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Abstract

Formal approaches to HW and system design have not
been generally adopted, because designers often view the
modelling concepts in these approaches as unsuitable for
their problems. Moreover, they are frequently on a too high
abstraction level to allow for efficient synthesis with
today’s techniques. We address this problem with a model-
ling method, which is strictly formal and based on formal
semantics, a pure functional language, and the synchrony
hypothesis. But the use of skeletons in conjunction with a
proper computational model allows to associate a direct
hardware interpretation. In particular we use (1) the syn-
chrony hypothesis and a timed signal model to provide a
high abstraction for communication at the system level.
This facilitates efficient modelling and design space explo-
ration at the functional level, because the designer is not
concerned with complex communication mechanisms, and
functionality can easily be moved from one block to
another. To bridge the gap between an elegant and
abstract functional model and the details of an implemen-
tation we use (2) skeletons to encapsulate primitive struc-
tures, such as FSMs, buffers, computation units, etc. in a
purely functional way.

1. Introduction
High abstract, formal models can be conveniently used

to capture the essential functionality of a system and to
utilize theorem provers and other formal analysis and veri-
fication techniques. This is of increasing importance when
systems become more and more complex and system anal-
ysis and verification becomes one of the major roadblocks
in product development. On the other hand, there is a sig-
nificant gap between high abstract, formal models and all
the details of an implementation, which has so far prohib-
ited efficient synthesis techniques. We attempt to bridge
this gap without compromising the formal properties and
the high abstraction level of a functional model. We do this
with (1) a carefully selected computational model and (2)
a modelling discipline based on timed signals for commu-
nication and skeletons for typical design patterns.

The computational model essentially provides abstrac-
tions ofcommunicationandtime. This allows the concen-
tration on the important system functionality.
Furthermore, because communication in our model is a

very simple data flow mechanism, functions can be added,
removed and re-grouped very easily. This is in contrast to
many modelling approaches based on concurrent proc-
esses with an asynchronous, FIFO based communication.
There, functions cannot be easily moved from one process
to another because this requires the redesign of the com-
munication structure. Furthermore, asynchronous message
passing is a very complex mechanism which cannot be
implemented in hardware directly.

The modelling discipline employs skeletons in form of
higher order functions to capture and provide primitive
structures such as FSMs, buffers, FIFOs, functional units,
etc. Although they conform to a strictly formal model and
can therefore be subject to formal analysis and transforma-
tion, they also have a direct hardware interpretation which
forms the base for efficient synthesis.

The rest of the paper is organized as follows. Section 2
discusses related work, Section 3 introduces the computa-
tional model and skeletons, and Section 4 illustrates the
modelling technique with a fairly large industrial example.
In Section 5 we discuss what research remains to be done
to make this approach usable in praxis, but we try to
underscore that the concepts presented here are the core of
the method and the remaining research on synthesis and
verification are based on existing knowledge and tech-
niques, and are therefore not insurmountable problems.

2. Related Work
Many computational models have been described. For a

comprehensive overview see Edwards et al. [4].
Very often real-time systems are specified by means of

concurrent processes, which communicate asynchro-
nously. Such a communication model forms the base for
languages as SDL [17, 19], VHDL [18], or SpecCharts
[15]. While this model serves as a good implementation
model, due to its closeness to architecture, we argue, that it
is not a good choice for a functional system model. Many
design decisions are already present in such a model, in
particular the partitioning into processes and the commu-
nication mechanism between the processes. It is very diffi-
cult to correct a wrong design decision in later design
phases. The complexity of the communication mechanism
in some of these languages, such as asynchronous message
passing with infinite buffers e.g. in SDL or Erlang [21], is
a major difficulty for both, the functional design explora-
tion and the subsequent implementation, even though its



simple usage in these languages does not make it always
apparent. For functional design exploration it is a problem,
because it makes it difficult to move a sub-functionality
from one process to another. If for instance a sub-function
SF1 is to be moved from processP1 to processP2, the
communication link betweenSF1 and P1 has to be
changed from the intra-process communication scheme,
shared memory, to the inter-process communication
scheme, say message passing. On the other hand, the com-
munication link betweenSF1 and P2 has to be changed
from message passing to shared memory based. This is
often a complicated and error prone procedure which
makes functional design space exploration tedious. For the
implementation phase a complex communication mecha-
nism such as asynchronous message passing with infinite
FIFOs is problematic, because it can never be imple-
mented fully in hardware. In fact, this is most of the time
not even necessary because in many cases a much simpler
mechanism, such as a strobe based or a handshake based
protocol suffices [16, 19]. But even a complicated analysis
cannot always find the simplest possible implementation.

