Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

The Renin-Angiotensin System and the Cerebrovascular Diseases: Experimental and Clinical Evidence

Author(s): Lucas M. Kangussu, Lucas Alexandre Santos Marzano, Cássio Ferraz Souza, Carolina Couy Dantas, Aline Silva Miranda and Ana Cristina Simões e Silva*

Volume 27, Issue 6, 2020

Page: [463 - 475] Pages: 13

DOI: 10.2174/0929866527666191218091823

TIMBC 2025
Abstract

Cerebrovascular Diseases (CVD) comprise a wide spectrum of disorders, all sharing an acquired or inherited alteration of the cerebral vasculature. CVD have been associated with important changes in systemic and tissue Renin-Angiotensin System (RAS). The aim of this review was to summarize and to discuss recent findings related to the modulation of RAS components in CVD. The role of RAS axes is more extensively studied in experimentally induced stroke. By means of AT1 receptors in the brain, Ang II hampers cerebral blood flow and causes tissue ischemia, inflammation, oxidative stress, cell damage and apoptosis. On the other hand, Ang-(1-7) by stimulating Mas receptor promotes angiogenesis in brain tissue, decreases oxidative stress, neuroinflammation, and improves cognition, cerebral blood flow, neuronal survival, learning and memory. In regard to clinical studies, treatment with Angiotensin Converting Enzyme (ACE) inhibitors and AT1 receptor antagonists exerts preventive and therapeutic effects on stroke. Besides stroke, studies support a similar role of RAS molecules also in traumatic brain injury and cerebral aneurysm. The literature supports a beneficial role for the alternative RAS axis in CVD. Further studies are necessary to investigate the therapeutic potential of ACE2 activators and/or Mas receptor agonists in patients with CVD.

Keywords: Renin angiotensin system, angiotensin peptides, cerebrovascular disease, stroke, traumatic brain injury, cerebral aneurysm.

Graphical Abstract
[1]
Chandra, A.; Stone, C.R.; Li, W.A.; Geng, X.; Ding, Y. The cerebral circulation and cerebrovascular disease II: Pathogenesis of cerebrovascular disease. Brain Circ., 2017, 3(2), 57-65.
[http://dx.doi.org/10.4103/bc.bc_11_17] [PMID: 30276306]
[2]
Murray, C.J.; Lopez, A.D. Measuring the global burden of disease. N. Engl. J. Med., 2013, 369(5), 448-457.
[http://dx.doi.org/10.1056/NEJMra1201534] [PMID: 23902484]
[3]
Roth, G.A.; Johnson, C.O.; Nguyen, G.; Naghavi, M.; Feigin, V.L.; Murray, C.J.; Forouzanfar, M.H.; Vos, T. Methods for estimating the global burden of cerebrovascular diseases. Neuroepidemiology, 2015, 45(3), 146-151.
[http://dx.doi.org/10.1159/000441083] [PMID: 26505980]
[4]
Thöne-Reineke, C.; Steckelings, U.M.; Unger, T. Angiotensin receptor blockers and cerebral protection in stroke. J. Hypertens. Suppl., 2006, 24(1)(Suppl.), S115-S121.
[http://dx.doi.org/10.1097/01.hjh.0000220416.07235.37] [PMID: 16601564]
[5]
Nishimura, Y.; Ito, T.; Saavedra, J.M. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke, 2000, 31(10), 2478-2486.
[http://dx.doi.org/10.1161/01.STR.31.10.2478] [PMID: 11022082]
[6]
Regenhardt, R.W.; Bennion, D.M.; Sumners, C. Cerebroprotective action of angiotensin peptides in stroke. Clin. Sci. (Lond.), 2014, 126(3), 195-205.
[http://dx.doi.org/10.1042/CS20130324] [PMID: 24102099]
[7]
Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev., 2006, 86(3), 747-803.
