[1]
Bell CS, Samuel JP, Samuels JA. Prevalence of hypertension in children. Hypertension 2019; 73(1): 148-52.
[2]
Sharma M, Kupferman JC, Brosgol Y, et al. The effects of hypertension on the paediatric brain: A justifiable concern. Lancet Neurol 2010; 9(9): 933-40.
[3]
Cheung EL, Bell CS, Samuel JP, Poffenbarger T, Redwine KM, Samuels JA. Race and obesity in adolescent hypertension. Pediatrics 2017; 139(5) e20161433
[4]
Wühl E. Hypertension in childhood obesity. Acta Paediatr 2019; 108(1): 37-43.
[5]
Brady TM. The role of obesity in the development of left ventricular hypertrophy among children and adolescents. Curr Hypertens Rep 2016; 18(1): 3.
[6]
Lande MB, Batisky DL, Kupferman JC, et al. Neurocognitive function in children with primary hypertension. J Pediatr 2017; 180: 148-55. e1.
[7]
Lande MB, Adams HR, Kupferman JC, Hooper SR, Szilagyi PG, Batisky DL. A multicenter study of neurocognition in children with hypertension: Methods, challenges, and solutions. J Am Soc Hypertens 2013; 7(5): 353-62.
[8]
Shatat IF, Brady TM. Editorial: Pediatric hypertension: Update. Frontier Pediatr 2018; 6: 209.
[9]
Riley M, Hernandez AK, Kuznia AL. High blood pressure in children and adolescents. Am Fam Physician 2018; 98(8): 486-94.
[10]
Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015-2016. NCHS Data Brief 2017; (288): 1-8.
[11]
Rao G. Diagnosis, epidemiology, and management of hypertension in children. Pediatrics 2016; 138(2): e20153616
[12]
Bucher BS, Ferrarini A, Weber N, Bullo M, Bianchetti MG, Simonetti GD. Primary hypertension in childhood. Curr Hypertens Rep 2013; 15(5): 444-52.
[13]
Re RN. Obesity-related hypertension. Ochsner J 2009; 9(3): 133-6.
[14]
Leggio M, Lombardi M, Caldarone E, et al. The relationship between obesity and hypertension: An updated comprehensive overview on vicious twins. Hypertens Res 2017; 40(12): 947.
[15]
Falkner B. Hypertension in children and adolescents: Epidemiology and natural history. Pediatr Nephrol 2010; 25(7): 1219-24.
[16]
Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of prehypertension in youth. J Clin Hypertens 2011; 13(5): 332-42.
[17]
Lande MB, Kupferman JC. Blood pressure and cognitive function in children and adolescents. Hypertension 2019; 73(3): 532-40.
[18]
Kupferman JC, Lande MB, Adams HR, Pavlakis SG. Primary hypertension and neurocognitive and executive functioning in school-age children. Pediatr Nephrol 2013; 28(3): 401-8.
[19]
Lande MB, Kaczorowski JM, Auinger P, Schwartz GJ, Weitzman M. Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. J Pediatr 2003; 143(6): 720-4.
[20]
Lamballais S, Sajjad A, Leening MJG, et al. Association of blood pressure and arterial stiffness with cognition in 2 population-based child and adult cohorts. J Am Heart Assoc 2018; 7(21) e009847-e.
[21]
Ditto B, Séguin JR, Tremblay RE. Neuropsychological characteristics of adolescent boys differing in risk for high blood pressure. Ann Behav Med 2006; 31(3): 231-7.
[22]
Yaffe K, Vittinghoff E, Pletcher MJ, et al. Early adult to midlife cardiovascular risk factors and cognitive function. Circulation 2014; 129(15): 1560-7.
[23]
Schulte EE. Learning disorders: How pediatricians can help. Cleve Clin J Med 2015; 82(11)(Suppl. 1): S24-8.
[24]
Adams HR, Szilagyi PG, Gebhardt L, Lande MB. Learning and attention problems among children with pediatric primary hypertension. Pediatrics 2010; 126(6): e1425-9.
[25]
Krause I, Cleper R, Kovalski Y, Sinai L, Davidovits M. Changes in behavior as an early symptom of renovascular hypertension in children. Pediatr Nephrol 2009; 24(11): 2271-4.
