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A Novel Incremental Principal Component Analysis
and Its Application for Face Recognition
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Abstract—Principal component analysis (PCA) has been proven
to be an efficient method in pattern recognition and image
analysis. Recently, PCA has been extensively employed for face-
recognition algorithms, such as eigenface and fisherface. The
encouraging results have been reported and discussed in the liter-
ature. Many PCA-based face-recognition systems have also been
developed in the last decade. However, existing PCA-based face-
recognition systems are hard to scale up because of the compu-
tational cost and memory-requirement burden. To overcome this
limitation, an incremental approach is usually adopted. Incremen-
tal PCA (IPCA) methods have been studied for many years in
the machine-learning community. The major limitation of existing
IPCA methods is that there is no guarantee on the approximation
error. In view of this limitation, this paper proposes a new IPCA
method based on the idea of a singular value decomposition
(SVD) updating algorithm, namely an SVD updating-based IPCA
(SVDU-IPCA) algorithm. In the proposed SVDU-IPCA algorithm,
we have mathematically proved that the approximation error is
bounded. A complexity analysis on the proposed method is also
presented. Another characteristic of the proposed SVDU-IPCA
algorithm is that it can be easily extended to a kernel version.
The proposed method has been evaluated using available public
databases, namely FERET, AR, and Yale B, and applied to existing
face-recognition algorithms. Experimental results show that the
difference of the average recognition accuracy between the pro-
posed incremental method and the batch-mode method is less than
1%. This implies that the proposed SVDU-IPCA method gives a
close approximation to the batch-mode PCA method.

Index Terms—Error analysis, face recognition, incremental
principal component analysis (PCA), singular value decomposi-
tion (SVD).

I. INTRODUCTION

FACE RECOGNITION has been an active research area
in the computer-vision and pattern-recognition societies

[1]–[6] in the last two decades. Since the original input-image
space has a very high dimension [2], a dimensionality-reduction
technique is usually employed before classification takes place.
Principal component analysis (PCA) [1], [7] is one of the most
popular representation methods for face recognition. It does
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not only reduce the image dimension, but also provides a
compact feature for representing a face image. The well-known
eigenface system was developed in 1991. In 1997, PCA was
also employed for dimension reduction for linear discriminant
analysis and a new algorithm, namely fisherface, was devel-
oped. After that, PCA has been extensively employed in face-
recognition technology.

Usually, PCA is performed in batch mode. It means that
all training data have to be ready for calculating the PCA
projection matrix during training stage. The learning stops
once the training data have been fully processed. If we want
to incorporate additional training data into an existing PCA
projection matrix, the matrix has to be retrained with all training
data. In turn, it is hard to scale up the developed systems. To
overcome this limitation, an incremental method is a straight-
forward approach.

Incremental PCA (IPCA) has been studied for more than
two decades in the machine-learning community. Many IPCA
methods have also been developed. Basically, existing IPCA
algorithms can be divided into two categories. The first category
computes the principal components (PCs) without computing
the covariance matrix [13], [16], [17]. To the best of our
knowledge, the candid covariance-free IPCA (CCIPCA) [13]
algorithm developed by Weng et al. is the most recent work.
Instead of estimating the PCs by stochastic gradient ascent
(SGA) [17], the CCIPCA algorithm generates “observations” in
a complementary space for the computation of the higher order
PCs. Suppose that sample vectors are acquired sequentially,
e.g., u(1), u(2), . . ., possibly infinite. The first k dominant PCs
v1(n), v2(n), . . . , vk(n) are obtained as follows [13].

For n = 1, 2, . . ., do the followings steps.

1) u1(n) = u(n).
2) For i = 1, 2, . . . ,min(k, n), do:

a) if i = n, initialize the ith PC as vi(n) = ui(n);
b) otherwise

vi(n) =
n− 1 − l

n
vi(n− 1) +

1 + l

n
ui(n)uT

i (n)
vi(n)

‖vi(n)‖

ui+1(n) =ui(n) − uT
i (n)

vi(n)
‖vi(n)‖

vi(n)
‖vi(n)‖

where l is the amnesic parameter [13].

Since the PCs are obtained sequentially and the computation
of the (i+ 1)th PC depends on the ith PC, the error will
be propagated and accumulated in the process. Although the
estimated vector vi(n) converges to the ith PC, no detailed error
analysis was presented in [13]. Further, Weng et al. [13] defined
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a sample-to-dimension ratio n/d, where n is the number of
training samples and d is the dimension of the sample space.
If the ratio is small, it may be a problem from the statistical-
estimation point of view. In the face-recognition problem, the
high dimension of the face images is usually larger than 10 000.
Even though 5000 training samples are used, the sample-to-
dimension ratio (5000/10 000 = 0.5) is still very low [13].
Hence, methods in this category are not suitable for face-
recognition technology.

The second category of the IPCA algorithms [14], [18]–[20],
[26] reconstructs the significant PCs from the original training
images and a newly added sample. When a new sample is
added, the dimension of the subspace is increased by one.
The updated eigenspace is obtained by using low-dimensional
coefficient vectors of the original images. The reason is that
the coefficient vectors and reconstructed images are only rep-
resented in different coordinate frames. Since the dimension
of the eigenspace is small, this approach is computationally
efficient [14]. Since the new samples are added one by one
and the least significant PC is discarded to preserve the di-
mension of the subspace, this approach also suffers from the
problem of unpredicted approximation error. Hall et al. [12]
also demonstrated that, for the updating of the eigenspace with
low dimension coefficient vectors, adding one datum each time
is much less accurate than adding complete spaces.

On the other hand, there are powerful mathematical tools,
namely SVD updating algorithms [8], [21]–[25], which were
developed based on singular value decomposition (SVD). Zha
and Simon [8] further enhance the SVD updating algorithm
and applied it to latent semantic indexing (LSI) for information
retrieval. They investigated matrices possessing the so-called
low-rank-plus-shift structure, i.e., matrix A satisfying

ATA = a low-rank matrix + a multiple of the identity matrix.

If a matrix has the low-rank-plus-shift structure, the SVD
updating algorithm will obtain the same best low-rank approx-
imation as in the batch mode. This means that no error will
be introduced. Theoretically, this approach is really good and
interesting. However, in practice, it is difficult to prove that the
data matrix has the low-rank-plus-shift structure. It is because
the data matrix will be changed with the insertion of new sam-
ple(s), and the rank of the data matrix can be changed during the
incremental-learning process. Another important missing item
is that there is no analysis on error in case a matrix does not
satisfy the low-rank-plus-shift structure.