[http://dx.doi.org/10.1152/physrev.00036.2005] [PMID: 16816138]
[8]
Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med., 2008, 264(3), 224-236.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01981.x] [PMID: 18793332]
[9]
Lavoie, J.L.; Sigmund, C.D. Minireview: overview of the renin-angiotensin system--an endocrine and paracrine system. Endocrinology, 2003, 144(6), 2179-2183.
[http://dx.doi.org/10.1210/en.2003-0150] [PMID: 12746271]
[10]
Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 2000, 275(43), 33238-33243.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[11]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[12]
Santos, R.A.; Simoes e Silva, A.C.; Maric, C.; Silva, D.M.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.; Lopes, M.T.; Bader, M.; Mendes, E.P.; Lemos, V.S.; Campagnole-Santos, M.J.; Schultheiss, H.P.; Speth, R.; Walther, T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8258-8263.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[13]
Metzger, R.; Bader, M.; Ludwig, T.; Berberich, C.; Bunnemann, B.; Ganten, D. Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. FEBS Lett., 1995, 357(1), 27-32.
[http://dx.doi.org/10.1016/0014-5793(94)01292-9] [PMID: 8001672]
[14]
Jankowski, V.; Vanholder, R.; van der Giet, M.; Tölle, M.; Karadogan, S.; Gobom, J.; Furkert, J.; Oksche, A.; Krause, E.; Tran, T.N.; Tepel, M.; Schuchardt, M.; Schlüter, H.; Wiedon, A.; Beyermann, M.; Bader, M.; Todiras, M.; Zidek, W.; Jankowski, J. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 297-302.
[http://dx.doi.org/10.1161/01.ATV.0000253889.09765.5f] [PMID: 17138938]
[15]
Lautner, R.Q.; Villela, D.C.; Fraga-Silva, R.A.; Silva, N.; Verano-Braga, T.; Costa-Fraga, F.; Jankowski, J.; Jankowski, V.; Sousa, F.; Alzamora, A.; Soares, E.; Barbosa, C.; Kjeldsen, F.; Oliveira, A.; Braga, J.; Savergnini, S.; Maia, G.; Peluso, A.B.; Passos-Silva, D.; Ferreira, A.; Alves, F.; Martins, A.; Raizada, M.; Paula, R.; Motta-Santos, D.; Klempin, F.; Pimenta, A.; Alenina, N.; Sinisterra, R.; Bader, M.; Campagnole-Santos, M.J.; Santos, R.A. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ. Res., 2013, 112(8), 1104-1111.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301077] [PMID: 23446738]
[16]
Santos, R.A.S.; Oudit, G.Y.; Verano-Braga, T.; Canta, G.; Steckelings, U.M.; Bader, M. The renin-angiotensin system: going beyond the classical paradigms. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(5), H958-H970.
[http://dx.doi.org/10.1152/ajpheart.00723.2018] [PMID: 30707614]
[17]
Rocha, N.P.; Simoes E Silva, A.C.; Prestes, T.R.R.; Feracin, V.; Machado, C.A.; Ferreira, R.N.; Teixeira, A.L.; de Miranda, A.S. Silva, A.C.; Prestes, T.R.R.; Feracin, V.; RAS in the central nervous system: Potential role in neuropsychiatric disorders. Curr. Med. Chem., 2018, 25(28), 3333-3352.
[http://dx.doi.org/10.2174/0929867325666180226102358] [PMID: 29484978]
[18]
Wright, J.W.; Harding, J.W. Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci. Biobehav. Rev., 1994, 18(1), 21-53.
[http://dx.doi.org/10.1016/0149-7634(94)90034-5] [PMID: 8170622]
[19]
Jackson, L.; Eldahshan, W.; Fagan, S.C.; Ergul, A. Within the brain: The renin angiotensin system. Int. J. Mol. Sci., 2018, 19(3)E876
[http://dx.doi.org/10.3390/ijms19030876] [PMID: 29543776]
[20]
Almeida-Santos, A.F.; Kangussu, L.M.; Campagnole-Santos, M.J. The renin-angiotensin system and the neurodegenerative diseases: A brief review. Protein Pept. Lett., 2017, 24(9), 841-853.