In addition the asynchronous communication mecha-
nism makes it very difficult to reason about such a model
and to apply formal methods, because of the state space
explosion and potential non-determinism.

A formal approach, the synchrony hypothesis [1], forms
the base for the family of synchronous languages, which
are designed to target reactive systems. It assumes, that the
outputs of a system are synchronized with the system
inputs, while the reaction of the system takes no observa-
ble time. The synchrony hypothesis abstracts from physi-
cal time and serves as a base for a mathematical
formalism. All synchronous languages are defined for-
mally and system models are deterministic.

The family of synchronous languages can be divided
into two groups. LUSTRE [5] and SIGNAL [9] are
designed for data flow applications, while ESTEREL [3]
and STATECHARTS [6] target control-oriented applica-
tions. However, there is no language, which is good in both
areas as elaborated in [1]. We use this theory for our com-
putational model, but go beyond it by using a more power-
ful language paradigm, which allows us to address both,
data flow and control flow applications.

Reekie [12] used the functional language Haskell [10]
to model digital signal processing applications. He mod-
elled streams as infinite lists and used higher-order func-
tions to operate on them. Finally, correctness preserving
transformations were applied to transform a system model
into an effective implementation. Transformations of func-
tional programs is an active research field of the functional
programming community [2, 11].

The parallel programming community has used func-
tional languages to derive parallel programs from a func-
tional specification [13, 14]. Skeletons are used to
structure a problem, and then transformed into an efficient
implementation for a chosen parallel architecture.

For complex telecommunication systems [20] the com-
putational model should fulfil the following requirements:

• The computational model abstracts from implementa-
tion details.

• The computational model is based on a sound mathe-
matical formalism and support formal methods.

• The modelling language used in the computational
model is able to represent control and dataflow parts.

• The system model can be transformed into an imple-
mentation.
To fulfil these requirements we choose to adopt the syn-

chrony hypothesis and place it in a functional environment.
We use skeletons, which have a hardware interpretation
and allow program transformation. The system model is
implemented in the functional language Haskell [10],
which is based on formal semantics.

3. Computational Model

3.1. Definition
For a formal definition of the computational model we

use the denotational framework of Lee and Sangiovanni-
Vincentelli [8]. It defines a signal as a set of events, where
an event has a tag and a value. Tags are used to model the
order of events. In our model events are totally-ordered by
their tags. We model synchronous systems, that means
every signal has the same set of tags. Events with the same
tag are processed synchronously. To model the absence of
an event, we use a special value⊥ (“bottom”).

Absent events are necessary to establish a total ordering
of events for real time systems with variable event rates.

A system is modelled by means of concurrent proc-
esses. Events with the same tag are processed synchro-
nously. The output signals of a process are synchronized
with its input signals and are processed instantaneously.
There is no delay inside a process.

3.2. Modelling Language
The language we use for system modelling has to fulfil

the following requirements:
• It is based on formal semanticsandpurely functional,

i.e functions have no internal state. They are free of side
effects. This facilitates the application of formal meth-
ods for transformation, synthesis, and verification.
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• It supportshigher-order functions, which we use to for-
mulate skeletons, see Section 3.3.

• It has alazyevaluation mechanism, i.e. an argument to
a function is only evaluated when needed. This allows
to model infinite input streams in a pure functional, side
effect free way.

• It provides a variety of control constructs to facilitate
also the modelling of complex control flow. Functional
languages are naturally to use for data flow applica-
tions, but we also want to address control dominated
systems, as we illustrate in Section 4.

• It is executable to allow the simulation of the system
model.
We have chosen Haskell because it fulfils our require-

ments and offers some other versatile facilities such as a
powerfultype system.

