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by Roland BACHER

1. Introduction and main results

The aim of this paper is to introduce and study some algebras related to meanders.

The reader can for instance consult the paper [LZ] for a brief account of the (brief) history

of meanders. The paper [LZ1] contains further motivations coming from physics.

D 1.1. — A system ofmeandercurves is a finite disjoint union of differen-

tiable Jordan curves (curves without self-intersections enclosing topological discs) in the

complex plane C. We require moreover that each of the above Jordan curves intersects R

non-trivially and transversally (see Figure 1.1 for an example with 3 components).

Two systems of meandercurvesσ andσ ��� C are equivalent if there exists an orien-
tation preserving diffeomorphismϕ of Cwhich restricts to an order preserving diffeomor-

phism of R and satisfiesϕ � σ ��� σ � .
An n-meander with k component is an equivalence class of a system of meander-

curves having k components and intersecting the real line in exactly 2n points.

A connected meander is a meander consisting of only one connected component

(Jordan curve).

Figure 1.1. A system of meandercurves representing a 6-meander with 3 components.
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For the sake of concision we will henceforth identify systems of meanders with the

corresponding meanders.

Wewould also like to warn the reader that most authors use the wordmeander only

for connected meanders.

It is clear that the number mn,k of n-meanders having k components is always fi-

nite. The following table displays the first values for the numbers mn,1 of connected n-

meanders.

T 1.2. — The first numbersm1,1, m2,1, . . . of connected n-meanders are given

by

m1,1 � 1 , 2 , 8 , 42 , 262 , 1828 , 13820 , 110954 , 933458 ,

m10,1 � 8152860 , 73424650 , 678390116 , 6405031050 , 61606881612 ,

m15,1 � 602188541928 , 5969806669034 , 59923200729046 ,
m18,1 � 608188709574124

The computation of the valuesmn,k needs about the same amount of work.

Tables up to n � 14 of these numbers have also appeared in [FGG1] and in [LZ].

D 1.3. — An increasing positive sequence t1, t2, . . . has exponential

growth if lim inf � tn � 1/n > 1. The limit τ (if it exists) of the sequence � � tn � 1/n � n � N is
then called the exponential growth rate of the sequence t1, t2, . . .

In section 2 we will prove the following result.

T 1.4. — There exists a constant λ independent of k such that all the se-

quences � mn,k
�
n � N have exponential growth of rate λ (i.e. limn ��� � mn,k � 1/n � λ).

It has been conjectured (see for instance [FGG1]) that one has

mn,1 � constante � 7/2 �
2n

n7/2

which would imply λ � 12. 25.
Denote byH ���	� z 
 C � Im � z � > 0 � and byH 
���� z 
 C � Im � z � < 0 � the upper

and lower open halfplanes of C.

D 1.5. — Given a meander µ, call a connected component of µ � H � an
upper arch and a connected component of µ � H 
 a lower arch. An upper arch without
any arch above it (ie. contained in the unbounded component of H ��� µ) or a lower arch

without arches below it is exterior.
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A meander µ is tame if every connected component of µ contains at least one exte-

rior arch.

Every connected meander is tame. Figure 1.1 shows a meander which is not tame.

It has 1 exterior upper arch and 3 exterior lower arches.

A n-meander has always exactly n upper and n lower arches. The number a of

exterior upper arches and the number b of exterior lower arches are generally smaller. For

n > 1 any pair of integers � a, b ���� � 1, 1 � with 1 � a, b � n can occur.
Denote bymt

n the number of all (non-isomorphic) tame n-meanders.

T 1.6. — The first terms of the sequencemt
1, m

t
2, . . . are

mt
1 � 1 , 3 , 15 , 93 , 657 , 5063 , 41535 , 357205 , 3187599 ,

mt
10 � 29303687 , 276062807 , 2654603987 .

T 1.7. — For n � 1 the numbers mt
n of tame n-meanders satisfy the in-

equalities

� mn,1 � 2 � � mt
n � 2 �

n � n � 1 �
2

m2n 
 1,1 .

In particular, the sequencemt
n has also exponential growth of rate λ.

In order to gainmore information onλ, we introduce in section 3 the graded algebra���
ofmeander-slices. As an abstract algebra

���
is not very interesting since it is the free

algebra on four generators of degree 1. It contains however an interesting subalgebra
�

and an interesting quotient algebra � which have both a natural grading. The subalgebra� � � injects into � (respecting the grading) showing that
sn � dim � � n �	� qn � dim �
� n �

(where � n denotes the finite-dimensional vector space spanned by all homogenous ele-
ments of degree n in a graded algebra � ).

T 1.8. — The first terms of the sequence s0, s1, s2, . . . are

s0 � 1 , s1 � 1 , 3 , 7 , 23 , 63 , 213 , 627 , 2149 , 6597 ,
s10 � 22787 , 71883 , 249523 , 802291 , 2794365 , 9111917 ,
s16 � 31814061 , 104862813 , 366796437 , 1219313185 .