[http://dx.doi.org/10.2174/0929866524666170822120258] [PMID: 28828974]
[21]
Epstein, B.J.; Gums, J.G. Can the renin-angiotensin system protect against stroke? A focus on angiotensin II receptor blockers. Pharmacotherapy, 2005, 25(4), 531-539.
[http://dx.doi.org/10.1592/phco.25.4.531.61022] [PMID: 15977915]
[22]
Marcheselli, S.; Micieli, G. Renin-angiotensin system and stroke. Neurol. Sci., 2008, 29(Suppl. 2), S277-S278.
[http://dx.doi.org/10.1007/s10072-008-0963-9] [PMID: 18690518]
[23]
Chrysant, S.G. The pathophysiologic role of the brain renin-angiotensin system in stroke protection: clinical implications. J. Clin. Hypertens. (Greenwich), 2007, 9(6), 454-459.
[http://dx.doi.org/10.1111/j.1524-6175.2007.06602.x] [PMID: 17541331]
[24]
Phillips, M.I.; de Oliveira, E.M. Brain renin angiotensin in disease. J. Mol. Med. (Berl.), 2008, 86(6), 715-722.
[http://dx.doi.org/10.1007/s00109-008-0331-5] [PMID: 18385968]
[25]
Fouda, A.Y.; Artham, S.; El-Remessy, A.B.; Fagan, S.C. Renin-angiotensin system as a potential therapeutic _target in stroke and retinopathy: experimental and clinical evidence. Clin. Sci. (Lond.), 2016, 130(4), 221-238.
[http://dx.doi.org/10.1042/CS20150350] [PMID: 26769658]
[26]
Sokol, S.I.; Portnay, E.L.; Curtis, J.P.; Nelson, M.A.; Hebert, P.R.; Setaro, J.F.; Foody, J.M. Modulation of the renin-angiotensin-aldosterone system for the secondary prevention of stroke. Neurology, 2004, 63(2), 208-213.
[http://dx.doi.org/10.1212/01.WNL.0000130360.21618.D0] [PMID: 15277610]
[27]
Ravenni, R.; Jabre, J.F.; Casiglia, E.; Mazza, A. Primary stroke prevention and hypertension treatment: which is the first-line strategy? Neurol. Int., 2011, 3(2)e12
[http://dx.doi.org/10.4081/ni.2011.e12] [PMID: 22053259]
[28]
Mergenthaler, P.; Dirnagl, U.; Meisel, A. Pathophysiology of stroke: lessons from animal models. Metab. Brain Dis., 2004, 19(3-4), 151-167.
[http://dx.doi.org/10.1023/B:MEBR.0000043966.46964.e6] [PMID: 15554412]
[29]
Astrup, J.; Siesjö, B.K.; Symon, L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke, 1981, 12(6), 723-725.
[http://dx.doi.org/10.1161/01.STR.12.6.723] [PMID: 6272455]
[30]
Ginsberg, M.D. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke, 2003, 34(1), 214-223.
[http://dx.doi.org/10.1161/01.STR.0000048846.09677.62] [PMID: 12511777]
[31]
Näveri, L.; Strömberg, C.; Saavedra, J.M. Angiotensin II AT1 receptor mediated contraction of the perfused rat cerebral artery. Neuroreport, 1994, 5(17), 2278-2280.
[http://dx.doi.org/10.1097/00001756-199411000-00018] [PMID: 7881045]
[32]
Stenman, E.; Edvinsson, L. Cerebral ischemia enhances vascular angiotensin AT1 receptor-mediated contraction in rats. Stroke, 2004, 35(4), 970-974.