[26]
Figaji AA. Anatomical and physiological differences between children and adults relevant to traumatic brain injury and the implications for clinical assessment and care. Front Neurol 2017; 8: 685.
[27]
Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: An inflammatory perspective. J Neuroinflamm 2017; 14(1): 21.
[28]
Gund B, Jagtap P, Ingale V, Patil R. Stroke: A brain attack. IOSR J Pharm 2013; 3(8): 1-23.
[30]
Jennings JR. Autoregulation of blood pressure and thought: Preliminary results of an application of brain imaging to psychosomatic medicine. Psychosom Med 2003; 65(3): 384-95.
[31]
Balea M, Muresanu D, Alvarez A, et al. VaD - an integrated framework for cognitive rehabilitation. CNS Neurol Disord Drug _targets 2018; 17(1): 22-33.
[32]
Cha SD, Patel HP, Hains DS, Mahan JD. The effects of hypertension on cognitive function in children and adolescents. Int J Pediatr 2012; 2012: 891094
[33]
Pauletto P, Rattazzi M. Inflammation and hypertension: The search for a link. Nephrol Dial Transplant 2006; 21(4): 850-3.
[34]
Tanase DM, Gosav EM, Radu S, et al. Arterial hypertension and interleukins: Potential therapeutic _target or future diagnostic marker? Int J Hypertens 2019; 2019: 1-17.
[35]
Teixeira BC, Lopes AL, Macedo RCO, et al. Inflammatory markers, endothelial function and cardiovascular risk. J Vasc Bras 2014; 13(2): 108-15.
[36]
Bautista L, Vera L, Arenas I, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension. J Hum hypertens 2005; 19(2): 149.
[37]
Wright CB, Sacco RL, Rundek TR, Delman JB, Rabbani LE, Elkind MS. Interleukin-6 is associated with cognitive function: The Northern Manhattan study. J Stroke Cerebrovasc Dis 2006; 15(1): 34-8.
[38]
Marsland AL, Petersen KL, Sathanoori R, et al. Interleukin-6 covaries inversely with cognitive performance among middle-aged community volunteers. Psychosom Med 2006; 68(6): 895-903.
[39]
Sasayama D, Kurahashi K, Oda K, et al. Negative correlation between serum cytokine levels and cognitive abilities in children with autism spectrum disorder. J Intell 2017; 5(2): 19.
[40]
Hennessy E, Gormley S, Lopez-Rodriguez AB, Murray C, Murray C, Cunningham C. Systemic TNF-α produces acute cognitive dysfunction and exaggerated sickness behavior when superimposed upon progressive neurodegeneration. Brain Behav Immun 2017; 59: 233-44.
[41]
Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009; 73(10): 768-74.
[42]
Lande MB, Meagher CC, Fisher SG, Belani P, Wang H, Rashid M. Left ventricular mass index in children with white coat hypertension. J Pediatr 2008; 153(1): 50-4.
[43]
Hage F. C-reactive protein and hypertension. J Hum Hypertens 2014; 28(7): 410.
[44]
Watanabe Y, Kitamura K, Nakamura K, et al. Elevated C-reactive protein is associated with cognitive decline in outpatients of a general hospital: The project in SADO for total health (PROST). Dement Geriatr Cogn Disord Extra 2016; 6(1): 10-9.
[45]
Zheng F, Yan L, Yang Z, Zhong B, Xie W. HbA 1c, diabetes and cognitive decline: The English longitudinal study of ageing. Diabetologia 2018; 61(4): 839-48.
[46]
Noble JM, Manly JJ, Schupf N, Tang MX, Mayeux R, Luchsinger JA. Association of C-reactive protein with cognitive impairment. Arch Neurol 2010; 67(1): 87-92.
[47]
Ravaglia G, Forti P, Maioli F, et al. Serum C-reactive protein and cognitive function in healthy elderly Italian community dwellers. J Gerontol A Biol Sci Med Sci 2005; 60(8): 1017-21.