In this paper, we develop a new IPCA method based on
the SVD updating algorithm, namely the SVD updating-based
IPCA (SVDU-IPCA) algorithm. Instead of working directly
on the data matrix X , we apply our method on the matrix
Σ = (X − E(X))T(X − E(X)), where E(·) is the expecta-
tion operator. This is often employed in implementing the PCA-
based face-recognition methods, such as the eigenface method
[1]. The dimensionality of the face image (usually higher than
10 000) is much higher than that of the data used in LSI
(usually less than 1000). Working on the matrix Σ can result
in computational savings. We also prove that if the data matrix
has the low-rank-plus-shift structure, the error bound using our

proposed SVDU-IPCA method is also equal to zero. However,
as discussed, it is hard to prove that the input matrices have
the low-rank-plus-shift structure. Therefore, we have presented
a detailed error analysis and derived an error bound for the
approximation between the incremental algorithm and the batch
mode. Another characteristic of our proposed SVDU-IPCA
method is that it can be easily extended to the kernel version.
Since the conventional incremental methods [8], [13], [19]
need to compute the additional vectors in the feature space (not
in terms of inner products), they are difficult to adopt to the
kernel trick.

The rest of this paper is organized as follows. Section II
briefly reviews PCA and SVD updating algorithms. Section III
presents our proposed SVDU-IPCA method. A mathematical
analysis of our proposed SVDU-IPCA algorithm is presented
in Section IV. Section V reports our incremental kernel PCA
(IKPCA). Experimental results are shown in Section VI, and
Section VII concludes this paper.

II. BRIEF REVIEW ON PCA AND SVD UPDATING

In this section, we will briefly review the procedures of the
PCA and SVD updating algorithms [8].

A. Principal Component Analysis

PCA [30] is one of the oldest and best known techniques in
multivariate analysis. Let x ∈ R

n be a random vector, where
n is the dimension of the input space. The covariance ma-
trix of x is defined as Ξ = E{[x− E(x)][x− E(x)]T}. Let
u1, u2, . . . , un and λ1, λ2, . . . , λn be eigenvectors and eigen-
values of Ξ, respectively, and λ1 ≥ λ2 ≥ · · · ≥ λn. Then, PCA
factorizes Ξ into Ξ = UΛUT, with U = [u1, u2, . . . , un] and
Λ = diag(λ1, λ2, . . . , λn). One important property of PCA is
its optimal signal reconstruction in the sense of minimum mean
squared error (mse). It follows that once the PCA of Ξ is
available, the best rank-m approximation of Ξ can be readily
computed. Let P = [u1, u2, . . . , um], where m < n. y = PTx
will be an important application of PCA in dimensionality
reduction.

B. SVD Updating

Let A ∈ R
m×n, Am×n = UΛV T, and its best rank-k ap-

proximation Âm×n ≡ UkΛkV
T
k , where Uk and Vk are formed

by the first k columns of U and V , respectively, and Λk

is the kth leading principal submatrix of Λ. For any matrix
A ∈ R

m×n, we will use bestk(A) to denote its best rank-k
approximation.

The SVD updating algorithm [8], [15] provides an efficient
way to carry out the SVD of a larger matrix [Am×n, Bm×r],
where B is an m× r matrix consisting of r additional columns.

The procedure in obtaining the best rank-k approximation of
[A,B] can be summarized in Algorithm 1.

By exploiting the orthonormal properties and block structure,
the SVD computation of [A,B] can be efficiently carried out by
using the smaller matrices, Uk, Vk, and the SVD of the smaller
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matrix

[
Λk UT

k B
0 R

]
. The computational-complexity analysis

and details of the SVD updating algorithm are described in [8].
Algorithm 1—SVD Updating [8]:
1) Obtain the QR decomposition (I − UkU

T
k )B = QR.

2) Obtain the rank-k SVD of the (k + r′) × (k + r) matrix[
Λk UT

k B
0 R

]
= Û Λ̂V̂ T

where r′ is the rank of (I − UkU
T
k )B.

3) The best rank-k approximation of [A,B] is

([Uk, Q]Û)Λ̂
([

Vk 0
0 I

]
V̂

)T

.

III. PROPOSED IPCA ALGORITHM

This section presents our proposed SVDU-IPCA algorithm
based on the SVD updating algorithm. A comprehensive the-
oretical analysis on SVDU-IPCA will be given in the next
section.

Let x1, x2, . . . , xm be the original face-image vectors, let
xm+1, xm+2, . . . , xm+r be the newly added face-image vec-
tors, and let the data matrix X1 = [x1, x2, . . . , xm], the data
matrix X2 = [xm+1, xm+2, . . . , xm+r], and X = [X1,X2].
Due to the high dimensionality of the face image and the
difficulty in developing the incremental-learning method based
on the covariance matrix Ξ, we proposed to develop the
incremental-learning algorithm based on the matrix Σ = (X −
E(X))T(X − E(X)).

Let

Σ1 = (X1 − E(X1))
T (X1 −E(X1)) (1)

and

Σ = (X − E(X))T (X − E(X)) =
[

Σ1 Σ2

ΣT
2 Σ3

]
(2)

where Σ2 is of size m× r and Σ3 is of size r × r. Due to
the high dimensionality of the face image, wherein Σ1 and Σ
are often singular, we develop the incremental-learning method
based on the presupposition of positive semidefinite matrices.1

Then, Σ can also be written as

Σ =
[
P Q1

Q2 Q3

]T [
P Q1

Q2 Q3

]
.

Fig. 1 shows the basic idea of our proposed IPCA algorithm
graphically. We adopt the notations from [22], in which the
rotation sign in Fig. 1 represents the orthogonal transformation.
The idea of the proposed incremental procedure is described
as follows. The rank-k eigendecomposition of Σ1 = PTP
corresponds to best rank-k approximation P̃ (1) of P . We can

then obtain the best rank-k approximation P̃ (2) of

[
P̃ (1)

Q2

]
.

From the theoretical analysis in the next section, we will find

1In other applications, Σ1 and Σ can be positive definite and the proposed
SVDU-IPCA algorithm can be obtained by the same theoretical derivation.

Fig. 1. Visualization of our novel IPCA algorithm. The orthogonal transfor-
mation is denoted by rotation.

that Q2 = 0. Hence, no computational cost is required in this
procedure. Then, we can obtain the best rank-k approximation

of [P̃ (2)
[
Q1
Q3

]
]. This will approximate the SVD of

[
P Q1

Q2 Q3

]
,

from which we can get an approximated eigendecompo-
sition of

[
P Q1

Q2 Q3

]T [
P Q1

Q2 Q3

]
= Σ.