T 1.9. — The first terms of the sequence q0, q1, q2, . . . are

q0 � 1 , 4 , 15 , 56 , 207 , 764 , 2805 , 10288 , 37609 , 137380 ,
q10 � 500655 , 1823440 , 6629423 , 24090332 , 87418221 , 317085352 ,
q16 � 1148825185 , 4160744164 , 15054719697 , 54454345624 ,
q20 � 196805925995 , 711077858188 , 2567375653681 , 9267176552040 ,
q24 � 33430012251123 , 120565130387572 , 434578910451203
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The numbers s2n and q2n are closely related to tame n-meanders.

The study of the algebras
�
and � is motivated by the following result.

T 1.10. — The sequences � sn � 1/n and � qn � 1/n have a common limit γ �
�

λ where λ is the growth rate of connected meanders. Moreover, � sn � 1/n � γ � � qn � 1/n
for all n.

The above tables suggest the asymptotics

sn � constante n 
 1 � 7/2 � n and qn � constante n � 7/2 � n
(the sequence sn is asymptotically of the form A nα γn if and only if qn is asymptotically

of the form B nα � 2 γn). These data seem to indicate an equality between γ2 and λ. I was

however unable to prove (or disprove) this.

D 1.11. — Given ameander µ, its interior I � µ � is the open subset I � µ � �
� z 
 C � Indµ � z ��� 1 � mod 2 � ��� C � µ consisting of all connected components of

C � µ which are enclosed by an odd number of Jordan curves in µ. The interior I � µ � is
hence homeomorphic to a finite disjoint union of open discs with a finite number of holes

in them (some discs may be sitting in holes of bigger discs).

The zeroth Betti number b0 of µ is the total number of connected components

(discs having perhaps holes) in I � µ � and the first Betti number is the total number of holes
in these discs. (The Betti numbers of µ are the Betti numbers of the open submanifold

I � µ ��� C .)
A meander is a forest-meander if its first Betti number b1 is zero. (The termi-

nology originates in the following observation: Every meander is the boundary of an ε-

neighbourhood of an essentially unique planar bipartite graph � C. Vertices of this graph
are the connected components of I � µ � � H � and edges are the connected components of
I � µ � � R. Forest-meanders correspond then to graphs which are forests.)

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1.2. The interior of the meander in Figure 1.1 (with b0 � 2 and b1 � 1).

T 1.12. — The first terms of the sequencem
f
n of n-forest meanders are given

by

m
f
1 � 1 , 3 , 15 , 97 , 733 , 6147 , 55541 , 530773 , 5298723 ,

m
f
10 � 54780831 , 582817337 , 6350647873 , 70614662303 , 798935833885
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T 1.13. — The sequencem
f
n counting n-forest meanders has exponential

growth of rate λf � λ.

The proof of Theorem 1.13 is analogous to the proof of Theorem 1.4 and is left to

the reader. (The inequality λf � λ is simply the observation that every tame meander is

also a forest meander.)

2. Proofs of Theorems 1.4 and 1.7

L 2.1.

(i) One has for all a, b > 1

ma � b,1 �
9

2
ma,1 mb,1 .

(ii) One has for all n > 1

mn � 1,1 � 3mn,1 .

L 2.2. — One has for all n, k � 1

mn 
 k � 1,1 � mn,k �
�
n � k � 1
k � 1 � mn � k 
 1,1 .

Proof of Theorem1.4. — Let us first consider the case k � 1. In this case, assertion
(i) of Lemma 2.1. shows by standard arguments that the sequence � mn,1

� 1/n admits a limit
λ 
 R � 0 ��� and assertion (ii) implies that λ � 3.

Let us show that λ � 16: At each intersection of an n-meander µ with the real line,

we get an upper and a lower strand which bend either to the left or to the right (here bend

to the left means that a traveller following this strand returns first to the real line at the left

from its starting point).

If both strands bend to the left, write the letter ) ,

If both strands bend to the right, write the letter ( ,

If the lower strand bends to the left and the upper strand bends to the right write

the letter / ,

If the lower strand bends to the right and the upper strand bends to the left write

the letter � .
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Reading the symbols encoding the type of the 2n strands of µ from left to right,

we get a word of length 2n in the alphabet � � , � , / , � � which encodes the meander µ

uniquely. For instance, the meander of Figure 1.1 is encoded by the word

� / � � � / � � � � � � .

This shows that there are at most 16n different n-meanders (and even less con-

nected n-meanders) and hence the growth-rate λ of connected meanders cannot ex-

ceed 16.

Lemma 2.2 implies now easily that the same constant λ works for all values

of k.

Remarks 2.3.

(i) The number 16n is of course an upper bound for the number of all n-meanders.

This last number can be exactly computed by remarking that the upper and lower part of

an n-meander both define n-arch systems or parenthesis systems consisting of n parenthe-

ses. This shows that the number �
k

mn,k of all n-meanders equals the squareC
2
n of the n-th

Catalan number Cn � � 2nn � 1
n � 1 which counts the number of distinct parenthesis systems

consisting of n parentheses (cf. for instance [LZ] or description (o) in Exercice 19 on Cata-

lan numbers in [S]). This refinement leads however to the the same (bad) upper bound

λ � 16 for the growth-rate λ of connected meanders.