A Haskell program is a function, which is a composi-
tion of other functions. We introduce some of the proper-
ties of Haskell with the higher-order functionmap. It
applies a function on all elements in a list.
map f []     = []
map f (x:xs) = f x : (map f xs)

The functionmaphas two arguments (written by juxta-
position). The first argument is a functionf and the other
argument is a list. The function uses pattern matching. The
first pattern matches, when the list is empty. The second
pattern matches, when the list is constructed (: ) by a first
element (x ) and a rest list (xs ).
map (*2) [1,2] = (1*2) : map (*2) [2]
               = 2 : (*2) 2 : map (*2) []
               = 2 : 4 : []
               = [2,4]

The type system of Haskell infers the following type for
map:
map :: (a -> b) -> [a] -> [b]

This meansmap is a function, that takes a function as
its first argument. This function is characterized by the
specification, that it takes one argument of a typea and
produces a result of typeb. The second argument ofmap
is a list with elements of typea. The result ofmap is a list
of typeb. Thusmapcan be used for all functions and lists
which are compatible to the type ofmap, which makes it
very general and useful. In addition the lazy evaluation
mechanism of Haskell allows to use infinite lists, as lists
are processed elementwise from the front. We use this
mechanism to model signals.

3.3. System Modelling with Skeletons and
Function Composition
Following the definition of our computational model in

Section 3.1 we describe in this section how a system is
modelled in the functional language Haskell. First, we dis-
cuss the modelling of signals. Second, we show how skele-
tons are used to model processes, and finally we introduce
function composition, which is used to compose the sys-
tem model.

Signals.We model signals in the functional language
Haskell by means of infinite lists, where the tag corre-
sponds to the position in the list.
type Signal value = [value]

In our model we usetimedsignals, which can contain
absent events. We define a datatypeToken , which is used
to represent absent events or present events of the type
value .
data Token value =  Absent
                  | Present value

A timed signal is a signal of the typeToken value .
This is expressed by means of a type synonymTimed :
type Timed value = Signal (Token value)

Elementary Processes.Elementary processes are mod-
elled withskeletons. A skeleton is ahigher-order function,
which takeselementary functionsand signals as input
parameters and produces signals as output. We define an
elementary function as a function, that is combinatorial
and does not include any timing behaviour.

The use of skeletons is the following:
• Skeletons are used for the synchronization of signals.

They separate timing behaviour from computation, the
latter is done by means of the elementary functions.

• Skeletons can contain state information.
• A skeleton has a hardware interpretation. Thus, a sys-

tem model, which is a composition of skeletons, has
also an interpretation in hardware.

• As skeletons are higher-order functions, the work on
correctness-preserving transformations, which has been
done by the functional programming community [2, 11]
can be used to transform a system model into a more
effective implementation model.
Notice, that the transformation of skeletons does not

affect the elementary functions used by the skeletons. Thus
functions written in other languages as VHDL or C can be
used as elementary functions as well, as long as they fulfil
the requirements on elementary functions.

In the following we present some important skeletons
and give hardware interpretations for them. We use the fol-
lowing naming convention: if a skeleton operates on both
untimed and timed signals, we name itskeletonS , if it
operates only on timed signals we name itskeletonT .

The skeletonmapS is based on the higher-order func-
tion map (Section 3.2), which recursively applies a func-
tion f on all elements of a list.mapScan be interpreted as
a combinatorial component with one input. An inverter can
be modelled by means ofmapS not . In this casenot is
an inverter function.

The skeletonzipWithS applies a functionf event-
wise on two signals.zipWithS is illustrated in Fig. 4.
zipWithS can be interpreted as a combinatorial compo-
nent with two inputs. It can be used to model an adder. In

mapS f
s' f e1( ) f e2( ) …,{ , }=s e1 e2 …,{ , }=

Figure 3. The skeleton mapS



this case the functionf  is an addition function.

The skeletonscanlS applies a functionf on the
events of a signal and an internal statemem. The result of
the function f works as the new state and as output.
scanlS can be interpreted as a state machine with no out-
put decoder. The needed memory elements can be derived
from the datatype ofmem.