[48]
Eagan DE, Gonzales MM, Tarumi T, Tanaka H, Stautberg S, Haley AP. Elevated serum C-reactive protein relates to increased cerebral myoinositol levels in middle-aged adults. Cardiovasc Psychiatry and Neurol 2012; 2012 120540
[49]
Cullen AE, Tappin BM, Zunszain PA, et al. The relationship between salivary C-reactive protein and cognitive function in children aged 11–14 years: Does psychopathology have a moderating effect? Brain Behav Immun 2017; 66: 221-9.
[50]
Paul A, Ko KW, Li L, et al. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E–deficient mice. Circulation 2004; 109(5): 647-55.
[51]
Raz N, Rodrigue KM. Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neurosci Biobehavioral Rev 2006; 30(6): 730-48.
[52]
Russo I, Barlati S, Bosetti F. Effects of neuroinflammation on the regenerative capacity of brain stem cells. J Neurochem 2011; 116(6): 947-56.
[53]
Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med 2018; 215(1): 21-33.
[54]
Li D-P, Li Y-L, Li J, Wang S. Neural mechanisms of autonomic dysfunction in neurological diseases. Neural Plast 2017; 2017 2050191
[55]
Waldstein SR, Brown JR, Maier KJ, Katzel LI. Diagnosis of hypertension and high blood pressure levels negatively affect cognitive function in older adults. Ann Behav Med 2005; 29(3): 174-80.
[56]
Kanemaru A, Kanemaru K. KUWAJIMA I. The effects of short-term blood pressure variability and nighttime blood pressure levels on cognitive function. Hypertens Res 2001; 24(1): 19-24.
[57]
Tohgi H, Chiba K, Kimura M. Twenty-four-hour variation of blood pressure in vascular dementia of the Binswanger type. Stroke 1991; 22(5): 603-8.
[58]
Palatini P, Penzo M, Racioppa A, et al. Clinical relevance of nighttime blood pressure and of daytime blood pressure variability. Arch Intern Med 1992; 152(9): 1855-60.
[59]
Forte G, Casagrande M. Heart rate variability and cognitive function: A systematic review. Front Neurosci 2019; 13: 710.
[60]
Singh JP, Larson MG, Tsuji H, Evans JC, O’Donnell CJ, Levy D. Reduced heart rate variability and new-onset hypertension: Insights into pathogenesis of hypertension: The Framingham Heart Study. Hypertension 1998; 32(2): 293-7.
[61]
Xie G-L, Wang J-h, Zhou Y, Xu H, Sun J-H, Yang S-R. Association of high blood pressure with heart rate variability in children. Iranian J Pediatr 2013; 23(1): 37.
[62]
Thayer JF, Lane RD. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 2009; 33(2): 81-8.
[63]
Carthy ER. Autonomic dysfunction in essential hypertension: A systematic review. Ann Med Surg 2014; 3(1): 2-7.
[64]
Schroeder Emily B, Liao D, Chambless Lloyd E, Prineas Ronald J, Evans Gregory W, Heiss G. Hypertension, blood pressure, and heart rate variability. Hypertension 2003; 42(6): 1106-11.
[65]
Suemoto CK, Baena CP, Mill JG, Santos IS, Lotufo PA, Benseñor I. Orthostatic hypotension and cognitive function: Cross-sectional results from the ELSA-Brasil study. J Gerontol A Biol Sci Med Sci 2018; 74(3): 358-65.
[66]
Udow SJ, Robertson AD, MacIntosh BJ, et al. ‘Under pressure’: Is there a link between orthostatic hypotension and cognitive impairment in α-synucleinopathies? J Neurol Neurosurg Psychiatry 2016; 87(12): 1311-21.
[67]
Kuusisto J, Koivisto K, Mykkänen L, et al. Essential hypertension and cognitive function. The role of hyperinsulinemia. Hypertension 1993; 22(5): 771-9.
[68]
Kumari M, Brunner E, Fuhrer R. Mini-Reviews: Mechanisms by which the metabolic syndrome and diabetes impair memory. J Gerontol A Biol Sci Med Sci 2000; 55(5): B228-32.
[69]
Sato N, Morishita R. Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: Short-and long-term modification by non-genetic risk factors. Front Aging Neurosci 2013; 5: 64.
