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No Free Lunch Theorems for Optimization

David H. Wolpert and William G. Macready

Abstract—A framework is developed to explore the connection information theory and Bayesian analysis contribute to an
between effective optimization algorithms and the problems they understanding of these issues? Hawriori generalizable are
are solving. A number of *no free lunch” (NFL) theorems are o herformance results of a certain algorithm on a certain

presented which establish that for any algorithm, any elevated | f bl . f h | f
performance over one class of problems is offset by perfor- C/ass Of problems to its performance on other classes o

mance over another class. These theorems result in a geometricProblems? How should we even measure such generalization?
interpretation of what it means for an algorithm to be well How should we assess the performance of algorithms on

suited to an optimization problem. Applications of the NFL problems so that we may programmatically compare those
theorems to information-theoretic aspects of optimization and algorithms?

benchmark measures of performance are also presented. Other 9 ’ .
issues addressed include time-varying optimization problems and ~ Broadly speaking, we take two approaches to these ques-

a priori “head-to-head” minimax distinctions between optimiza- tions. First, we investigate what priori restrictions there are
tion algorithms, distinctions that result despite the NFL theorems’  on the performance of one or more algorithms as one runs

enforcing of a type of uniformity over all algorithms. over the set of all optimization problems. Our second approach
Index Terms—Evolutionary algorithms, information theory, is to instead focus on a particular problem and consider the
optimization. effects of running over all algorithms. In the current paper

we present results from both types of analyses but concentrate

I. INTRODUCTION largely on the first approach. The reader is referred to the

. ._._companion paper [5] for more types of analysis involving the
HE past few decades have seen an increased mterge P paper 5] yp 4 g

; | “black-box” optimizati laorith Stond approach.
that n gler_wteT_a -_;su(;pise | gc “0OX" Op |_m|z:t:1h|on at_go_rl tr_ns We begin in Section Il by introducing the necessary nota-
at exploit imited knowledge concerning the optmizaliof, , 554 discussed in this section is the model of computation

problem on which they are run. In large part these aIgorlthrT\}vse adopt, its limitations, and the reasons we chose it.

have drawn inspiration from optimization processes that occury o might expect that there are pairs of search algorithms

in nature. In particular, the two most popular black-box d.B such thatd performs better thai on average, even if

L . . . n
optimization strategies, evolutionary algorithms [1]-[3] an% sometimes outperforms. As an example, one might expect

simulated annealing [4], mimic processes in natural selectign™,~ .~ . " ! A
- gl ] pro fhat hill climbing usually outperforms hill descending if one’s
and statistical mechanics, respectively.

. L : S Iﬂcl;oal is to find a maximum of the cost function. One might also
In light of this interest in general-purpose optimizatio

algorithms, it has become important to understand the reFa{SpeCt it would ogtperform a raqdom search in such a context.
One of the main results of this paper is that such expecta-

tionship between how well an algorithm performs and the i _ £ Wi W0 “no free lunch” (NFL) th

optimization problemf on which it is run. In this paper lons are gcotr.recl.” tr? {):jove wot r:o t;\?e ur&c ( ) e-”

we present a formal analysis that contributes toward sut fFms in section at demonstrate this and more generally
minate the connection between algorithms and problems.

an understanding by addressing questions like the following" hl K h hat f h . .
given the abundance of black-box optimization algorithms a ughly speaking, we show that for both static and time-
of optimization problems, how can we best match algorithr‘r‘f?pendent optimization problems, the average performance

to problems (i.e., how best can we relax the black-box natu% apy pair'of algorit'hms gcross all -possible pro-blems is
of the algorithms and have them exploit some knowledé@em'cal' Th|§ means in particular that if some algorlth[fs
concerning the optimization problem)? In particular, whil@erformance is superior to that of another algorithgnover
serious optimization practitioners almost always perform suSRMe Set of optimization problems, then the reverse must be
matching, it is usually on a heuristic basis; can such matchiffif© Over the set of all other optimization problems. (The reader
be formally analyzed? More generally, what is the underlyir§ urged to read this sgct!on carefully .for a precise statgment
mathematical “skeleton” of optimization theory before th&f these theorems.) This is true even if one of the algorithms
“flesh” of the probability distributions of a particular contextS random; any algorithn,; performs worse than randomly

and set of optimization problems are imposed? What chsst as readily (over the set of all optimization problems) as

it performs better than randomly. Possible objections to these
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with ) components: and thata, produces a sample with As a preliminary analysis of whether there can be head-

Y componentsz’. to-head minimax distinctions, we can exploit the result in
In Appendix F, it is proven by example that this quantityAppendix F, which concerns the case whékg = |Y| = 3.
need not be symmetric under interchange:@nd »’. First, define the following performance measures of two-
Theorem 8:In general element samplesp(d}).
ZP . . (7 7, | f . ) I) (I)(y27y3) = (I)(y?nyQ) =2
Do o V502 L T L B2 i) @(y1,92) = (y2,1) = 0.
s i) ® of any other argument 1.
£ Py (77| fim a1 as). In Appendix F we show that for this scenario there exist
! pairs of algorithmsa; and a» such that for onef a; gen-

