i7-5930  K processor. Our deep radiomics analysis sug-
gests that when image noise is sufficiently low, high-fre-
quency filter reconstruction is superior for preserving 
high-frequency features, such as edge fractalness and 
sharpness, and might reasonably be expected to better 
discriminate alternative image-based metrics considered 

Fig. 13  Average squared error (normalized by label variance) of deep characterization on validation data in the noiseless studies. Error bars 
represent 95%CI. * denotes a statistically significant difference (p < 0.05)

Fig. 14  Average squared error (normalized by label variance) of deep characterization on validation data in the noisy studies. There are 
no significant differences between standard and high-frequency reconstructions
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for diagnostic purposes. Future studies should expand 
these simulation methods to improve clinical translation 
and add more features, such as complex texture varia-
tions. Additionally, future work should investigate high-
frequency reconstruction in low-noise, high-resolution 
imaging applications and data-driven image tasks, such 
as deep denoising and further analysis.
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