(ii) Lemma 2.2 (together with the fact thatmn,1 is submultiplicative thus implying

mn,1 � λn for all n) can be combined with Remark (i) above in order to get a lower bound

on λ:

C2n ���
k

mn,k �
n�
k � 1
�
n � k � 1
k � 1 � λ

n � k 
 1 .

The biggest real root of the polynomial equation �
n�
k � 1 � n � k 
 1k 
 1 � xn � k 
 1 ��� � 2nn � 1

n � 1 � 2
yields hence for any natural integer n a lower bound for λ. Unvortunately the inequalities

of Lemma 2.2 are generally very far from sharp and the obtained lower bound (about 1.89

with n � 100) is not interesting.
(iii) The inequality mn � 1,1 � 3mn,1 can be sharpened to mn � 1,1 � 6mn,1 by ele-

mentary considerations involving the leftmost interior arch of connected meanders.

Proof of Lemma 2.1. — Let µ be a connected a-meander and let ν be a connected

b-meander. Draw the meanders µ and ν in the complex plane C such that µ � � z 

C � Re � z � < 0 � and ν � � z 
 C � Re � z � > 0 � . Choose now an exterior upper arch A in
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µ and an exterior upper arch B in ν. Cutting them open in the midpoint of A and B and

gluing them together as suggested by figure 2.1 yields a connected � a � b � -meander.

Figure 2.1. Two connected 3-meanders µ, ν cutted open in exterior upper arches

and the associated connected 6-meander.

The same construction works of course also using exterior lower arches. Moreover,

two connected � a � b � -meanders ρ, ρ � constructed from connected a-meanders µ, µ � and
b-meanders ν, ν � are equivalent if and only if µ � µ � , ν � ν � and using the same choice of
exterior arches.

One has

] � � exterior upper arches of µ � � � exterior lower arches of µ � � � 3
if µ is an a-meander with a > 1. This shows that there are at least 4 � 1 � 2 � 2 � 1

different possibilities for the above construction applied to two connectedmeanders µ and

ν. Moreover, if there are only 4 possiblities for µ and ν then there are 5 � 1 � 1 � 2 � 2

possiblities with µ and ν where ν denotes the b-meander obtained by reflecting ν with

respect to the real line. This proves the inequality

ma � b,1 � ma,1 � 4 � 5 � mb,1

2
thus proving assertion (i) of the lemma. The proof of assertion (ii) is similar and left to the

reader.

Proof of Lemma 2.2. — The first inequality is trivial: Any connected � n � k � 1 � -
meander can be embedded into an n-meander with k components by adding � k � 1 � dif-
ferent 1-meanders.

In order to prove the second inequality take an n-meander µk having k compo-

nents. Suppose that µ intersects the real line R � C in the points p1, . . . , p2n . Let i 

� 1, 2, . . . , 2n � be the smallest integer such that the two points pi and pi � 1 belong to two
different components of µk . Transform the n-meander µk into an � n � 1 � -meander µk 
 1
according to figure 2.2 (themeander µk is only partially drawn; the ommitted parts remain

unchanged).
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Figure 2.2. A part of µk and the corresponding part of the associated meander µk 
 1
It is easy to check that the meander µk 
 1 is an � n � 1 � -meander having � k � 1 �

components. Iterating this construction yields finally a connected � n � k � 1 � -meanderµ1.

In order to recover the initial meander µk from µ1 one needs to remember the k � 1
places where the construction of figure 2.2 took place. Encoding the meander as int the

proof of Theorem 1.4 one remarks that all the involved places are encoded by a four-letter

word starting either with � or with ( and there are exactly � n � k � 1 � such letters in the
word encoding µ1 (the remaining � n � k � 1 � letters belong to the set � / , ) � ). This shows
that there are at most � n � k 
 1

k 
 1 � different n-meanders µk with k components giving rise to

the same connected � n � k � 1 � -meander µ1. Hence the second inequality.

Proof of Theorem 1.7. — The tameness of connected meanders implies the first

inequality.

Let T now denote the set of tame n-meanders. For each meander µ in T let C0

denote the connected component of µ containing the leftmost exterior upper and lower

arch (which belong obviously to the same connected component). Since µ is tame every

connected component contains at least one exterior arch. Choose now in every connected

component of µ different from C0 an exterior arch. This choice fixes a partition of the set T

into subsets T � a, b � where T � a, b � consists of all those tame n-meanders in which we have
choosen a exterior upper arches and b exterior lower arches.

To each ordered pair µ, µ � of elements in T � a, b � we associate a unique connected
� 2n � 1 � -meander as follows: Draw µ at the left of µ � . Cut the first (leftmost) intersection of
µ andµ � with the real lineR open and separate the two ends by pulling the upper strands up
and by lowering the lower strands. Cut also all choosen exterior arches in µ and µ � in their
midpoints. Glue all open ends using “rainbows” ie. a configuration of � 2a � 1 � concentric
upper halfcircles respectively of � 2b � 1 � concentric lower halfcircles (Figure 2.2 shows this
construction: The two boxes represent schematically (after cutting) tame n-meanders µ

and µ � of T � 3, 2 � . The rainbows are dotted).
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Figure 2.2.