Since Σ1 is a positive semidefinite matrix, there exists an or-
thogonal matrix U , such that Σ1 = UΛUT, where U = [u1, u2,
. . . , um] and Λ = diag(λ1, λ2, . . . , λm), and λ1, λ2, . . . , λm

being the eigenvalues of Σ1. Suppose λ1 ≥ λ2 ≥ · · · ≥
λl > 0 and λl+1 = λl+2 = · · · = λm = 0. Let Λ̃ = diag(λ1,
λ2, . . . , λl), Ũ = [u1, u2, . . . , ul], and Pl×m = Λ̃1/2[u1, u2,
. . . , ul]T. Then, Σ1 = PTP .
Q1, Q2, and Q3 are derived as follows (please refer to the

Appendix for a detailed derivation)

(Q1)l×r = Λ̃− 1
2 ŨTΣ2 (3)

Q2 = 0 (4)

QT
3 Q3 = Σ3 − ΣT

2 Ũ Λ̃−1ŨTΣ2. (5)

Since Pl×m = (diag(λ1, λ2, . . . , λl))1/2[u1, u2, . . . , ul]T,
we have

P̃ (1) =
[
Ik

0

]
l×k

ΛkV
T
k

where Ik ∈ R
k×k, Ik = diag(1, 1, . . . , 1), Λk = (diag(λ1, λ2,

. . . , λk))1/2, and Vk = [u1, u2, . . . , uk]T.
Because Q2 = 0, thus

P̃ (2) =
[
P̃ (1)

Q2

]
=




[
Ik

0

]
ΛkV

T
k

0




(l+r)×m

=
[
Ik

0

]
(l+r)×k

ΛkV
T
k
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which is of rank k already. Hence, the best rank-k approxima-

tion P̃ (2) of

[
P̃ (1)

0

]
is simply

[
P̃ (1)

0

]
itself.

Based on these derivations, the proposed SVDU-IPCA algo-
rithm is shown in Algorithm 2. Notice that although, concep-
tually, the incremental procedure involves the addition of rows,
Q2 = 0 means that no extra computation cost is required. Thus,
only one round of approximation based on column addition is
required. In the third and fourth steps of the incremental proce-

dure, the computation cost of the matrices

[
0k×k

I

] [
Q1

Q3

]

and [Ik 0]
[
Q1

Q3

]
is quite low. Hence, the proposed incremental

algorithm is computationally efficient. In the next section, we
will show that the approximated error is also bounded.
Algorithm 2—Proposed SVDU-IPCA Algorithm: Given the

original data X1 = [x1, x2, . . . , xm] and the rank-k eigen-
decomposition of Σ1 = PTP , for the newly added data
[xm+1, xm+2, . . . , xm+r], do the following.

1) Compute the matrix Σ2 and Σ3 according to (2).
2) Obtain the best rank-k approximation of Pl×m, which is

P̃ (1) =
[
Ik

0

]
l×k

ΛkV
T
k .

3) Compute Q1 according to (3) and Q3 as the square root
of Σ3 −QT

1 Q1 in (5).
4) Obtain the QR decomposition (I(l+r)×(l+r) −[

Ik

0

]
[Ik 0])

[
Q1
Q3

]
= JK, i.e.,

[
0k×k

I

]
(l+r)×(l+r)

[
Q1

Q3

]
= JK.

5) Obtain the SVD of the smaller matrix
 Λk [Ik 0]

[
Q1

Q3

]

0 K


 = Û Λ̂V̂ T.

6) Obtain the best rank-k approximation of

[
P Q1

Q2 Q3

]
,

which is[
P Q1

Q2 Q3

]
=

(
[Ik J ]Û

)
Λ̂

([
Vk 0
0 I

]
V̂

)T

.

7) Obtain the best rank-k approximation of

Σ =
[
P Q1

Q2 Q3

]T [
P Q1

Q2 Q3

]
.

IV. ANALYSIS OF THE PROPOSED

SVDU-IPCA ALGORITHM

This section presents a mathematical analysis of the proposed
SVDU-IPCA algorithm. We prove that our incremental algo-
rithm gives the same result as batch-mode PCA if the matrix
has the low-rank-plus-shift structure. We have also presented an
error-bound analysis if the low-rank-plus-shift structure is not

satisfied. Finally, a computational-complexity analysis is also
discussed.

Before going into detailed analysis, let us define some sym-
bols as follows. Σ̂1 = (P̃ (1))TP̃ (1) and

Σ̂ =
[

Σ̂1 Σ2

ΣT
2 Σ3

]

Σ̃1 = Σ1 − Σ̂1

Σ̃ = Σ − Σ̂.

A. Use of Σ̂

The eigendecomposition of Σ̂ is as follows

Σ̂ = Wdiag(λ̂1, . . . , λ̂n)WT (6)

where W = [w1, w2, . . . , wn] is orthogonal, and the eigenval-
ues {λ̂k} are arranged in nonincreasing order.

In the following, we show that bestk(Σ) = bestk(Σ̂), if Σ
has the low-rank-plus-shift structure.
Theorem 1: Assume that Σ = Ω + σ2I , σ > 0, where

Ω is symmetric and positive semidefinite with rank(Ω) =
k (k ≤ m). Then, we have

bestk(Σ) = bestk(Σ̂).

Proof: Let Σ1 =UΓUT =Udiag(γ1, . . . , γm)UT, where
γ1 ≥ γ2 ≥ · · · ≥ γm. Then

Σ1 =Σ̂1 + Σ̃1

=Udiag(γ1, . . . , γk, 0, . . . , 0)UT

+ Udiag(0, . . . , 0, γk+1, . . . , γm)UT.

Let Ω =
[

Ω1 Ω2

ΩT
2 Ω3

]
, then we have Σ1 = Ω1 + σ2Im, i.e.,

Ω1 = Σ1 − σ2Im. Consider

UTΩ1U = UTΣ1U − σ2Im

= Γ − σ2Im

= diag(γ1 − σ2, . . . , γk − σ2,

γk+1 − σ2, . . . , γm − σ2).

Since rank(Ω1) ≤ rank(Ω) ≤ k, then UTΩ1U = diag(γ1 −
σ2, . . . , γk − σ2, 0, . . . , 0), i.e.,

UTΣ1U = diag(γ1, γ2, . . . , γk, σ
2, . . . , σ2).