[http://dx.doi.org/10.1161/01.STR.0000121642.53822.58] [PMID: 15001791]
[33]
Faraci, F.M.; Lamping, K.G.; Modrick, M.L.; Ryan, M.J.; Sigmund, C.D.; Didion, S.P. Cerebral vascular effects of angiotensin II: new insights from genetic models. J. Cereb. Blood Flow Metab., 2006, 26(4), 449-455.
[http://dx.doi.org/10.1038/sj.jcbfm.9600204] [PMID: 16094317]
[34]
Wilms, H.; Rosenstiel, P.; Unger, T.; Deuschl, G.; Lucius, R. Neuroprotection with angiotensin receptor antagonists: a review of the evidence and potential mechanisms. Am. J. Cardiovasc. Drugs, 2005, 5(4), 245-253.
[http://dx.doi.org/10.2165/00129784-200505040-00004] [PMID: 15984907]
[35]
Dai, W.J.; Funk, A.; Herdegen, T.; Unger, T.; Culman, J. Blockade of central angiotensin AT(1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke, 1999, 30(11), 2391-2398.
[http://dx.doi.org/10.1161/01.STR.30.11.2391] [PMID: 10548676]
[36]
Engelhorn, T.; Goerike, S.; Doerfler, A.; Okorn, C.; Forsting, M.; Heusch, G.; Schulz, R. The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J. Cereb. Blood Flow Metab., 2004, 24(4), 467-474.
[http://dx.doi.org/10.1097/00004647-200404000-00012] [PMID: 15087716]
[37]
Brdon, J.; Kaiser, S.; Hagemann, F.; Zhao, Y.; Culman, J.; Gohlke, P. Comparison between early and delayed systemic treatment with candesartan of rats after ischaemic stroke. J. Hypertens., 2007, 25(1), 187-196.
[http://dx.doi.org/10.1097/01.hjh.0000254376.80864.d3] [PMID: 17143191]
[38]
Mogi, M.; Horiuchi, M. Effect of angiotensin II type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases. Geriatr. Gerontol. Int., 2013, 13(1), 13-18.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00900.x] [PMID: 22726823]
[39]
Hosomi, N.; Mizushige, K.; Kitadai, M.; Ohyama, H.; Ichihara, S.I.; Takahashi, T.; Matsuo, H. Induced hypertension treatment to improve cerebral ischemic injury after transient forebrain ischemia. Brain Res., 1999, 835(2), 188-196.
[http://dx.doi.org/10.1016/S0006-8993(99)01577-2] [PMID: 10415373]
[40]
Hosomi, N.; Nishiyama, A.; Ban, C.R.; Naya, T.; Takahashi, T.; Kohno, M.; Koziol, J.A. Angiotensin type 1 receptor blockage improves ischemic injury following transient focal cerebral ischemia. Neuroscience, 2005, 134(1), 225-231.
[http://dx.doi.org/10.1016/j.neuroscience.2005.03.054] [PMID: 15963646]
[41]
Kazama, K.; Anrather, J.; Zhou, P.; Girouard, H.; Frys, K.; Milner, T.A.; Iadecola, C. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ. Res., 2004, 95(10), 1019-1026.
[http://dx.doi.org/10.1161/01.RES.0000148637.85595.c5] [PMID: 15499027]
[42]
De Silva, T.M.; Broughton, B.R.; Drummond, G.R.; Sobey, C.G.; Miller, A.A. Gender influences cerebral vascular responses to angiotensin II through Nox2-derived reactive oxygen species. Stroke, 2009, 40(4), 1091-1097.
[http://dx.doi.org/10.1161/STROKEAHA.108.531707] [PMID: 19211495]
[43]
Jackman, K.A.; Miller, A.A.; Drummond, G.R.; Sobey, C.G. Importance of NOX1 for angiotensin II-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke. Brain Res., 2009, 1286, 215-220.
[http://dx.doi.org/10.1016/j.brainres.2009.06.056] [PMID: 19559686]
[44]
Miller, A.A.; Drummond, G.R.; Schmidt, H.H.; Sobey, C.G. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ. Res., 2005, 97(10), 1055-1062.