This construction is injectif and the tameness of themeandersµ and µ � implies that
the result is a connected meander. We get hence an injective application (this construc-

tions cannot produce equivalentmeanders from two pairs � µ1, µ �1 � 
 T � a1, b1 � �
T � a1, b1 �

and � µ2, µ �2 � 
 T � a2, b2 � �
T � a2, b2 � if � a1, b1 � �� � a2, b2 � ) from the set� a,bT � a, b � �

T � a, b �
into the set of all connected � 2n � 1 � -meanders. Setting ta,b � ] � T � a, b � � we have hence

�
a,b

t2a,b � m2n 
 1,1 .

But since a, b � 0 are integers such that a � b � n � 1 there are at most � n � 1
2
� non-zero

terms on the left.

Applying the Cauchy-Schwartz inequality to the � n � 1
2
� -dimensional vector � ta,b � ,

0 � a, b, a � b � n � 1 and to the vector � 1, 1, 1, . . . , 1, 1 � of the same dimension we get
� mt

n � 2 � � �
a,b

ta,b � 2 � � �
a,b

t2a,b �
�
n � 1
2 �

(with equality if and only if all the � n � 1
2
� terms of the sums are equal).

3. The algebra
���

of meanderslices

D 3.1. — Ameanderslice is a planar graph Γ contained in � z 
 C � � 1 �
Re � z � � 1 � having the following properties:

(i) The sets U 
 � � � 1 � j
� � 1 � j � 1,2,3,..., U � � � 1 � j

� � 1 � j � 1,2,3,..., L 
 �� � 1 � j � � 1 � j � 1,2,3,... and L � � � 1 � j � � 1 � j � 1,2,3,... are the vertices of Γ and all vertices
of Γ are of degree exactly one.

(ii) There exist integers k � , k 
 and a natural integer N such that for all j � N the

vertices � 1 � j � � 1 and 1 � � j � k � � � � 1 are joined by an edge and similarly the vertices
9



� 1 � j � � 1 and 1 � � j � k 
 � � � 1 are joined by an edge and none of these edges intersects
the real intervall

� � 1, 1 � .
(iii) All edges of Γ are either ordinary edges or closed loops and the set of loops in

Γ is finite. All intersections of edges and loops with the real interval
� � 1, 1 � are transversal.

The number of such intersections is the degree of Γ.

(iv)The interior of all edges and loops of Γ is contained in � z 
 C � � 1 < Re � z � < 1 � .
(v) Finiteness condition: Every loop and every edge not meeting both boundary

components intersect the real interval
� � 1, 1 � non-trivially.

There is of course an obvious notion of equivalence for meanderslices (orbits of

orientation-preserving isotopies of � z 
 C � � 1 < Re � z � < 1 � which fix the boundary and
preserve the real points) and we will consider only equivalence classes.

A meanderslice of degree n will often be called an n-meanderslice.

Although a meanderslice is defined as an infinite graph, condition (ii) allows a fi-

nite description using a finite planar graph as illustrated in Figure 3.1: all omitted edges

are above or below the shown edges and join vertices on the two distinct boundary com-

ponents in the obvious way. Such finite planar pictures are of course obtained by chopping

out the slice contained in the strip � z 
 C � � 1 � Re � z �	� 1 � of suitablemeanders (hence
the terminology).

Figure 3.1. Part of a meanderslice of degree 6

The free vector space
���

(over an arbitrary commutative field) on the set of all

meanderslices is endowedwith an associative product defined as the obvious composition

(as for instance for braids in the braid group or for elements in the Temperley-Lieb algebra)

given by juxtaposition.

The finiteness condition (v) implies then that
���

is a finitely generated algebra

and more precisely we have the following result.
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T 3.2. — The algebra
���

is a graded free algebra with unit on four gen-

erators of degree one.

Figure 3.2. The four generators ) , ( , � and / of
���

Themeanderslice of figure 3.1 represents for instance the element ) ( � ) ) / of
���

.

C 3.3. — The subalgebra
��� e

obtained by considering only meander-

slices of even degree is a free algebra with unit on 16 generators (which are all of degree 2).

We leave the easy proofs of Theorem 3.2 and Corollary 3.3 to the reader.

The subalgebra
��� e has the following interesting extra feature: Given a meander-

slice Γ 
 ��� e, the connected components of � z 
 C � � 1 < Re � z � < 1 � � Γ can be

oriented in such a way that adjacent components have always different orientations and

such that the point � 1 � ε is contained in a positively oriented component for ε small

enough. This extra structure is then compatible with the product. One can hence also ori-

ent the edges by requiring that their orientations induce the orientation on the positively

oriented connected components of � z 
 C � � 1 < Re � z � < 1 � � Γ. We will have a closer

look at
��� e

in section 4.

Remarks 3.4.

(i) Dropping the finiteness condition (v) one can still construct an algebra which

is however no longer graded (there subsists however a Z/2Z grading) and no more finitely

generated.

(ii) Allowing Reidemeister II moves of edges with the real line (ie. forgetting the

special role of the real open intervall � � 1, 1 � ) one gets a quotient of ���
which is very

usefull for many computations involving meanders. This quotient is a close relative of the

Temperley-Lieb algebras (and one can of course use get rid of the loops by introducing a

parameter). Most tables of this paper were computed by programming a computer to do

computations in this quotient.