[70]
Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat Rev Neurol 2015; 11(3): 157.
[71]
Wardlaw JM, Valdés Hernández MC, Muñoz‐Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc 2015; 4(6) e001140
[72]
Hawkins KA, Emadi N, Pearlson GD, et al. Hyperinsulinemia and elevated systolic blood pressure independently predict white matter hyperintensities with associated cognitive decrement in the middle-aged offspring of dementia patients. Metab Brain Dis 2017; 32(3): 849-57.
[73]
Roriz-Filho JS, Sa-Roriz TM, Rosset I, et al. (Pre) diabetes, brain aging, and cognition. Biochim Biophys Acta Mol Basis Dis 2009; 1792(5): 432-43.
[74]
Yaribeygi H, Panahi Y, Javadi B, Sahebkar A. The underlying role of oxidative stress in neurodegeneration: A mechanistic review. CNS Neurol Disord Drug _targets 2018; 17(3): 207-15.
[75]
Kawamura T, Umemura T, Hotta N. Cognitive impairment in diabetic patients: Can diabetic control prevent cognitive decline? Journal of Diabetes Investigation 2012; 3(5): 413-23.
[76]
Kumar A, Datusalia AK. Metabolic stress and inflammation: Implication in treatment for neurological disorders. CNS Neurol Disord Drug _targets 2018; 17(9): 642-3.
[77]
Saedi E, Gheini MR, Faiz F, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes 2016; 7(17): 412.
[78]
Talbot K. Brain insulin resistance in Alzheimer’s disease and its potential treatment with GLP-1 analogs. Neurodegener Dis Manag 2014; 4(1): 31-40.
[79]
Goldstein FC, Ashley AV, Endeshaw Y, Hanfelt J, Lah JJ, Levey AI. Effects of hypertension and hypercholesterolemia on cognitive functioning in patients with Alzheimer’s disease. Alzheimer Dis Assoc Disord 2008; 22(4): 336.
[80]
Desmond DW, Tatemichi TK, Paik M, Stern Y. Risk factors for cerebrovascular disease as correlates of cognitive function in a stroke-free cohort. Arch Neurol 1993; 50(2): 162-6.
[81]
Tong X-K, Trigiani LJ, Hamel E. High cholesterol triggers white matter alterations and cognitive deficits in a mouse model of cerebrovascular disease: Benefits of simvastatin. Cell Death Dis 2019; 10(2): 89.
[82]
Ma C, Yin Z, Zhu P, Luo J, Shi X, Gao X. Blood cholesterol in late-life and cognitive decline: A longitudinal study of the Chinese elderly. Mol Neurodegener 2017; 12(1): 24.
[83]
Herman J, McKlveen J, Ghosal S, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 2016; 6(2): 603-21.
[84]
Lupien S, Nair N, Briere S, et al. Increased cortisol levels and impaired cognition in human aging: Implication for depression and dementia in later life. Rev Neurosci 1999; 10(2): 117-40.
[85]
Bourdeau I, Bard Cl, NoeQl B, et al. Loss of brain volume in endogenous Cushing’s syndrome and its reversibility after correction of hypercortisolism. J Clin Endocrinol Metabol 2002; 87(5): 1949-54.
[86]
Reynolds RM, Walker BR, Syddall HE, et al. Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J Clin Endocrinol Metab 2001; 86(1): 245-50.
[87]
Burford N, Webster N, Cruz-Topete D. Hypothalamic-pituitary-adrenal axis modulation of glucocorticoids in the cardiovascular system. Int J Mol Sci 2017; 18(10): 2150.
[88]
Gold SM, Dziobek I, Rogers K, Bayoumy A, McHugh PF, Convit A. Hypertension and hypothalamo-pituitary-adrenal axis hyperactivity affect frontal lobe integrity. J Clin Endocrinol Metab 2005; 90(6): 3262-7.
[89]
Riedel B, Browne K, Silbert B. Cerebral protection: Inflammation, endothelial dysfunction, and postoperative cognitive dysfunction. Curr Opin Anaesthesiol 2014; 27(1): 89-97.