Consider

Ω = Σ − σ2I =
[

Σ1 − σ2Im Σ2

ΣT
2 Σ3 − σ2In−m

]

we have

Ω =


Udiag(γ1 − σ2, . . . , γk − σ2,

0, . . . , 0)UT Σ2

ΣT
2 Σ3 − σ2In−m




=
[

Σ̂1 Σ2

ΣT
2 Σ3

]
−


σ2Ik 0 0

0 0 0
0 0 σ2In−m


 .
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Hence

WTΩW =WTΣW − σ2I

=WTΣ̂W −

σ2Ik

0
σ2In−m




= diag(λ̂1, . . . , λ̂n) −

σ2Ik

0
σ2In−m


 .

It follows that

WTΣW = WTΣ̂W +
[
σ2Im 0

0 0

]
.

Since {λ̂k}’s are arranged in nonincreasing order, we can
conclude that

bestk(Σ) = bestk(Σ̂)

completing the proof. �
In Theorem 1, we consider the case where Σ satisfies the

low-rank-plus-shift property. Our second objective is to see the
difference between eigenvectors of Σ and eigenvectors of Σ̂,
which indicates the approximated errors. Details are discussed
as follows.
Theorem 2: From (6), let Σ1 = UΓUT = Udiag(γ1,

. . . , γm)UT, where γ1 ≥ γ2 ≥ · · · ≥ γm, ε = γk+1, and

B =
[
U 0
0 In−m

]

× diag


0, . . . , 0︸ ︷︷ ︸

k

, 1,
γk+2

ε
, . . . ,

γm

ε
, 0, . . . , 0


[

U 0
0 In−m

]T

.

Since

Σ1 =Σ̂1 + Σ̃1

=Udiag(γ1, . . . , γk, 0, . . . , 0)UT

+ Udiag(0, . . . , 0, γk+1, . . . , γm)UT

Σ =
[

Σ1 Σ2

ΣT
2 Σ3

]

=
[

Σ̂1 Σ2

ΣT
2 Σ3

]
+

[
Σ̃1 0
0 0

]

=Σ̂ + Σ̃.

Assume that βji = wT
j Bwi. Then, for λ̂i > 0 and λ̂i �= λ̂j ,

(i �= j), we have

‖vi − wi‖ ≤ 2ε


 n∑

j �=i

∣∣∣∣∣ βji

(λ̂i − λ̂j)

∣∣∣∣∣ +
1
2


 +O(ε2)

where V = [v1, v2, . . . , vn] is orthogonal and V TΣV =
diag(λ1, . . . , λn).

Proof: Since Σ̃1 = Udiag(0, . . . , 0, γk+1, . . . , γm)UT,
then

Σ̃ = ε

[
U 0
0 In−m

]

× diag
(
0, . . . , 0, 1,

γk+2

ε
, . . . ,

γm

ε
, 0, . . . , 0

) [
U 0
0 In−m

]T

we have Σ̃ = εB and ‖B‖ ≤ 1. For a fixed i, consider Σ =
Σ̂ + εB with eigenvector vi = wi(ε), and λi = λ̂i(ε). Since Σ̂
is symmetric, λi can be expressed as a power series in ε [29]

λi = λ̂i(ε) = λ̂i + k1ε+ k2ε
2 + · · · . (7)

Similarly

vi = wi(ε) = wi + εz1 + ε2z2 + · · · .
Since Σ̂ is symmetric, we can express the vectors zi’s as linear
combinations of the eigenvectors of Σ̂ [29]. So

vi =wi(ε)
=wi + εΣn

j=1tj1wj + ε2Σn
j=1tj2wj + · · ·

= (1 + εt11 + ε2t12 + · · ·)w1 + (εt21 + ε2t22 + · · ·)
+ · · · + (εtn1 + ε2tn2 + · · ·)wn. (8)

Since this is an eigenvector, and normalizing (8) such that the
coefficient of wi is equal to 1, then

ṽi = wi+


 ∞∑

j=1

εj t̃1j


w1+· · ·+


 ∞∑

j=1

εj t̃(i−1)j


wi−1+· · ·

+


 ∞∑

j=1

εj t̃(i+1)j


wi+1+· · ·+


 ∞∑

j=1

εj t̃nj


wn. (9)

Consider

(Σ̂ + εB)ṽi = Σṽi = λiṽi = λ̂i(ε)ṽi Σ̂wi = λ̂iwi. (10)

Substituting (7) and (9) into (10), and considering the terms of
order ε, then

εΣ̂
(
t̃11w1 + · · · + t̃(i−1)1wi−1

+ t̃(i+1)1wi+1 + · · · + t̃n1wn

)
+ εBwi

= ε
(
k1wi + λ̂it̃11w1 + · · · + λ̂it̃(i−1)1wi−1

+ λ̂it̃(i+1)1wi+1 + · · · + λ̂it̃n1wn

)
.

In other words

Σ̂


 n∑

j �=i

t̃j1wj


 +Bwi = λ̂i


 n∑

j �=i

t̃j1wj


 + k1wi

n∑
j �=i

t̃j1Σ̂wj − λ̂i


 n∑

j �=i

t̃j1wj


 +Bwi = k1wi

n∑
j �=i

t̃j1

(
λ̂j − λ̂i

)
wj +Bwi = k1wi. (11)
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Since wT
l wl = 1, and wT

l wi = 0 (l �= i), multiplying wl on
the left of (11), then we have

(λ̂l − λ̂i)t̃l1wT
l wl + wT

l Bwi = 0

for l �= i. Therefore, |t̃l1| = |(βli/(λ̂i − λ̂l))|.
Recalling (9), we have

‖ṽi − wi‖ ≤ ε

n∑
j �=i

∣∣∣∣∣ βji

(λ̂i − λ̂j)

∣∣∣∣∣ +O(ε2). (12)

Therefore

‖ṽi‖ ≤ 1 + ε

n∑
j �=i

∣∣∣∣∣ βji

(λ̂i − λ̂j)

∣∣∣∣∣ +O(ε2).

Let ‖ṽi‖ = 1 + εs+O(ε2). If ε is small enough, then we
can get

|s| ≤
n∑

j �=i

∣∣∣∣∣ βji

(λ̂i − λ̂j)

∣∣∣∣∣ + 1.

Thus

ṽi = vi

(
1 + εs+O(ε2)

)
. (13)

Substituting (13) in (12), we have

∥∥vi

(
1 + εs+O(ε2)

) − wi

∥∥ ≤ ε

n∑
j �=i

∣∣∣∣∣ βji

(λ̂i − λ̂j)

∣∣∣∣∣ +O(ε2).