Let � denote the vectorspace spanned by all meanderslicesσwhich have the prop-

erty that all edges of σ which cross the real segment
� � 1, 1 � are either loops or have both

endpoints on the right component � z 
 C � Re � z ��� 1 � of the boundary. Figure 3.3 shows
11



a basis of the homogeneous vectorspace � 3 � � spanned by all elements of degree 3

in � .

Figure 3.3. All meanderslices of degree 3 in � .

It is easy to check that � � ���
is a graded subalgebra of

���
which is however

no longer finitely generated (in fact, � is a free algebra on an infinite set of homogeneous

generators:

1 , 3 , 2 , 13 , 16 , 106 , 166 , 1073 , 1934 , 12142

(for instance only the last two elements of figure 3.3 are not products of elements of lower

degree in � ) are the numbers of homogenous generators in degree 1, 2, . . . , 10 in such a

free basis of the algebra � .

P 3.5. — The dimensions rn of the vector space spanned by homoge-

nous elements of degree n in � are given by

r2n �
�
2n

n � 2 and r2n 
 1 �
�
2n � 1
n � 1 � 2 .

This yields the asymptotics

rn � 2

π

4n

n
.

For any meanderslice σ 
 � of degree n there exist uniquely defined integers α �
d ��� σ � , β � d 
�� σ � � 0 such that none of the edges ending at 1 � � α � 1 � � � 1 and
1 ��� β � 1 � � � 1 intersects the real segment � � 1, 1 � and all edges of σ ending at 1 � α

� � 1
and 1 � β

� � 1 intersect � � 1, 1 � .

D 3.6. — Given a meanderslice σ 
 � , the pair of numbers � α, β � �
� d ��� σ � , d 
�� σ � � defined as above is called the bidegree of σ.

Sketch of proof for Proposition 3.5. — Let rn � α, β � denote the number of n-mean-
derslices σ 
 � with d ��� σ � � α and d 
 � σ � � β. We have obviously r0 � α, β � � 0 with

the exception r0 � 0, 0 � � 1. Setting rn � α, β � � 0 ifα < 0 or β < 0 one shows for all α, β � 0
the recursion relation

rn � 1 � α, β � � rn � α � 1, β � 1 � � rn � α � 1, β � 1 � � rn � α � 1, β � 1 � � rn � α � 1, β � 1 � .

12



From this one proves the equalities

rn � α, β � � rn � β,α � � rn � α, n � rn � n, β �
which implies rn � � �

k

rn � n, k � � 2. Moreover one checks by induction that

rn � n, n � 2k � � � n
k � � � n

k � 1 �
which shows that �

k

rn � n, k � � � n�
n/2 � � (with �

n/2 � denoting the integer part of n/2) and

implies the result.

The asymptotics follow of course from Stirlings formula n! � �
2πn nn e 
 n .

Remark 3.7. — Using generating series, the equality r2n � � 2nn � 2 can be shown to
be equivalent to the identity

� 1 � 2x ��
k � 0 Ck xk �


 1 �
��
k � 0
�
2k

k � xk
involving the Catalan numbers Ck � � 2kk � 1

k � 1 .
Let us consider the subspace � � ���

generated by all meanderslices containing

at least one loop. It is obvious that � is an ideal of ���
. The quotient � � ���

/ � is still
graded and the dimension qn in degree n of � is exactly the number of all meanderslices
of degree n which have no loops.

We introduce also the quotient
� � � / ��� � � � which is easily seen to be a sub-

algebra of both � (this is obvious) and of ���
(this comes from the observation that the

product in
���

of two loopless meanderslices in � never produces a loop).

Let sn � dim � � n � and qn � dim �
� n � denote the dimensions of the homogeneous
vectorspaces of degree n in

�
and in � .

P 3.8. — We have the inequalities

sn � qn � � n � 1 � 2sn
and

sasb � sa � b , qaqb � qa � b .

Proof. — The inclusion
� � � shows the inequality sn � qn .

Let σ 
 � be a meanderslice of degree n of bidegree � α, β � � � d ��� σ � , d 
�� σ � � .
Choosing two integers 0 � a � α, 0 � b � βwe can connect the � α � a � “highest strands”
(extremities of edges ending at 1 � � a � 1 � � � 1, . . . , 1 � α

� � 1) and the � β � b � “lowest
13



strands” with the left boundary component of σ thus getting an ordinary meanderslice of

degree n. This construction is injective and surjective (between the two obvious bases of�
n and � n) and since the non-negative integers α, β are at most equal to n we get the

inequality qn � � n � 1 � 2sn .
Figure 3.4 illustrates this by showing a meanderslice of bidegre � 3, 1 � in � and all

meanderslices in � obtained by applying the above construction (with 0 � α � 3 and

0 � β � 1).

Figure 3.4.

The inequality sasb � sa � b follows from the fact that
�
is a graded free algebra.

The inequality qaqb � qa � b follows from the fact that every meanderslice σ 
 �
of degree a � b factorizes as σ � σaσb where σk is a meanderslice of degree k in � .

