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No Free Lunch Theorems for Optimization
David H. Wolpert and William G. Macready

Abstract—A framework is developed to explore the connection
between effective optimization algorithms and the problems they
are solving. A number of “no free lunch” (NFL) theorems are
presented which establish that for any algorithm, any elevated
performance over one class of problems is offset by perfor-
mance over another class. These theorems result in a geometric
interpretation of what it means for an algorithm to be well
suited to an optimization problem. Applications of the NFL
theorems to information-theoretic aspects of optimization and
benchmark measures of performance are also presented. Other
issues addressed include time-varying optimization problems and
a priori “head-to-head” minimax distinctions between optimiza-
tion algorithms, distinctions that result despite the NFL theorems’
enforcing of a type of uniformity over all algorithms.

Index Terms—Evolutionary algorithms, information theory,
optimization.

I. INTRODUCTION

T HE past few decades have seen an increased interest
in general-purpose “black-box” optimization algorithms

that exploit limited knowledge concerning the optimization
problem on which they are run. In large part these algorithms
have drawn inspiration from optimization processes that occur
in nature. In particular, the two most popular black-box
optimization strategies, evolutionary algorithms [1]–[3] and
simulated annealing [4], mimic processes in natural selection
and statistical mechanics, respectively.

In light of this interest in general-purpose optimization
algorithms, it has become important to understand the rela-
tionship between how well an algorithm performs and the
optimization problem on which it is run. In this paper
we present a formal analysis that contributes toward such
an understanding by addressing questions like the following:
given the abundance of black-box optimization algorithms and
of optimization problems, how can we best match algorithms
to problems (i.e., how best can we relax the black-box nature
of the algorithms and have them exploit some knowledge
concerning the optimization problem)? In particular, while
serious optimization practitioners almost always perform such
matching, it is usually on a heuristic basis; can such matching
be formally analyzed? More generally, what is the underlying
mathematical “skeleton” of optimization theory before the
“flesh” of the probability distributions of a particular context
and set of optimization problems are imposed? What can
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information theory and Bayesian analysis contribute to an
understanding of these issues? Howa priori generalizable are
the performance results of a certain algorithm on a certain
class of problems to its performance on other classes of
problems? How should we even measure such generalization?
How should we assess the performance of algorithms on
problems so that we may programmatically compare those
algorithms?

Broadly speaking, we take two approaches to these ques-
tions. First, we investigate whata priori restrictions there are
on the performance of one or more algorithms as one runs
over the set of all optimization problems. Our second approach
is to instead focus on a particular problem and consider the
effects of running over all algorithms. In the current paper
we present results from both types of analyses but concentrate
largely on the first approach. The reader is referred to the
companion paper [5] for more types of analysis involving the
second approach.

We begin in Section II by introducing the necessary nota-
tion. Also discussed in this section is the model of computation
we adopt, its limitations, and the reasons we chose it.

One might expect that there are pairs of search algorithms
and such that performs better than on average, even if

sometimes outperforms. As an example, one might expect
that hill climbing usually outperforms hill descending if one’s
goal is to find a maximum of the cost function. One might also
expect it would outperform a random search in such a context.

One of the main results of this paper is that such expecta-
tions are incorrect. We prove two “no free lunch” (NFL) the-
orems in Section III that demonstrate this and more generally
illuminate the connection between algorithms and problems.
Roughly speaking, we show that for both static and time-
dependent optimization problems, the average performance
of any pair of algorithms across all possible problems is
identical. This means in particular that if some algorithm’s
performance is superior to that of another algorithmover
some set of optimization problems, then the reverse must be
true over the set of all other optimization problems. (The reader
is urged to read this section carefully for a precise statement
of these theorems.) This is true even if one of the algorithms
is random; any algorithm performs worse than randomly
just as readily (over the set of all optimization problems) as
it performs better than randomly. Possible objections to these
results are addressed in Sections III-A and III-B.

In Section IV we present a geometric interpretation of the
NFL theorems. In particular, we show that an algorithm’s
average performance is determined by how “aligned” it is
with the underlying probability distribution over optimization
problems on which it is run. This section is critical for an
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with components and that produces a sample with
components .
In Appendix F, it is proven by example that this quantity

need not be symmetric under interchange ofand .
Theorem 8: In general

This means that under certain circumstances, even knowing
only the components of the samples produced by two algo-
rithms run on the same unknown, we can infer something
concerning which algorithm produced each population.