Since ‖vi‖ = 1, then

‖vi−wi‖ − ε|s| +O(ε2) ≤ ε

n∑
j �=i

∣∣∣∣∣ βji

(λ̂i−λ̂j)

∣∣∣∣∣+O(ε2)

‖vi−wi‖ ≤ ε

n∑
j �=i

∣∣∣∣∣ βji

(λ̂i−λ̂j)

∣∣∣∣∣+ ε|s| +O(ε2).

Considering |s| ≤ ∑n
j �=i |(βji/(λ̂i − λ̂j))| + 1, we have

‖vi − wi‖ ≤ 2ε


 n∑

j �=i

∣∣∣∣∣ βji

(λ̂i − λ̂j)

∣∣∣∣∣ +
1
2


 +O(ε2)

for λ̂i > 0 and λ̂i �= λ̂j , (i �= j).
Thus, completing the proof. �
Corollary: Let ‖ · ‖F denote the Frobenius norm, then

‖V −W‖F ≤ 2
√
nε


 max

1≤i≤n

n∑
j �=i

∣∣∣∣∣ βji

(λ̂i − λ̂j)

∣∣∣∣∣ +
1
2


 +O(ε2).

Proof: The proof is straightforward and therefore
omitted. �

According to Corollary, when ε → 0, W → V . It means
that when Σ̂1 is closely approximated with Σ1, the error be-

tween the PCs of the batch method and those of SVDU-IPCA
will be very small.

B. Computational Complexity of the SVDU-IPCA Algorithm

Considering the first step of the proposed SVDU-IPCA algo-
rithm in Algorithm 2, the matrix Σ1 is seldom positive definite
in face recognition. If we make P̃ (1) = P , then rank(P̃ (1)) =
l (l < m), and no information will be lost in this step. Recall

that Q2 = 0, thus

[
P̃ (1)

Q2

]
=

[
P̃ (1)

0

]
, which is of rank k al-

ready. The best rank-k approximation P̃ (2) of

[
P̃ (1)

Q2

]
is simply[

P̃ (1)

0

]
itself. Then, no computation cost is required and no

information is lost. Hence, only one round of approximation
based on column addition is required. The SVDU-IPCA al-
gorithm requires O(r3) flops in the second step and O((l +
r − k)r2) flops for the QR decomposition in the third step.
Then, O((k + r)2k) flops are needed in the fourth step. Since
Q2 = 0, [P̃ (2)

[
Q1
Q3

]
] is a sparse matrix. Hence, the computation

time of the SVDU-IPCA can be further reduced. Consider X =
[x1, x2, . . . , xm], where {xi} denotes a sequence of face-image
vectors by row concatenation of the two-dimensional images. If
we perform the incremental procedure (SVD updating) directly
on the matrix X , it needs at least O(n2k) flops [22]. In face-
recognition applications, very often, only two to six images are
available for training while the image dimension is higher than
10 000. That is to say, {l, r, k} � n. Hence, the computational
complexity will be much higher than the proposed SVDU-
IPCA. Consider that we perform the incremental procedure
(SVD updating) directly on the matrix Σ. Since Σ2 �= 0, we

need obtain two best rank-k approximations of Σ̃(2) =
[

Σ̃(1)

ΣT
2

]

and

[
Σ̃(2)

[
Σ2

Σ3

]]
, respectively. Then, two rounds of approxi-

mation will be required.

C. Remarks

In this paper, our method assumes that the Σ1 submatrix is
not changed when the matrix is expanded. This implies that the
mean of the training samples is assumed to be constant, which
may not hold especially when a large number of samples are
added. In such cases, we need to perform noncentered PCA
[30], which does not require centering (Σ is then the outer
product matrix). Noncentered PCA is also a well-established
technique in ecology, chemistry, geology [30], and pattern
recognition [31], especially face recognition [32]. Noncentered
PCA [30] uses the autocorrelation matrix, instead of the covari-
ance matrix, to get the PCs.

Empirical results in Section VI also show that our incremen-
tal method under large addition of face images outperforms
batch-mode noncentered PCA and centered PCA.

V. INCREMENTAL KPCA (IKPCA)

In this section, we will first briefly review KPCA, and then
report our proposed IKPCA algorithm.
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A. KPCA

This section gives a short review on KPCA [9]–[11]. Given a
nonlinear mapping Φ, the input data space R

n can be mapped
into the feature space F:

Φ : R
n → F

x �→ Φ(x).

Correspondingly, a pattern in the original input space R
n is

mapped into a potentially much higher dimensional feature
vector in the feature space F.

An initial motivation of KPCA is to perform PCA in the
feature space F. However, it is difficult to do so directly because
computation of dot product in a high-dimensional feature space
is expensive. Fortunately, the algorithm can be implemented
in the input space by virtue of the kernel trick. The explicit
mapping process is not required at all.

PCA performed in the feature space F can be formulated as
the diagonalization of the covariance matrix

Ĉ =
1
n

n∑
i=1

Φ(xi)Φ(xi)T

where {x1, x2, . . . , xn} are the given training samples in the
input space R

n. For simplicity, we assume that the mapped
data need not be centered.2 We can find the eigenvalues and
eigenvectors of Ĉ via solving the eigenvalue problem

nλα = Kα

where K is a symmetric (n× n) Gram matrix with the
elements

Kij = (Φ(xi),Φ(xj)) := K(xi, xj).

Consider the eigendecomposition K = GΛGT, where G =
[α1, α2, . . . , αn], with αi = [αi1, αi2, . . . , αin]T, is orthogonal
and Λ = diag(λ1, λ2, . . . , λn). Denote the projection of the Φ
image of a pattern x unto the kth component by ϕk. Finally,
we have

ϕk =
1√
λk

n∑
i=1

αkiK(xi, x). (14)

The existence of such a kernel function is guaranteed by Mer-
cer’s Theorem [9]. The Gaussian kernel [or radial basis function
(RBF) kernel] K(x, y) = exp(−‖x− y‖/σ2) has been widely
studied in the literature and is also used in this paper.

B. IKPCA

The extension of existing incremental methods to KPCA is
not straightforward. Most, if not all, incremental algorithms,
such as those in [13], [14], [16], and [19], are iterative meth-
ods that need to compute the samples in the feature space

2This can be viewed as a Karhunen–Loeve (K–L) transformation in the
feature space. Actually, all calculations can be reformulated to deal with
centering [9].

directly (not in terms of inner products). They are difficult to
adopt to the kernel trick. To deal with the high computational
complexity, the sampling [27] and greedy methods [28] have
been proposed to update KPCA. These algorithms can speed up
KPCA very well when the Gram matrix is sparse. To the best of
our knowledge, no incremental method for KPCA is available.