Remark 3.9. — Denoting by sn � α, β � the dimension of the subspace spanned by
all n-meanderslices in

�
which have bidegree � α, β � , the above proof shows in fact the

equality

qn � �
α,β

� α � 1 � � β � 1 � sn � α, β � .

Let µ be a tame n-meander having k � µ � connected components C1, . . . , Ck � µ � . De-
note by ci � µ � the number of exterior arches in the component Ci . Given a subset I �
� 1, . . . , k � µ � � we denote by c �I � µ � (respectively c 
I � µ � ) the number of exterior upper (re-
spectively lower) arches contained in the union � i � ICi .

We denote furthermore by � n the set of all tame n-meanders.

P 3.10.

(i) One has

s2n � �
µ ��� n

k � µ ��

i � 1 � 2ci � µ � � 1 � .
(ii) For the numbers q2n we have

q2n � �
µ ��� n

� � 1 � k � µ � �
I ��� 1,2,...,k � µ �
	

� � 1 � ] � I � � 1 � c �I � µ � � 2c �I � µ � � 1 � c 
I � µ � � 2c �I � µ � .

14



Proof. — Given a tame n-meander µ contained in the strip � z 
 C � � 1 < Re � z � <

1 � with connected components C1, . . . , Ck � µ � there are �
i

� 2ci � µ � � 1 � choices of exterior
arches which contain at least one exterior arch in each connected component. Given such

a choice, slice all choosen exterior arches open and connect them planarly in the obvious

way (without introducing crossings with the real interval
� � 1, 1 � ) to the right boundary

� z 
 C � Re � z � � 1 � of � z 
 C � � 1 < Re � z � < 1 � . This defines a unique 2n-meanderslice
in
�
and this construction is easily seen to be bijective between between suitable choosen

subsets of exterior arches in tame n-meanders and a basis of of
�
2n .

The proof of assertion (ii) is similar but slightly more involved and uses the inclu-

sion-exclusion principle (sieve formula). Since we do not use it in the sequel we leave the

details to the reader.

Proof of Theorem 1.10. — Proposition 3.8 implies that the sequences

� sn � 1/n and � qn � 1/n

have a common limit γ which satisfies � sn � 1/n � γ � � qn � 1/n .
The inequality γ2 � λ follows from Proposition 3.10.

4. Forest-meanders

The aim of this section is to study forest-meanders using a graded subalgebra
�
f

and a graded quotient algebra � f of the even algebra ��� e (which is the free subalgebra
spanned by all 16 meanderslices of degree 2). There is again an inequality between the

growth rate λf of forest-meanders and the growth of dimensions of the two associated

algebras.

D 4.1. — Let σ 
 ���
be a meanderslice of degree 2n intersecting the

real interval � � 1, 1 � in 2n points � 1 < p1 < p2 < . . . < p2n < 1. A loop l of σ is even if the

last intersection p j of l with the interval � � 1, 1 � has even index (ie. j is even, p j 
 l and
pi �
 l for i > j). Otherwise l is called odd.

There are for instance 16 meanderslices of degree 4 which contain an odd loop.

Let � o � ��� e
denote the vector space spanned by all even meanderslices con-

taining an odd loop. The space � o � ��� e is a homogenous ideal of ��� e and we get a
graded subalgebra

�
f � � e/ � � e � � o � (where � e � � � ��� e ) and a graded quotient

15



� f � ��� e
/ � o . As in section 3 we have natural inclusions � f � ��� e and � f � � f

which preserve the grading. Set s
f
n � dim � � � f � 2n � and q fn � dim � � � f � 2n � .

P 4.2. — We have the inequalities

s fn � q fn � � 2n � 1 � 2s fn and s fa s
f
b � s fa � b , q fa q

f
b � q fa � b .

The proof is analogous to the proof of Proposition 3.8.

T 4.3. — The first terms of the sequence s
f
n are

s
f
0 � 1 , 4 , 32 , 320 , 3536 , 41344 , 501264 . . .

T 4.4. — The first terms of the sequence q
f
n are

q
f
0 � 1 , 16 , 240 , 3552 , 52224 , 764672 , 11163936 . . .

T 4.5. — The sequences � s fn � 1/n and � q fn � 1/n have a common limit γf �
λf . One has moreover � s fn � 1/n � γf � � q fn � 1/n for all n.

Given any meander µ let us denote by c � � µ � its number of exterior upper arches
and by c 
�� µ � its number of exterior lower arches. We denote moreover by F the set of all
forest-meanders.

P 4.6. — One has

s fn � �
µ � Fn

2c � � µ � � c � � µ �

and

q fn � �
µ � Fn

� 1 � c � � µ � � � 1 � c 
 � µ � � 2c � � µ � � c � � µ � .

The proof is completely analogous to the proof of Proposition 3.10.

Proof of Theorem 4.5. — Proposition 4.2 implies that the sequences � s fn � 1/n and
� q fn � 1/n converge and have a common limit γf such that � s fn � 1/n � γf � � q fn � 1/n . Propo-
sition 4.6. implies the inequality λf � γf .
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5. The algebra
�

of meanders

In this section we define an interesting graded subalgebra
� � � ��� � e . As an

abstract algebra
�

is free with infinitely many generators of arbitrary large degrees. As a

vector space,
�

is simply the free vector space generated by all meanders (with an arbi-

trary number of components).