Now consider the quantity

again for deterministic algorithms and . This quantity is
just the number of such that it is both true that produces
a histogram and that produces a histogram . It too
need not be symmetric under interchange ofand (see
Appendix F). This is a stronger statement than the asymmetry
of ’s statement, since any particular histogram corresponds
to multiple samples.

It would seem that neither of these two results directly
implies that there are algorithms and such that for
some ’s histogram is much better than ’s, but for
no ’s is the reverse is true. To investigate this problem
involves looking over all pairs of histograms (one pair for
each ) such that there is the same relationship between (the
performances of the algorithms, as reflected in) the histograms.
Simply having an inequality between the sums presented above
does not seem to directly imply that the relative performances
between the associated pair of histograms is asymmetric. (To
formally establish this would involve creating scenarios in
which there is an inequality between the sums, but no head-
to-head minimax distinctions. Such an analysis is beyond the
scope of this paper.)

On the other hand, having the sums be equal does carry ob-
vious implications for whether there are head-to-head minimax
distinctions. For example, if both algorithms are deterministic,
then for any particular
equals one for one pair and zero for all others. In such
a case, is just the number
of that result in the pair . So

implies
that there are no head-to-head minimax distinctions between

and . The converse, however, does not appear to hold.4

4Consider the grid of all(z; z0) pairs. Assign to each grid point the number
of f that result in that grid point’s(z; z0) pair. Then our constraints are i)
by the hypothesis that there are no head-to-head minimax distinctions, if grid
point (z1; z2) is assigned a nonzero number, then so is(z2; z1) and ii) by
the no-free-lunch theorem, the sum of all numbers in rowz equals the sum
of all numbers in columnz. These two constraints do not appear to imply
that the distribution of numbers is symmetric under interchange of rows and
columns. Although again, like before, to formally establish this point would
involve explicitly creating search scenarios in which it holds.

As a preliminary analysis of whether there can be head-
to-head minimax distinctions, we can exploit the result in
Appendix F, which concerns the case where .
First, define the following performance measures of two-
element samples, .

i) .
ii) .

iii) of any other argument .

In Appendix F we show that for this scenario there exist
pairs of algorithms and such that for one gen-
erates the histogram and generates the histogram

, but there is no for which the reverse occurs (i.e.,
there is no such that generates the histogram
and generates ).

So in this scenario, with our defined performance measure,
there are minimax distinctions between and . For one

the performance measures of algorithms and are,
respectively, zero and two. The difference in thevalues
for the two algorithms is two for that . There are no other

, however, for which the difference is2. For this then,
algorithm is minimax superior to algorithm .

It is not currently known what restrictions on are
needed for there to be minimax distinctions between the
algorithms. As an example, it may well be that for

there are no minimax distinctions between al-
gorithms.

More generally, at present nothing is known about “how
big a problem” these kinds of asymmetries are. All of the
examples of asymmetry considered here arise when the set
of values has visited overlaps with those that has
visited. Given such overlap, and certain properties of how the
algorithms generated the overlap, asymmetry arises. A precise
specification of those “certain properties” is not yet in hand.
Nor is it known how generic they are, i.e., for what percentage
of pairs of algorithms they arise. Although such issues are
easy to state (see Appendix F), it is not at all clear how best
to answer them.

Consider, however, the case where we are assured that,
in steps, the samples of two particular algorithms have
not overlapped. Such assurances hold, for example, if we are
comparing two hill-climbing algorithms that start far apart (on
the scale of ) in . It turns out that given such assurances,
there are no asymmetries between the two algorithms for-
element samples. To see this formally, go through the argument
used to prove the NFL theorem, but apply that argument to
the quantity rather than

. Doing this establishes the following theorem.
Theorem 9: If there is no overlap between and ,

then

An immediate consequence of this theorem is that under
the no-overlap conditions, the quantity

is symmetric under interchange ofand , as
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are all distributions determined from this one over and
(e.g., the distribution over the difference between those’s
extrema).