From the theory of KPCA, using the kernel trick to deal with
the nonlinear mapping, the key issue is an eigenvalue problem.
Our new incremental method is easy to adopt to the kernel trick
and extend to the kernel version.

Consider the eigen equation

nλα = Kα.

Let K1 be an m×m Gram matrix and

K =
[
K1 K2

KT
2 K3

]

be an expanded (m+ r) × (m+ r) Gram matrix, where K2 is
of size m× r and K3 is of size r × r. From Mercer’s Theorem
[9], both K1 and K are positive semidefinite matrices.

Let the eigendecomposition K1 = V Λ2V T = PTP , where
P = ΛV T. Following the same derivation as in Section III,
IKPCA is developed and shown in Algorithm 3.
Algorithm 3—Proposed IKPCA: Given the original data

X1 = [x1, x2, . . . , xm] and the rank-k eigendecomposition of
the original Gram matrix K1 = PTP , for the newly added data
[xm+1, xm+2, . . . , xm+r], do the following.

1) Compute the matrices K2 and K3.
2) Obtain the best rank-k approximation of Pl×m, which is

P̃ (1) =
[
Ik

0

]
l×k

ΛkV
T
k .

3) Compute Q1 = Λ−1V TK2 and Q3 as the square root of
K3 −QT

1 Q1.
4) Obtain the QR decomposition (I(l+r)×(l+r) −[

Ik

0

]
[Ik 0])

[
Q1
Q3

]
= JL, i.e.,

[
0k×k

I

]
(l+r)×(l+r)

[
Q1

Q3

]
= JL.

5) Obtain the SVD of the smaller matrix

 Λk [Ik 0]

[
Q1

Q3

]

0 L


 = Û Λ̂V̂ T.

6) Obtain the best rank-k approximation of

[
P Q1

0 Q3

]
,

which is
[
P Q1

0 Q3

]
=

(
[Ik J ]Û

)
Λ̂

([
Vk 0
0 I

]
V̂

)T

.

7) Obtain the best rank-k approximation of

K =
[
P Q1

0 Q3

]T [
P Q1

0 Q3

]
.

8) Obtain the nonlinear projection of KPCA from (14).
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Fig. 2. Samples from the FERET dataset.

VI. EXPERIMENT RESULTS

Three experiments will be presented in this section. In the
first experiment, we evaluate and compare the performance
of the proposed SVDU-IPCA with batch-mode PCA (both
centered and noncentered) by eigenface and fisherface face-
recognition methods using the FERET database. The second
experiment is to compare the performance of SVDU-IPCA
with the most recent IPCA algorithm, namely CCIPCA [13],
using the AR face database. The third experiment compares the
performance of the proposed IKPCA with KPCA using the Yale
B database. Details of each experiment are discussed as follows.

A. Experiment 1: Performance Evaluation
Using FERET Face Database

The objective of this experiment is to evaluate the perfor-
mance of the proposed SVDU-IPCA algorithm by replacing
the batch-mode PCA algorithm in the eigenface and fisherface
face-recognition methods.

The FERET database is used for evaluation in this experi-
ment. We selected 72 subjects from the FERET database, with
six images for each subject. The six images are extracted from
four different sets, namely Fa, Fb, Fc, and duplicate [2]. The
images are selected to bear with more differences in lighting,
facial expressions, and facial details. All images are aligned
at the centers of the eyes and mouth. Histogram equalization
is applied to the face images for photometric normalization,
and the images also convert to the intensity images that contain
values in the range 0.0 (black) to 1.0 (full intensity or white).
The images from the two subjects are shown in Fig. 2.
1) Results of the Eigenface Method: Initially, we used

144 images (36 subjects, 4 per subject) to form the initial matrix
Σ1. Training images are then added in increments of 24 images
(six subjects, four per subject) up to a maximum total number of
288 training images (72 subjects, 4 per subject). The remaining
images are used for recognition. Minimum distance classi-
fier is used in this experiment. The experiments are repeated
50 times and the average accuracy is recorded. Figs. 3 and 4
show the performance of the proposed IPCA method, batch-
mode centered PCA, and batch-mode noncentered PCA when
30 and 50 PCs are used. The computational time, when 30 PCs
are used, is recorded and shown in Table I, which indicates that
our proposed IPCA algorithm is more efficient than the batch-
mode PCA algorithm.

It is found that the recognition rate decreases when more
training samples are added. This may be due to the fact that

Fig. 3. Recognition accuracy using 30 PCs.

Fig. 4. Recognition accuracy using 50 PCs.

when more images are added, the (fixed) number of PCs
may not be enough for the recognition tasks. For example, if
50 classes need 50 PCs to get a good result, 100 classes may
need more PCs. If still 50 PCs are used, the accuracy will
drop. From the experiment results, we can also find that the
recognition accuracy of 50 PCs is higher than that of 30 PCs
because of the same argument. Choosing the best dimension of
the feature space is still an open problem and beyond the scope
of this paper.

To demonstrate the benefit of using block updating, we
perform an experiment using our SVDU-IPCA algorithm
with increment by single and block. In the experiment, first,
144 images (36 subjects, 4 per subject) are used. Training
images are then added in increments of 24 images (six subjects,
four per subject) up to a maximum total number of 288 training
images, and the remaining images are used for testing. To have
a benchmark, experiments are performed using the eigenface
method (batch-mode PCA) on the initial 144 images to get the
projection matrix. This means the projection matrix does not
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TABLE I
COMPARISON OF CPU TIME (s) ON FERET DATA SET (2.4-GHz PENTIUM-4 CPU WITH 512-MB RAM)

Fig. 5. Comparing the accuracy of block updating and single updating.

change when some new face images are added. Fig. 5 compares
the performance when 30 PCs are used. It can be shown that
incremental by block gives better performance than that by
single.
2) Results of the Fisherface Method: Besides the eigenface

method (PCA), the fisherface [33] method (PCA+LDA) is
another well-known method in appearance-based approach.

In the fisherface method, PCA is used for dimensional reduc-
tion to ensure the full rank of the within-class scatter matrix. In
doing so, the direct computation of linear discriminant analysis
(LDA) [31] becomes feasible.