[90]
Marie C, Pedard M, Quirie A, et al. Brain-derived neurotrophic factor secreted by the cerebral endothelium: A new actor of brain function? J Cereb Blood Flow Metab 2018; 38(6): 935-49.
[91]
Xu W, Yu JT, Tan MS, Tan L. Cognitive reserve and Alzheimer’s disease. Mol Neurobiol 2015; 51(1): 187-208.
[92]
Gareau M. Cognitive function and the microbiome. Int Rev Neurobiol 2016; 131: 227-46.
[93]
Oriach CS, Robertson RC, Stanton C, Cryan JF, Dinan TG. Food for thought: The role of nutrition in the microbiota-gut-brain axis. Clin Nutr Exp 2016; 6: 25-38.
[94]
Al Khodor S, Reichert B, Shatat IF. The microbiome and blood pressure: Can microbes regulate our blood pressure? Front Pediatr 2017; 5: 138.
[95]
Proctor C, Thiennimitr P, Chattipakorn N, Chattipakorn SC. Diet, gut microbiota and cognition. Metabolic Brain Dis 2017; 32(1): 1-17.
[96]
Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res 2016; 41(11): 2819-35.
[97]
Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension 2015; 65(6): 1331-40.
[98]
Yan Q, Gu Y, Li X, et al. Alterations of the Gut Microbiome in hypertension. Front Cell Infect Microb 2017; 7: 381.
[99]
Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-gut-bone marrow axis. Circulation research 2016; 118(8): 1327-36.
[100]
Jama H, Kaye DM, Marques FZ. Population-based gut microbiome associations with hypertension: The need for more detailed phenotypes. Circ Res 2018; 123(11): 1185-7.
[101]
Lande MB, Batisky DL, Kupferman JC, et al. Neurocognitive function in children with primary hypertension after initiation of antihypertensive therapy. J Pediatr 2018; 195: 85-94. e1
[102]
Iadecola C, Yaffe K, Biller J, et al. Impact of hypertension on cognitive function: A scientific statement from the American Heart Association. Hypertension 2016; 68(6): e67-94.
[103]
Asher J, Houston M. Statins and C-reactive protein levels. J Clin Hypertens 2007; 9(8): 622-8.
[104]
Zhang H, Cui Y, Zhao Y, et al. Effects of sartans and low-dose statins on cerebral white matter hyperintensities and cognitive function in older patients with hypertension: A randomized, double-blind and placebo-controlled clinical trial. Hypertens Res 2019; 42(5): 717-29.
[105]
Schultz BG, Patten DK, Berlau DJ. The role of statins in both cognitive impairment and protection against dementia: A tale of two mechanisms. Transl Neurodegener 2018; 7: 5.
[106]
Eiland LS, Luttrell PK. Use of statins for dyslipidemia in the pediatric population. J Pediatr Pharmacol Ther 2010; 15(3): 160-72.
[107]
Benedict C, Grillo CA. Insulin resistance as a therapeutic _target in the treatment of Alzheimer’s disease: A state-of-the-art review. Front Neurosci 2018; 12: 215.
[108]
Yarchoan M, Arnold SE. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 2014; 63(7): 2253-61.
[109]
Kennedy G, Hardman RJ, Macpherson H, Scholey AB, Pipingas A. How does exercise reduce the rate of age-associated cognitive decline? a review of potential mechanisms. J Alzheimers Dis 2017; 55(1): 1-18.
[110]
Bazzano LA, Green T, Harrison TN, Reynolds K. Dietary approaches to prevent hypertension. Curr Hypertens Rep 2013; 15(6): 694-702.
[111]
Pandareesh MD, Kandikattu HK, Razack S, et al. Nutrition and nutraceuticals in neuroinflammatory and brain metabolic stress: implications for neurodegenerative disorders. CNS Neurol Disord Drug _targets 2018; 17(9): 680-8.
[112]
Telle-Hansen VH, Holven KB, Ulven SM. Impact of a healthy dietary pattern on gut microbiota and systemic inflammation in humans. Nutrients 2018; 10(11): pii: E1783
[113]
Robles-Vera I, Toral M, Romero M, et al. Antihypertensive effects of probiotics. Curr Hypertens Rep 2017; 19(4): 26.