The algebra
�

has of course also a quotient corresponding to the quotient � of���
.

The free vector space
�

on all meanders can be endowedwith an algebra structure

as follows:

Given two meanders µ and ν we denote by E � � µ � , E � � ν � the set of all exterior
upper arches of µ, ν and by E 
�� µ � , E 
 � ν � the set of all exterior lower arches. Let X � �
E ��� µ � , Y ��� E � � ν � , X 
 � E 
 � µ � , Y 
�� E 
�� ν � be subsets of exterior arches such that
] � X � � � ] � Y ��� and ] � X 
 � � ] � Y 
 � .

Define µ
X � Y �
X 
 Y 
 ν as the (equivalence class of the) following meander. Choose

first representatifs (systems of menadercurves) of µ and ν in C which do not intersect and

such that ν is “at the right” of µ (ie we have x < y for any x 
 µ � R and y 
 ν � R). Cut
now all exterior arches of µ � ν which belong to X � � Y � in their midpoints thus obtain-
ing 2] � X � � � 2] � Y � � � 4] � X � � upper “half-arches”. Glue these half-arches together in
the unique way such that the result is planar and such that each half-arch of µ is glued to

exactly one half-arch of ν. Do the same with all lower arches in X 
 � Y 
 . We denote the
resulting meander by µ

X � Y �
X 
 Y 
 ν (Figure 5.1 shows an example).

Figure 5.1. Two meanders µ and ν (with dotted subsets X
�
and Y

�
)

and the meander µ
X � Y �
X 
 Y 
 ν (before erasing the dotted arches used in the construction).
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Define now the product µν 
 � as

µν � �
X � 
 E � � µ � , Y � 
 E � � ν � , ] � X � ��� ] � Y � �
X 
 
 E 
 � µ � , Y 
 
 E 
 � ν � , ] � X 
 � � ] � Y 
 �

µ
X � Y �
X 
 Y 
 ν .

A little thought shows that this endows
�

with a structure of an associative graded

algebra (the grading is given by deg � µ � � n if µ is an n-meander). Figure 5.2 shows an

example of a product.

+ +

+ + +

x =

Figure 5.2. A product

Let
�

n denote the vector space spanned by all n-meanders (with an arbitrary

number of connected components). The dimension of
�

n is then C
2
n where Cn �

� 2n
n
� 1
n � 1 is the n-th Catalan number (see for instance [LZ] for a proof of this).
Remarks 5.1

(i)Here is a slightly different (but equivalent) description of the product µν of anm-

meanderµwith ann-meanderν. Consider an � m � n � -meander κ and cut it into two pieces

along a vertical line through x 
 R such that ] � � � � , x � � κ � � 2m and ] � � x, � � � κ � � 2n
(one can always choose κ such that the above vertical line cuts every arch of κ at most

once). The first part of κ contains then 2α upper half-arches and 2β lower half-arches.

Glue the first of the upper half-arches to the second one, the third to the fourth and so

on. Do the same with the lower half-arches and iterate this construction on the second

piece. The meander κ appears with coefficient 1 in the product µν if and only if the above

construction yields µ on the first piece and ν on the second. Otherwise κ does not appear

in µν.

(ii) Set α � � ] � E � � µ � � ,α 
 � ] � E 
�� µ � � and β � � ] � E � � ν � � , β 
 � ] � E 
�� ν � � .
The product µν is then a sum containing exactly

�
k

�
α �
k � � β �k � �

l

�
α 

l � � β 
l �

18



distinct meanders.

(iii) The algebra structure on
�

can easily be deformed: Take two variables z � and
z 
 and set

µν � �
X � 
 E � � µ � , Y � 
 E � � ν � , ] � X � � � ] � Y � �
X 
 
 E 
 � µ � , Y 
 
 E 
 � ν � , ] � X 
 � � ] � Y 
 �

z
] � X � �
� z

] � X � �
 µ
X � Y �
X 
 Y 
 ν .

Specializing z � and z 
 to 1 yields of course the algebra structure described above.
(iv) The algebra

�
has of course also a quotient which simplifies computations

invovingmeanders: keep only track of exterior arches (and of their connected components

of course). This quotient was used for instance for computing Table 1.6. We leave the

details (which are quite straightforward) to the reader.

Let ε � :
� ��� Q

�
q � be the linear map defined by ε � � µ � � qk for a meander µ

having k connected components. We call ε the augmentation map (Caution: ε � is by no

means a homomorphism of algebras).

LetO be the unique 1-meander (represented by the unit circle � C).

T 5.2. — We have

�
k

mn,kq
k � ε � � On �

where On is the n-th power in
�

of the unique 1-meander O 
 � consisting of a circle

centered at the origin.

Proof. — An easy induction on n.

T 5.3. — There exist an injective homomorphism of graded algebras ι :� ��� ��� e of the meander algebra � into the even subalgebra
��� e of the meander-

slice algebra.