This means that under certain circumstances, even knowi r&tes the h|stogr§r{y1,y2} and_ag generates the h'St"gTam
only the ) components of the samples produced by two alg yQ’y?’.}’ but there is nof for which the reverse occurs (ie.,
rithms run on the same unknowfy we can infer something ere is nof such thata, generates the histograqyz, ys}

concerning which algorithm produced each population. ang 2 gtinerates{y;_[,yg}_)t.h defined perf
Now consider the quantity o0 in this scenario, with our defined performance measure,

there are minimax distinctions between; and as. For one
Zpa 2 (22| fym, a1, a) J the performance measures of algorithms and a, are,
7 respectively, zero and two. The difference in tfevalues
for the two algorithms is two for thaf. There are no other
again for deterministic algorithms; anda,. This quantity is f, however, for which the difference is2. For this® then,
just the number off such that it is both true that; produces algorithma, is minimax superior to algorithm;.
a histogramz and thata, produces a histogram’. It too |t is not currently known what restrictions oh(d¥,) are
need not be symmetric under interchangezoénd »* (see needed for there to be minimax distinctions between the
Appendix F). This is a stronger statement than the asymmegiigorithms. As an example, it may well be that f(d¥,) =
of d¥’s statement, since any particular histogram corresponglsn;{d¥, (i)} there are no minimax distinctions between al-
to multiple samples. gorithms.

It would seem that neither of these two results directly More generally, at present nothing is known about “how
implies that there are algorithms; and a, such that for big a problem” these kinds of asymmetries are. All of the
some f ai’s histogram is much better tham,’s, but for examples of asymmetry considered here arise when the set
no f's is the reverse is true. To investigate this problemf X valuesq; has visited overlaps with those thas has
involves looking over all pairs of histograms (one pair foyisited. Given such overlap, and certain properties of how the
eachf) such that there is the same relationship between (thgjorithms generated the overlap, asymmetry arises. A precise
performances of the algorithms, as reflected in) the histogranggecification of those “certain properties” is not yet in hand.
Simply having an inequality between the sums presented abo¥sr is it known how generic they are, i.e., for what percentage
does not seem to directly imply that the relative performances pairs of algorithms they arise. Although such issues are
between the associated pair of histograms is asymmetric. @gsy to state (see Appendix F), it is not at all clear how best
formally establish this would involve creating scenarios it answer them.
which there is an inequality between the sums, but no head-Consider' however, the case where we are assured that,
to-head minimax distinctions. Such an analysis is beyond the m steps, the samples of two particular algorithms have
scope of this paper.) not overlapped. Such assurances hold, for example, if we are

On the other hand, having the sums be equal does carry @bmparing two hill-climbing algorithms that start far apart (on
vious implications for whether there are head-to-head minimgxe scale ofn) in X. It turns out that given such assurances,
distinctions. For example, if both algorithms are deterministighere are no asymmetries between the two algorithmsifor
then for any particularf, Pys 4+ (21,22 | f,m,a1,a2) elementsamples. To see this formally, go through the argument
equals one for onéz, z2) pair and zero for all others. In suchused to prove the NFL theorem, but apply that argument to
a caseEf Py 17(13”(;:1,/:«2 | f,m,a1,a2) is just the number the quantityzf Pdi’npdi‘nz(zvz/ | f,m,a1,as) rather than
of f that result in the pai(z, z). S03, Py a4 (2,7 | P(€| f,m,a). Doing this establishes the following theorem.
fomyar,a2) = Y Py g (2,2 | f/m,a1,a;) implies  Theorem 9:If there is no overlap betweeif,, , andd, ,,
that there are no head-to-head minimax distinctions betwel&gn
a1 anday. The converse, however, does not appear to fiold.

!
Z-‘Ddfml,dfmz(zvz | fim, a1, a2)
4Consider the grid of allz, z') pairs. Assign to each grid point the number f
of f that result in that grid point'§z, z’) pair. Then our constraints are i) ,
= Zpdfml,dy 2(75 2| fym, a1, a2).
f

m,

by the hypothesis that there are no head-to-head minimax distinctions, if grid
point (z1, z2) is assigned a nonzero number, then s@zis, z1) and ii) by

the no-free-lunch theorem, the sum of all numbers in roequals the sum

of all numbers in columre. These two constraints do not appear to imply  An immediate consequence of this theorem is that under
that the distribution of numbers is symmetric under interchange of rows apd " . ,
columns. Although again, like before, to formally establish this point Woul&Ie no-overl.ap Cond|t'9ns' the .quanUEf PChCZ (z, Z |
involve explicitly creating search scenarios in which it holds. f,m,a1,as) is symmetric under interchange efand 2/, as
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are all distributions determined from this one o¥&randC, the number of elements ia.,,. Then

(e.g., the distribution over the difference between th6%e

extrema). S _ > Plesm | frdyd k0., A)
Note that with stochastic algorithms, if they give nonzero

probability to all &%,, there is always overlap to consider. B , ,

So there is always the possibility of asymmetry between —ZP(C>m|f7 d,d . k,a,d,B).

algorithms if one of them is stochastic. @

a,a’

Implicit in this result is the assumption that the sum excludes
those algorithmse and o’ that do not result ind and d’
respectively when run orf.