In this experiment, we initially use 144 images for training.
Training images are then added in increments of 24 images
up to a maximum total number of 288 training samples. The
remaining images are used for recognition. In the PCA step,
in order to avoid the singularity of the within-class scatter
matrix, 100 PCs are selected, and then in the LDA step, c− 1
features are used for face recognition, where c is the number
of classes. The results are recorded and plotted in Fig. 6. It
can be seen that the proposed incremental method gives a very
close performance to batch-mode PCA when it is applied to
fisherface.

B. Experiment 2: Comparison Between SVDU-IPCA and
CCIPCA Algorithms

We have shown in Experiments 1 and 2 that our proposed
SVDU-IPCA gives a very close approximation to the batch-
mode PCA. In this section, we would like to show that our
proposed SVDU-IPCA outperforms the existing IPCA meth-
ods. To do the comparison, we select the most recent method,
namely the CCIPCA algorithm [13]. The AR database is se-
lected [34]. Face-image variations in the AR database include

Fig. 6. Recognition accuracy of PCA+LDA and IPCA+LDA.

illumination, facial expression, and occlusion. For most of
the individuals in the AR database, images were taken in
two sessions (separated by two weeks). In our experiment,
119 individuals (64 male and 55 female) who participated in
both sessions were selected. We manually cropped the face
portion of the images. All the cropped images are aligned at
the centers of the eyes and mouth and then normalized with
resolution 112 × 92. Due to the presence of sunglasses and
scarves, the face images in AR contain a large area of occlusion.
We discard these images and 952 images (119 × 8) are selected
in our experiment. In order to get a lager sample-to-dimension
ratio, which is important for the CCIPCA algorithm, wavelet
transform is applied on all the images two times, and the low-
frequency images are used as input vectors. After two times of
wavelet transform, the resolution of the input image is 30 × 25.
Note that, after the wavelet transform, some information of the
original image is lost.

In the experiment, initially, we used 238 images (119 per-
sons, 2 images per person). Training images are then added in
increments of 119 images (119 persons, 1 image per person)
up to a maximum total number of 714 images (119 persons,
6 images per person). The remaining images are used for recog-
nition. Minimum distance classifier is used in this experiment.
The experiments are repeated 50 times and the average accuracy
is recorded. Experiments on batch-mode PCA are performed
as a benchmark. Figs. 7 and 8 plot the performance when 50
and 100 PCs are used, respectively. It can be found that, in
all the conditions that the sample-to-dimension ratio changes
from 0.476 to 0.952, the SVDU-IPCA algorithm outperforms
the CCIPCA algorithm.

In order to give a comprehensive comparison, we also use
the measurement as suggested in [13]. Initially 238 training
images are used and then adds up to a maximum total number
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Fig. 7. Recognition accuracy using 50 PCs.

Fig. 8. Recognition accuracy using 100 PCs.

of 714 training images (119 persons, 6 images per person).
Let the PCs of our SVDU-IPCA be V̂ = [v̂1, v̂2, . . . , v̂m], the
PCs of CCIPCA be Ṽ = [ṽ1, ṽ2, . . . , ṽm], and the PCs of
the batch-mode PCA on the total training samples be V =
[v1, v2, . . . , vm]. We have computed the correlation V TV̂ and
V TṼ . The correlation between two unit eigenvectors v and v̄
is represented by their inner product vv̄T. Figs. 9 and 10 show
the correlation (dot products) of the PCs. In both figures, the
upper row [Figs. 9(a), (b) and 10(a), (b)] shows the results
of our SVDU-IPCA while the lower row [Figs. 9(c), (d) and
10(c), (d)] shows the results of the CCIPCA algorithm. It can
be seen that the proposed SVDU-IPCA can accurately estimate
the eigenvectors for both the first 20 and the last 20. In this
experiment, the sample-to-dimension ratio is greater than 0.9,
and CCIPCA estimates the first several PCs with high corre-
lation with the actual ones. However, the other eigenvectors,
especially the last eigenvectors, cannot be estimated accurately.
The error in estimation may be due to the fact that, in CCIPCA,

the computation of the (i+ 1)th PC is based on the ith PC, and
the error will be propagated.

C. Experiment 3: Results on IKPCA

The objective of this experiment is to demonstrate the ef-
fectiveness of the proposed IKPCA. The Yale Group B face
database is selected for evaluation because images have larger
variations in pose and illumination.

The Yale Group B face database contains 5850 source images
of ten subjects each captured under 585 viewing conditions
(9 poses × 65 illumination conditions). In our experiments,
we use images under 45 illumination conditions and these
4050 images (9 poses × 45 illumination conditions) have been
divided into four subsets according to the angle the light-source
direction makes with the camera axis: subset 1 (up to 25◦,
7 images per pose), subset 2 (up to 12◦, 12 images per pose),
subset 3 (up to 50◦, 12 images per pose), and subset 4 (up to
77◦, 14 images per pose) [35]. All frontal-pose images are
aligned by the centers of the eyes and mouth and the other
images are aligned by the center points of the faces. Then,
all images are normalized with the same resolution of 57 ×
47. The images also convert to the intensity images that contain
values in the range 0.0 (black) to 1.0 (full intensity or white).
Some images from one individual are shown in Fig. 11.

For each subset, we show images of nine poses under one
illumination condition. In the first row are images of nine poses
under one illumination condition from subset 1. In the second
row are images of nine poses under one illumination condition
from subset 2, etc.

First, we fix the pose variation to evaluate the performance
of IKPCA. For each pose, we randomly select 80 images
(two images per subset). Training images are then added in
increments of 40 images (one image per subset) up to a max-
imum total number of 240 images. The remaining images are
used for recognition. Minimum distance classifier is used. In
the experiment, 50 PCs are used in the eigendecomposition
updating and testing. The experiments are repeated 50 times
and the average accuracy is recorded and plotted in Fig. 12. It
can be seen that the two curves are almost overlapping. This
implies that our proposed IKPCA gives a close approximation
to batch-mode KPCA.

Besides the recognition accuracy, we have compared the
gram matrix and PC vectors from IKPCA and batch-mode
KPCA. The results are recorded and shown in Tables II and III.
In Table II, K and K̂ are the Gram matrices used in the
batch method and the approximate Gram matrix used in the
incremental method, respectively. ‖V −W‖F is the Frobenius
norm of the difference between the PCs of the batch method
and those of the incremental method. Table III records the
difference between the first PC of the batch method and that of
the incremental method. Using Theorem 2, we can also obtain
the error bound of the angle between the first PC of the batch
method and that of the incremental method.