Composition of Processes.We usefunction composition
to compose new processes. Haskell provides a composi-
tion operator “.”, which takes two functionsf and g as
arguments and produces a new function. The composition
operator is defined by
(f . g) x = f(g(x))

Systems are modelled by composition of processes. In
addition, libraries of application-oriented functions, can be
built by the composition of skeletons. Due to its composi-
tion of skeletons, each library element has a hardware
interpretation. However, often an effective implementation
is known for certain library elements and can be added to
the library.

The concept of library elements is illustrated with a
small example. We use the skeletonsmapSandscanlS
to constitute a new library elementmooreS .
mooreS  nextState output initState

= mapS output . scanlS nextState initState

mooreS can be interpreted as a Moore-FSM. It takes
two elementary functions,nextState andoutput , and
a valueinitState for the initial state as arguments. We
illustrate mooreS in Fig. 6.

Now, we usemooreS to constitute a new library ele-
mentidealFifoT , that is used to model anideal FIFO.
An ideal FIFO has the following characteristics: (1) it has
a buffer of infinite length; (2) it accepts 0, 1 or more data
items per event cycle; (3) it outputs at most one event per
event cycle. Following (1) we model the buffer, which is
the state of the FIFO, by means of a list. The input to the
FIFO is modelled by a timed signal which carries a list of

values (2), while the output of the FIFO is a timed signal of
a which carries values (3). We model the ideal FIFO by
means of the functionmooreS and two elementary func-
tionsfifoState  andfifoOutput .
idealFifoT  :: Timed [a] -> Timed a
idealFifoT  = mooreS  fifoState fifoOutput []

The functionfifoState is used to calculate the new
state of the buffer. The functionfifoOutput analyses
the buffer and outputs an absent event, if the buffer is
empty, or the first element of the buffer as a present event.

Real FIFOs can be modelled by means of the skeleton
mooreS as well. In this case the datatypes used for the
buffer and the parallel input data have to be changed to a
bounded datatype, e.g. an array or a list with a maximum
number of elements.

4. Case Study: ATM Switch with Operation
and Maintenance Functionality
We illustrate our design approach by means of an indus-

trial example, an ATM switch with operation and mainte-
nance functionality [7, 16]. This application monitors and
switches large amounts of data and has a defined timing
behaviour.

In particular, we emphasize the following:
• We show how a functional system model is developed

with our approach. The behaviour of the system model
is only based on data-dependences. It abstracts from a
low-level communication mechanism. This leaves a
wide design space and is a good starting point for fur-
ther design exploration. (Section 4.1)

• Although the system model is purely functional, the use
of skeletons makes it possible to interpret the model as
a hardware structure. The interpreted hardware struc-
ture works as a base for synthesis. (Section 4.2)

4.1. System Model Development
System-Level: ATM Switch.We start to develop the sys-
tem model from the top. We model the ATM switch by
means of a functionswitchCore,which is responsible for
the switching, and two identical operation and mainte-
nance functionsOAM (Fig. 7).

The ATM-Switch model is a function which takes two
ATM signals and a signal with messages from the TMN
layer as input and produces two ATM signals as output.
The translation of the system model in Fig. 7 to Haskell is
straightforward.

zipWithS f

s1 e11 e12 …,{ , }=

s2 e21 e22 …,{ , }=
s' e'1 e'2 …,{ , }=

e'i f e1i e2i,( )=

Figure 4. The skeleton zipWithS
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atm_Switch  atm1_in atm2_in tmn_Msg
  = (atm1_out,atm2_out) where
    (atm1_toMux,atm2_out)
      = oam atm1_in atm2_fromMux
    (atm1_fromMux,atm2_fromMux)
      = switchCore  atm1_toMux atm2_toMux tmn_Msg
    (atm2_toMux, atm1_out)
      = oam atm2_in atm1_fromMux

The top function atm_Switch takes atm1_in ,
atm2_in andtmn_Msg as arguments and produces two
outputsatm1_out andatm2_out . The output is written
as the tuple (atm1_out , atm2_out ). The specification
of atm1_out , atm2_out and the internal signals inside
the functionatm_Switch are given inside thewhere-
clause, which is used in Haskell to define local declara-
tions. The order of functions is irrelevant. This top-level
specification of the ATM-Switch can be seen as a defini-
tion by means of a set of equations.
Subsystem-Level: Switch Core.Descending one level we
illustrate the model of the Switch Core (Fig. 8). The func-
tion switch table controllerupdates the switch table (both
directions) and distributes the necessary parts of the switch
table (one direction) to thecell handler function, which
switches the ATM cells on the virtual connection or virtual
path level.