All work to this point has largely considered the behavior In the precise form it is presented above, the result may
of various algorithms across a wide range of problems. In thippear misleading, since it treats all samples equally, when
section we introduce the kinds of results that can be obtaind any givenf some samples will be more likely than others.
when we reverse roles and consider the properties of maByen if one weights samples according to their probability
algorithms on asingle problem. More results of this type areof occurrence, however, it is still true that, on average, the
found in [5]. The results of this section, although less sweepifioosing procedure one uses has no effect on likely. This
than the NFL results, hold no matter what the real worldig established by the following result, proven in Appendix H.
distribution over cost functions is. Theorem 11:Under the conditions given in the preceding

Let a anda’ be two search algorithms. Define a “choosingheorem
procedure” as a rule that examines the samplgs and
.. produced_ bya and a’,_respectively, and based on those ZP(C>’" | fm, k,a,d, A)
samples, decides to use eitlgor o’ for the subsequent part of o
the search. As an example, one “rational” choosing procedure ,
is to usea for the subsequent part of the search if and only if - ZP(C>”’ | f;m.k, 0,0, B).
it has generated a lower cost value in its sample thanchas e
Conversely we can consider an “irrational” choosing procedure

that uses the algorithm that hadt generated the sample with These results show that no assumption feff) alone
the lowest cost solution. justifies using some choosing procedure as far as subsequent

At the point that a choosing procedure takes effect tﬁgarch is concerned. To have an intelligent choosing procedure,
cost function will have been sampled dt, = d,, U d’ " “one must take into account not onB§( f) but also the search
= dn -

Accordingly, if d-.,,, refers to the samples of the cost functioﬁ‘lgorif[hmS one is .chloosing amr:)ng.. This CO”EIUSizn may be
that come after using the choosing algorithm, then the usertPrsing. In particular, note that it means that there is no

interested in the remaining sample... As always, without intrinsic advantage to using a rational choosing procedure,

. . : p .
loss of generality, it is assumed that the search algorith\f’ﬁ",Ch qontlnues W',th the better fafan_da, rather than using
selected by the choosing procedure does not return to irrational choosing procedure which does the opposite.
points in d,.5 hese results also have interesting implications for degen-

The following theorem, proven in Appendix G, establisherate choosing procedures= {always use algorithm} and

that there is naa priori justification for using any particular B = {always use algorithm'}. As applied to this case, they

choosing procedure. Loosely speaking, no matter what tH#an that for_fixedfl_ and f», if f, does better (on average)
cost function, without special consideration of the algorithi!th the algorithms in some sed, then f, does better (on

at hand, simply observing how well that algorithm has dor?everage) with the algorithms in the set of all other algorithms.
so far tells us nothinga priori about how well it would In particular, if for some favorite algorithms a certain “well-

do if we continue to use it on the same cost function F&ehaved”f results in better performance than does the random

simplicity, in stating the result we only consider deterministi¢: then that well-behaved givesworse than randorbehavior
algorithms. on the set all remaining algorithms. In this sense, just as there

Theorem 10:Let d,, and d, be two fixed samples of are no universally efficacious search algorithms, there are no

size m, that are generated when the algorithmsand o’ universally benigry which can be assured of resulting in better

respectively, are run on the (arbitrary) cost function at han@an random performance regardless of one’s algorlthm.
In fact, things may very well be worse than this. In super-

Let A and B be two different choosing procedures. Llebe X . )
vised learning, there is a related result [11]. Translated into

the current context, that result suggests that if one restricts
54 can know to avoid the elemeritshas seen before. Howevampriori, «  SUMS t0 only be over those algorithms that are a good match
has no way to avoid the elements observedibjas (and vice-versa). Rather {g P(f) then it is often the case that “stupid" Choosing
than have the definition of somehow depend on the elementsdin— d ’ . . . .
(and similarly fora'), we deal with this problem by defining.,,, to be set procedures—llke the irrational procedure of ChOOSIﬂg the
only by those elements it~ »,, that lie outside ofi,. (This is similar to the algorithm with the less desirabi@—outperform “intelligent”
convention we eXp|0Ited above to deal with pOtentIally retracing algorlthm%nesl What the set of algorlthms summed over must be in

Formally, this means that the random variable,, is a function ofdy as der f . | ch - d b .
well as ofd~ ,. It also means there may be fewer elements in the histograq{ er for a rational choosing procedure to be superior to an

¢>m than there are in the sample. ;. . irrational procedure is not currently known.

VII. P(f)-INDEPENDENT RESULTS





