[http://dx.doi.org/10.1161/01.RES.0000189301.10217.87] [PMID: 16210546]
[45]
Kazama, K.; Wang, G.; Frys, K.; Anrather, J.; Iadecola, C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am. J. Physiol. Heart Circ. Physiol., 2003, 285(5), H1890-H1899.
[http://dx.doi.org/10.1152/ajpheart.00464.2003] [PMID: 12907423]
[46]
Girouard, H.; Park, L.; Anrather, J.; Zhou, P.; Iadecola, C. Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 303-309.
[http://dx.doi.org/10.1161/01.ATV.0000253885.41509.25] [PMID: 17138940]
[47]
Girouard, H.; Lessard, A.; Capone, C.; Milner, T.A.; Iadecola, C. The neurovascular dysfunction induced by angiotensin II in the mouse neocortex is sexually dimorphic. Am. J. Physiol. Heart Circ. Physiol., 2008, 294(1), H156-H163.
[http://dx.doi.org/10.1152/ajpheart.01137.2007] [PMID: 17982007]
[48]
Capone, C.; Anrather, J.; Milner, T.A.; Iadecola, C. Estrous cycle-dependent neurovascular dysfunction induced by angiotensin II in the mouse neocortex. Hypertension, 2009, 54(2), 302-307.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.133249] [PMID: 19506098]
[49]
Capone, C.; Faraco, G.; Anrather, J.; Zhou, P.; Iadecola, C. Cyclooxygenase 1-derived prostaglandin E2 and EP1 receptors are required for the cerebrovascular dysfunction induced by angiotensin II. Hypertension, 2010, 55(4), 911-917.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.145813] [PMID: 20194308]
[50]
Capone, C.; Faraco, G.; Park, L.; Cao, X.; Davisson, R.L.; Iadecola, C. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am. J. Physiol. Heart Circ. Physiol., 2011, 300(1), H397-H407.
[http://dx.doi.org/10.1152/ajpheart.00679.2010] [PMID: 20971763]
[51]
De Silva, T.M.; Faraci, F.M. Effects of angiotensin II on the cerebral circulation: role of oxidative stress. Front. Physiol., 2013, 3, 484.
[http://dx.doi.org/10.3389/fphys.2012.00484] [PMID: 23316164]
[52]
Vital, S.A.; Terao, S.; Nagai, M.; Granger, D.N. Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension. Microcirculation, 2010, 17(8), 641-649.
[http://dx.doi.org/10.1111/j.1549-8719.2010.00060.x] [PMID: 21044218]
[53]
Zhang, M.; Mao, Y.; Ramirez, S.H.; Tuma, R.F.; Chabrashvili, T. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience, 2010, 171(3), 852-858.
[http://dx.doi.org/10.1016/j.neuroscience.2010.09.029] [PMID: 20870012]
[54]
Baumbach, G.L.; Sigmund, C.D.; Faraci, F.M. Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen. Hypertension, 2003, 41(1), 50-55.
[http://dx.doi.org/10.1161/01.HYP.0000042427.05390.5C] [PMID: 12511529]
[55]
Lonn, E.M.; Yusuf, S.; Jha, P.; Montague, T.J.; Teo, K.K.; Benedict, C.R.; Pitt, B. Emerging role of angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation, 1994, 90(4), 2056-2069.
[http://dx.doi.org/10.1161/01.CIR.90.4.2056] [PMID: 7923694]
[56]
Hilleman, D.E.; Lucas, B.D., Jr Angiotensin-converting enzyme inhibitors and stroke risk: benefit beyond blood pressure reduction? Pharmacotherapy, 2004, 24(8), 1064-1076.