Note that with stochastic algorithms, if they give nonzero
probability to all , there is always overlap to consider.
So there is always the possibility of asymmetry between
algorithms if one of them is stochastic.

VII. -INDEPENDENT RESULTS

All work to this point has largely considered the behavior
of various algorithms across a wide range of problems. In this
section we introduce the kinds of results that can be obtained
when we reverse roles and consider the properties of many
algorithms on asingle problem. More results of this type are
found in [5]. The results of this section, although less sweeping
than the NFL results, hold no matter what the real world’s
distribution over cost functions is.

Let and be two search algorithms. Define a “choosing
procedure” as a rule that examines the samples and

, produced by and , respectively, and based on those
samples, decides to use eitheror for the subsequent part of
the search. As an example, one “rational” choosing procedure
is to use for the subsequent part of the search if and only if
it has generated a lower cost value in its sample than has.
Conversely we can consider an “irrational” choosing procedure
that uses the algorithm that hadnot generated the sample with
the lowest cost solution.

At the point that a choosing procedure takes effect, the
cost function will have been sampled at .
Accordingly, if refers to the samples of the cost function
that come after using the choosing algorithm, then the user is
interested in the remaining sample . As always, without
loss of generality, it is assumed that the search algorithm
selected by the choosing procedure does not return to any
points in .5

The following theorem, proven in Appendix G, establishes
that there is noa priori justification for using any particular
choosing procedure. Loosely speaking, no matter what the
cost function, without special consideration of the algorithm
at hand, simply observing how well that algorithm has done
so far tells us nothinga priori about how well it would
do if we continue to use it on the same cost function. For
simplicity, in stating the result we only consider deterministic
algorithms.

Theorem 10:Let and be two fixed samples of
size , that are generated when the algorithmsand ,
respectively, are run on the (arbitrary) cost function at hand.
Let and be two different choosing procedures. Letbe

5
a can know to avoid the elementsit has seen before. Howevera priori, a

has no way to avoid the elements observed bya
0 has (and vice-versa). Rather

than have the definition ofa somehow depend on the elements ind0 � d

(and similarly fora0), we deal with this problem by definingc>m to be set
only by those elements ind>m that lie outside ofd[. (This is similar to the
convention we exploited above to deal with potentially retracing algorithms.)
Formally, this means that the random variablec>m is a function ofd[ as
well as ofd>m. It also means there may be fewer elements in the histogram
c>m than there are in the sampled>m.

the number of elements in . Then

Implicit in this result is the assumption that the sum excludes
those algorithms and that do not result in and
respectively when run on.

In the precise form it is presented above, the result may
appear misleading, since it treats all samples equally, when
for any given some samples will be more likely than others.
Even if one weights samples according to their probability
of occurrence, however, it is still true that, on average, the
choosing procedure one uses has no effect on likely. This
is established by the following result, proven in Appendix H.

Theorem 11:Under the conditions given in the preceding
theorem

These results show that no assumption for alone
justifies using some choosing procedure as far as subsequent
search is concerned. To have an intelligent choosing procedure,
one must take into account not only but also the search
algorithms one is choosing among. This conclusion may be
surprising. In particular, note that it means that there is no
intrinsic advantage to using a rational choosing procedure,
which continues with the better of and , rather than using
an irrational choosing procedure which does the opposite.

These results also have interesting implications for degen-
erate choosing procedures always use algorithm and

always use algorithm . As applied to this case, they
mean that for fixed and , if does better (on average)
with the algorithms in some set , then does better (on
average) with the algorithms in the set of all other algorithms.
In particular, if for some favorite algorithms a certain “well-
behaved” results in better performance than does the random

, then that well-behaved givesworse than randombehavior
on the set all remaining algorithms. In this sense, just as there
are no universally efficacious search algorithms, there are no
universally benign which can be assured of resulting in better
than random performance regardless of one’s algorithm.

In fact, things may very well be worse than this. In super-
vised learning, there is a related result [11]. Translated into
the current context, that result suggests that if one restricts
sums to only be over those algorithms that are a good match
to , then it is often the case that “stupid” choosing
procedures—like the irrational procedure of choosing the
algorithm with the less desirable—outperform “intelligent”
ones. What the set of algorithms summed over must be in
order for a rational choosing procedure to be superior to an
irrational procedure is not currently known.