Finally, we make the training samples include pose and
illumination variations. We select two images from each
illumination subset and each pose. That is to say, we select
720 images (10 persons × 9 poses × 4 subsets × 2 images) for
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Fig. 9. Correctness, or the correlation in the experiment using 50 PCs. (a) and (c) The correlation, represented by products V TV̂ , of the first 20 PCs.
(b) and (d) The correlation, represented by products V TV̂ , of the last 20 PCs. (a) and (b) show the results for SVDU-IPCA algorithm while (c) and (d) for
CCIPCA.

Fig. 10. Correctness, or the correlation in the experiment using 100 PCs. (a) and (c) The correlation, represented by products V TṼ , of the first 20 PCs.
(b) and (d) The correlation, represented by products V TṼ , of the last 20 PCs. (a) and (b) show the results for SVDU-IPCA algorithm while (c) and (d) for
CCIPCA.

training. Then, other training images are added in increments
of 360 images (10 persons × 9 poses × 4 subsets × 1 image)
up to total number of 2160 images. The remaining images
are used for recognition. In the experiment, 50 PCs are used

in the eigendecomposition updating and testing. Experiment
results, together with the computational time, are recorded and
shown in Tables IV–VI. Table VI indicates that KPCA by using
incremental learning is computational efficient.
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Fig. 11. Images of one person from the Yale B database.

Fig. 12. Recognition accuracy on the Yale B database.

TABLE II
COMPARISON OF THE GRAM MATRIX AND PCS ON THE YALE B

DATA SET WITH FIXED POSE AND VARIANT ILLUMINATION

TABLE III
COMPARISON OF THE FIRST PC ON THE YALE B DATA SET

WITH FIXED POSE AND VARIANT ILLUMINATION

TABLE IV
COMPARISON OF THE GRAM MATRIX AND PCS ON THE YALE B

DATA SET WITH VARIATIONS ON POSE AND ILLUMINATION

The experiment on the large database, Yale Group B, shows
that our new incremental algorithm not only is computationally
efficient, but also has small approximated error.

TABLE V
COMPARISON OF THE FIRST PC ON THE YALE B DATA SET

WITH VARIATIONS ON POSE AND ILLUMINATION

TABLE VI
COMPARISON OF CPU TIME (s) ON THE YALE B DATA SET WITH

VARIATIONS ON POSE AND ILLUMINATION (2.4-GHz
PENTIUM-4 CPU WITH 512-MB RAM)

VII. CONCLUSION

A new IPCA, namely SVDU-IPCA, is derived and reported
in this paper. The proposed SVDU-IPCA algorithm adopts the
concept of an SVD updating algorithm, in which we do not
need to recompute the eigendecomposition from scratch. The
main contribution of this paper is that we perform an error
analysis of the proposed IPCA algorithm. A complete math-
ematical derivation is presented, and we prove that the error
to be introduced in our SVDU-IPCA algorithm is bounded. In
other words, the proposed SVDU-IPCA algorithm guarantees
the maximum error when approximating the batch-mode PCA.
Another characteristic of the proposed SVDU-IPCA algorithm
is that it can be easily extended to kernel space. An IKPCA
algorithm is also presented. To the best of our knowledge, this
is the first IKPCA algorithm.

Extensive experiments using available public databases
have been performed in order to evaluate the performance
of our proposed SVDU-IPCA algorithm. It is found that the
approximation error is quite small. The proposed algorithm is
also applied to face recognition. Two well-known PCA-based
face-recognition methods, namely eigenface and fisherface,
are used for evaluation. The experimental results show that
the proposed SVDU-IPCA algorithm can be used in both
methods with a very small degradation in recognition accuracy.
This implies that the existing eigenface- and fisherface-based
algorithms/systems can be scaled up easily by using the
proposed SVDU-IPCA method as we do not need the previous
training data.

APPENDIX

Since

Σ =
[

Σ1 Σ2

ΣT
2 Σ3

]
=

[
PTP Σ2

ΣT
2 Σ3

]

and

Σ =
[
P Q1

Q2 Q3

]T [
P Q1

Q2 Q3

]

=
[ (

PTP +QT
2 Q2

)
m×m

(
PTQ1 +QT

2 Q3

)
m×r(

QT
1 P +QT

3 Q2

)
r×m

(
QT

1 Q1 +QT
3 Q3

)
r×r

]
(15)
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we have

PTP = PTP +QT
2 Q2

that is, QT
2 Q2 = 0.

Considering Q2 = 0, (15) simplifies to

[
(PTP )m×m (PTQ1)m×r(
QT

1 P
)
r×m

(
QT

1 Q1 +QT
3 Q3

)
r×r

]
.

On equating terms for Σ2, we have

(PTQ1)m×r = Σ2

that is, [u1, u2, . . . , ul]Λ̃1/2Q1 = Σ2. Hence

[u1, u2, . . . , ul]T[u1, u2, . . . , ul]Λ̃
1
2Q1 = [u1, u2, . . . , ul]TΣ2

and then

(Q1)l×r = Λ̃− 1
2 ŨTΣ2.

Equating terms for Λ3, we have

QT
3 Q3 = Σ3 −QT

1 Q1.

Since QT
1 Q1 = Σ2Ũ Λ̃−1ŨTΣ2, then

QT
3 Q3 = Σ3 − ΣT

2 Ũ Λ̃−1ŨTΣ2.

Consider

R =
[
Ũ ŨT 0

0 I

]

S =
[
I −Ũ Λ̃−1ŨTΣ2

0 I

]

where I is the identity matrix of appropriate size. We have

STRT

[
Σ1 Σ2

ΣT
2 Σ3

]
RS

=
[

I 0
−ΣT

2 Ũ Λ̃−1ŨT I

] [
Ũ ŨT 0

0 I

] [
Ũ Λ̃ŨT Σ2

ΣT
2 Σ3

]

×
[
Ũ ŨT 0

0 I

] [
I −Ũ Λ̃−1ŨTΣ2

0 I

]

=
[
Ũ Λ̃ŨT 0

0 Σ3 − ΣT
2 Ũ Λ̃−1ŨTΣ2

]
.

As

Σ =
[

Σ1 Σ2

ΣT
2 Σ3

]

is positive semidefinite, by the definition of the positive semi-
definite matrix, Σ3 − ΣT

2 Ũ Λ̃−1ŨTΣ2 is also positive semi-
definite. Hence, Q3 can be obtained as the square root of
Σ3 − ΣT

2 Ũ Λ̃−1ŨTΣ2.
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