[http://dx.doi.org/10.1592/phco.24.11.1064.36137] [PMID: 15338854]
[57]
Bosch, J.; Yusuf, S.; Pogue, J.; Sleight, P.; Lonn, E.; Rangoonwala, B.; Davies, R.; Ostergren, J.; Probstfield, J. Use of ramipril in preventing stroke: double blind randomised trial. BMJ, 2002, 324(7339), 699-702.
[http://dx.doi.org/10.1136/bmj.324.7339.699] [PMID: 11909785]
[58]
Svensson, P.; de Faire, U.; Sleight, P.; Yusuf, S.; Ostergren, J. Comparative effects of ramipril on ambulatory and office blood pressures: a HOPE Substudy. Hypertension, 2001, 38(6), E28-E32.
[http://dx.doi.org/10.1161/hy1101.099502] [PMID: 11751742]
[59]
ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA, 2002, 288(23), 2981-2997.
[http://dx.doi.org/10.1001/jama.288.23.2981] [PMID: 12479763]
[60]
Estacio, R.O.; Jeffers, B.W.; Hiatt, W.R.; Biggerstaff, S.L.; Gifford, N.; Schrier, R.W. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N. Engl. J. Med., 1998, 338(10), 645-652.
[http://dx.doi.org/10.1056/NEJM199803053381003] [PMID: 9486993]
[61]
Tatti, P.; Pahor, M.; Byington, R.P.; Di Mauro, P.; Guarisco, R.; Strollo, G.; Strollo, F. Outcome results of the fosinopril versus amlodipine cardiovascular events randomized trial (FACET) in patients with hypertension and NIDDM. Diabetes Care, 1998, 21(4), 597-603.
[http://dx.doi.org/10.2337/diacare.21.4.597] [PMID: 9571349]
[62]
UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ, 1998, 317(7160), 713-720.
[http://dx.doi.org/10.1136/bmj.317.7160.713] [PMID: 9732338]
[63]
Hansson, L.; Lindholm, L.H.; Niskanen, L.; Lanke, J.; Hedner, T.; Niklason, A.; Luomanmäki, K.; Dahlöf, B.; de Faire, U.; Mörlin, C.; Karlberg, B.E.; Wester, P.O.; Björck, J.E. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet, 1999, 353(9153), 611-616.
[http://dx.doi.org/10.1016/S0140-6736(98)05012-0] [PMID: 10030325]
[64]
Hansson, L.; Lindholm, L.H.; Ekbom, T.; Dahlöf, B.; Lanke, J.; Scherstén, B.; Wester, P.O.; Hedner, T.; de Faire, U. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet, 1999, 354(9192), 1751-1756.
[http://dx.doi.org/10.1016/S0140-6736(99)10327-1] [PMID: 10577635]
[65]
Wing, L.M.; Reid, C.M.; Ryan, P.; Beilin, L.J.; Brown, M.A.; Jennings, G.L.; Johnston, C.I.; McNeil, J.J.; Macdonald, G.J.; Marley, J.E.; Morgan, T.O.; West, M.J. A comparison of outcomes with angiotensin-converting--enzyme inhibitors and diuretics for hypertension in the elderly. N. Engl. J. Med., 2003, 348(7), 583-592.
[http://dx.doi.org/10.1056/NEJMoa021716] [PMID: 12584366]
[66]
PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet, 2001, 358(9287), 1033-1041.
[http://dx.doi.org/10.1016/S0140-6736(01)06178-5] [PMID: 11589932]
[67]
Smeda, J.S.; Watson, D.; Stuckless, J.; Negandhi, A. Post-stroke losartan and captopril treatments arrest hemorrhagic expansion in SHRsp without lowering blood pressure. Vascul. Pharmacol., 2018, 111, 26-35.
[http://dx.doi.org/10.1016/j.vph.2018.08.006] [PMID: 30114508]
[68]
Iwai, M.; Liu, H.W.; Chen, R.; Ide, A.; Okamoto, S.; Hata, R.; Sakanaka, M.; Shiuchi, T.; Horiuchi, M. Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation, 2004, 110(7), 843-848.