switchCore  atmUp_In atmDown_In command
  = (atmUp_Out, atmUp_Out) where
    atmUp_Out = cellHandler  atmUp_In tableUp
    atmDown_Out =
      cellHandler  atmDown_In tableDown
    (tableUp,tableDown) =
      switchTableController  command

Subsystem-Level: OAM.The OAM functionality is mod-
elled by means of the functionoam, which is illustrated in
Fig. 9. The functionoam_Extractor monitors ATM cells
and extracts OAM information. This information is sent to
the functionoam_Handler , which observes the status of
all virtual paths. Depending on that, it sends OAM cells to
the function oam_Inserter . The function
oam_Inserter inserts OAM cells into a stream of ATM
cells.
oam atmUp_In atmDown_In
  = (atmUp_Out, atmDown_Out) where
    atmUp_Out = oam_Inserter  userUp oamUp

atmDown_Out = oam_Inserter atmDown_In oamDown
    (userUp, oamInf) = oam_Extractor  atmUp_In
    (oamUp, oamDown) = oam_Handler  oamInf

Skeleton-Level:The functions in the subsystems Switch

Core and OAM are modelled with skeletons. Here, we
show how the function oam_inserter is modelled with the
skeleton zipWithS and the library element idealFifoT.
oam_Inserter  userCells oamCells
  = ( idealFifoT  . zipWithS  mergeSignals)
        userCells oamCells

The function has the following hardware interpretation:

4.2. Hardware Interpretation of the System Model
Using the hardware interpretation of Section 3.3 for

each skeleton, we get a hardware interpretation for the
entire system (Fig. 11).

This interpretation is still based on data-dependences
only, which leaves a wide design space. In particular func-
tions can easily be moved from one subsystem to another,
because the communication mechanism between the
blocks in Fig. 11 is identical with the mechanism inside
the blocks, i.e. parameter passing during function calls. In
other modelling approaches, where the interaction of proc-
esses does not depend on data-dependences, but on a com-
plex control and communication mechanism, sub-
functions cannot be moved from one block to another
without great effort.

5. Conclusion
We presented a novel design methodology for system

design, which combines the synchrony hypothesis with the
functional language paradigm in order to design both con-
trol and data flow dominated systems. The design starts
with a high level system model, that is purely functional
and only based on data-dependences. Thus, the system
model abstracts from implementation issues such as com-
munication mechanisms and its formal nature supports for-
mal methods and verification. However, despite the high
abstraction level, the use of skeletons allows it to interpret
the system model as a hardware structure. This hardware
structure can be used as a starting point for synthesis.

We will focus our future work on synthesis to derive a
synthesizable VHDL-model from our system model. We
divide this problem into the following subproblems.
Synthesis of elementary functions.Elementary func-
tions are combinatorial and without side-effects which
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makes their synthesis straightforward and yields a combi-
natorial VHDL-process.
Synthesis of states.The skeletonscanlS contains states.
These states can be synthesized to memory elements in
correspondence with its data type.
Synthesis of skeletons.A skeleton is synthesized into a
hardware structure, e.g.scanlS nextstate state
defines a finite state machine. The elementary function
nextstate will be synthesized into a combinatorial
process, that calculates the next state andstate is syn-
thesized into a memory element, which represents the state
of the finite state machine.
Synthesis of datatypes.For specification purposes sys-
tems are described on a high abstraction level. Thus
abstract datatypes are used widely in the system model.
These datatypes have to be transformed into synthesizable
datatypes. This problem is general for all approaches
where abstract data types are used.
Communication synthesis.One of the key properties of
the system model is, that it is based on data-dependences
and abstracts from a communication mechanism. This
property leaves a wide design space with respect to com-
munication between processes. The key issue is to analyse
the data dependences to generate effective communication
schemes.
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