Sketch of proof. — Let µ be ameander with τ exterior upper arches and β exterior

lower arches. We send µ to a sum of

�
k

� 2k � 1 �
�

τ

k � �
l

� 2l � 1 �
�

β

l � � � τ � 1 � � β � 1 � 2τ � β

meanderslices as follows. Choose a subset X of k exterior upper arches (there are � τ
k
� such

choices) and cut all these arches open thus getting 2k open strands. There are hence 2k � 1
possiblities to bend them to the left or to the right in a planar way. The same argument
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holds also for the exterior lower arches. Each such choice yields a unique slicemeander.

Define now ι � µ � as the sum over all possibilities. Figure 5.3 shows an example.

Figure 5.3. ι � O � for the unique 1-meanderO

We leave it to the reader to convince himself that ι � µ � definedas the sum of all these
meanderslices yields indeed a homomorphism of graded algebras.

6. Open problems and miscellaneous

The main open problem in the subject of meanders is of course the determina-

tion of the asymptotical behaviour (or even better a formula) of the numbersmn,1 of con-

nected n-meanders. Of course, understanding the asymptotics of any of the sequences

� mn,k � , � mt
n � or even � sn � or � qn � would also be helpfull.

Another interesting problem (less general than the above questions) is the question

whether γ2 � λ or not.

Answers to the same questions involving forest-meanders would also be nice.

It would also be interesting to have a better understanding of all the algebraic struc-

tures (the different algebras introduced in this paper) associated tomeanders. For instance

the algebras
� �

, � ,
�
,
�
f and

�
are all free graded algebras. The first four of these al-

gebras have in some sense canonical generators (given by suitable meanderslices). They

have hence also a Hopf algebra structure given by the coproduct

∆ � g1g2 � � � gl � � �
1 � i1<i2<...<ik

gi1gi2 � � � gik
�
g1 � � � ĝi1 � � � ĝi2 � � � ˆgik gl

and counit δ � 1 � � 1 if g is the unit and δ � g � � 0 for any homogeneous element g of degre
� 1.

Does the algebra
�

have such a natural Hopf algebra structure (it clearly has a

Hopf algebra structure since it is a free algebra but this structure depends on a choice of

generators which is not canonical)?
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Does the quotient algebra � admit a Hopf algebra structure?

Let us also mention that the techniques of this papers allow easily the computa-

tion of lower bounds for the number of meanders of special types. Indeed, one can re-

strict oneself for instance only to meanders having at most say N exterior arches. Doing

the computations in the suitable quotient (which keeps only track of exterior arches and

their connected components) of
�

one gets a finite dimensional “transfer matrix” whose

largest real eigenvalue is a lower bound for the corresponding exponential growth.

Call a meander µ � C symmetric if µ � � µ (where � µ � � z 
 C � � z 
 µ � ).
Denote byms

n,k the number of symmetricn-meanderswith k connected components. One

shows that the number of connected components of a symmetric n-meander has always

the same parity as n. Connected symmetric meanders have hence always odd degrees and

the first numbersms
2n 
 1,1 are as follows

ms
1,1 � 1 , ms

3,1 � 2 , ms
5,1 � 10 , ms

7,1 � 66 , ms
9,1 � 504 , ms

11,1 � 4210 , ms
13,1 � 37378 .

One can show the inequalities

mn,1 � ms
2n 
 1 � s2n 
 1

which imply
�

λ � λs � γ

if the limit λs � lim � m2n 
 1,1 � 1/ � 2n 
 1 � exists. (The techniques of this paper give no
proof for the existence of this limit but it is very unlikely that lim inf � m2n 
 1,1 � 1/ � 2n 
 1 � <

lim sup � m2n 
 1,1 � 1/ � 2n 
 1 � .)
Letmt ,s

n be the number of tame symmetric n-meanders. The growth lim � mt ,s
n
� 1/n

(if it exists) of tame symmetric meanders equals also λs .

Finally, let us describe a subfamily ofmeanderswith only very few connectedmean-

ders: Compose an-arch systemwith then-arch system � � � . . . � formedbyn consecutive
arches. We call meanders of this type Narayana meanders since the so-called Narayana

numbers (see Exercice 36 of chapter 6 in [S]) enumerate them accordingly to their num-

ber of connected components. In particular, there exists only one connected Narayana

n-meander.

I would like to thank E. Ferrand, P. de la Harpe, V.F.R. Jones, A. Marin and R. Stanley

for discussions, comments and remarks concerning this work.

21



Bibliography

[A] V.I. A’. — Sib. Math. J., 29 (5) (), in Russian.

[FGG1] P. D F, O. G, E. G. — Meander, Folding and Arch Statistics, Preprint.

[FGG2] P. D F, O.G, E.G. — Meanders and the Temperley-Lieb algebra, Preprint.

[FGG3] P. D F, O. G, E. G. — Meanders: A Direct Enumeration Approach, Preprint.

[LZ] S.K. L, A.K. Z. — Meanders, Selecta Math. Sov. 11 (), 117–144.

[S] R.P.S. — Enumerative Combinatorics, vol. 2, Cambridge University Press.

– � –

Roland BACHER
Université de Grenoble I
Institut Fourier

Laboratoire de Mathématiques
UMR 5582 CNRS-UJF
B.P. 74
38402 ST MARTIN D’HÈRES Cedex (France)

e-mail: Roland.Bacher@ujf-grenoble.fr

22