[http://dx.doi.org/10.1161/01.CIR.0000138848.58269.80] [PMID: 15289370]
[69]
Iwai, M.; Chen, R.; Ide, A.; Iwanami, J.; Tomochika, H.; Tomono, Y.; Mogi, M.; Horiuchi, M. The calcium-channel blocker, azelnidipine, enhances the inhibitory action of AT1 receptor blockade on ischemic brain damage. J. Hypertens., 2006, 24(10), 2023-2031.
[http://dx.doi.org/10.1097/01.hjh.0000244952.54738.f6] [PMID: 16957563]
[70]
Tsukuda, K.; Mogi, M.; Iwanami, J.; Min, L.J.; Jing, F.; Oshima, K.; Horiuchi, M. Irbesartan attenuates ischemic brain damage by inhibition of MCP-1/CCR2 signaling pathway beyond AT1 receptor blockade. Biochem. Biophys. Res. Commun., 2011, 409(2), 275-279.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.142] [PMID: 21575596]
[71]
Hamai, M.; Iwai, M.; Ide, A.; Tomochika, H.; Tomono, Y.; Mogi, M.; Horiuchi, M. Comparison of inhibitory action of candesartan and enalapril on brain ischemia through inhibition of oxidative stress. Neuropharmacology, 2006, 51(4), 822-828.
[http://dx.doi.org/10.1016/j.neuropharm.2006.05.029] [PMID: 16824557]
[72]
Steckelings, U.M.; Kaschina, E.; Unger, T. The AT2 receptor--a matter of love and hate. Peptides, 2005, 26(8), 1401-1409.
[http://dx.doi.org/10.1016/j.peptides.2005.03.010] [PMID: 16042980]
[73]
Stier, C.T., Jr; Adler, L.A.; Levine, S.; Chander, P.N. Stroke prevention by losartan in stroke-prone spontaneously hypertensive rats. J. Hypertens. Suppl., 1993, 11(3), S37-S42.,
[PMID: 8315518]
[74]
Kim-Mitsuyama, S.; Yamamoto, E.; Tanaka, T.; Zhan, Y.; Izumi, Y.; Izumiya, Y.; Ioroi, T.; Wanibuchi, H.; Iwao, H. Critical role of angiotensin II in excess salt-induced brain oxidative stress of stroke-prone spontaneously hypertensive rats. Stroke, 2005, 36(5), 1083-1088.
[http://dx.doi.org/10.1161/01.STR.0000163084.16505.e3] [PMID: 15817892]
[75]
Lou, M.; Blume, A.; Zhao, Y.; Gohlke, P.; Deuschl, G.; Herdegen, T.; Culman, J. Sustained blockade of brain AT1 receptors before and after focal cerebral ischemia alleviates neurologic deficits and reduces neuronal injury, apoptosis, and inflammatory responses in the rat. J. Cereb. Blood Flow Metab., 2004, 24(5), 536-547.
[http://dx.doi.org/10.1097/00004647-200405000-00008] [PMID: 15129186]
[76]
Groth, W.; Blume, A.; Gohlke, P.; Unger, T.; Culman, J. Chronic pretreatment with candesartan improves recovery from focal cerebral ischaemia in rats. J. Hypertens., 2003, 21(11), 2175-2182.
[http://dx.doi.org/10.1097/00004872-200311000-00028] [PMID: 14597862]
[77]
Lu, Q.; Zhu, Y.Z.; Wong, P.T. Angiotensin receptor gene expression in candesartan mediated neuroprotection. Neuroreport, 2004, 15(17), 2643-2646.
[http://dx.doi.org/10.1097/00001756-200412030-00017] [PMID: 15570169]
[78]
Li, J.; Culman, J.; Hörtnagl, H.; Zhao, Y.; Gerova, N.; Timm, M.; Blume, A.; Zimmermann, M.; Seidel, K.; Dirnagl, U.; Unger, T. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J., 2005, 19(6), 617-619.
[http://dx.doi.org/10.1096/fj.04-2960fje] [PMID: 15665034]
[79]
Dahlöf, B.; Devereux, R.B.; Kjeldsen, S.E.; Julius, S.; Beevers, G.; de Faire, U.; Fyhrquist, F.; Ibsen, H.; Kristiansson, K.; Lederballe-Pedersen, O.; Lindholm, L.H.; Nieminen, M.S.; Omvik, P.; Oparil, S.; Wedel, H. LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet, 2002, 359(9311), 995-1003.
[http://dx.doi.org/10.1016/S0140-6736(02)08089-3] [PMID: 11937178]
[80]
Schrader, J.; Lüders, S.; Kulschewski, A.; Hammersen, F.; Plate, K.; Berger, J.; Zidek, W.; Dominiak, P.; Diener, H.C. MOSES Study Group. Morbidity and Mortality After Stroke, Eprosartan Compared with Nitrendipine for Secondary Prevention: principal results of a prospective randomized controlled study (MOSES). Stroke, 2005, 36(6), 1218-1226.
[http://dx.doi.org/10.1161/01.STR.0000166048.35740.a9] [PMID: 15879332]
[81]
Mochizuki, S.; Dahlöf, B.; Shimizu, M.; Ikewaki, K.; Yoshikawa, M.; Taniguchi, I.; Ohta, M.; Yamada, T.; Ogawa, K.; Kanae, K.; Kawai, M.; Seki, S.; Okazaki, F.; Taniguchi, M.; Yoshida, S.; Tajima, N. Valsartan in a Japanese population with hypertension and other cardiovascular disease (Jikei Heart Study): a randomised, open-label, blinded endpoint morbidity-mortality study. Lancet, 2007, 369(9571), 1431-1439.
[http://dx.doi.org/10.1016/S0140-6736(07)60669-2] [PMID: 17467513]
[82]
Sawada, T.; Yamada, H.; Dahlöf, B.; Matsubara, H. Effects of valsartan on morbidity and mortality in uncontrolled hypertensive patients with high cardiovascular risks: KYOTO HEART Study. Eur. Heart J., 2009, 30(20), 2461-2469.
[http://dx.doi.org/10.1093/eurheartj/ehp363] [PMID: 19723695]
[83]
Julius, S.; Nesbitt, S.D.; Egan, B.M.; Weber, M.A.; Michelson, E.L.; Kaciroti, N.; Black, H.R.; Grimm, R.H., Jr; Messerli, F.H.; Oparil, S.; Schork, M.A. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N. Engl. J. Med., 2006, 354(16), 1685-1697.
[http://dx.doi.org/10.1056/NEJMoa060838] [PMID: 16537662]
[84]
Li, J.M.; Mogi, M.; Iwanami, J.; Min, L.J.; Tsukuda, K.; Sakata, A.; Fujita, T.; Iwai, M.; Horiuchi, M. Temporary pretreatment with the angiotensin II type 1 receptor blocker, valsartan, prevents ischemic brain damage through an increase in capillary density. Stroke, 2008, 39(7), 2029-2036.
[http://dx.doi.org/10.1161/STROKEAHA.107.503458] [PMID: 18436887]
[85]
de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International union of pharmacology., XXIII. The angiotensin II receptors. Pharmacol. Rev., 2000, 52(3), 415-472.
[PMID: 10977869]
[86]
Reinecke, K.; Lucius, R.; Reinecke, A.; Rickert, U.; Herdegen, T.; Unger, T. Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB. FASEB J., 2003, 17(14), 2094-2096.
[http://dx.doi.org/10.1096/fj.02-1193fje] [PMID: 14500552]
[87]
Li, J.M.; Mogi, M.; Tsukuda, K.; Tomochika, H.; Iwanami, J.; Min, L.J.; Nahmias, C.; Iwai, M.; Horiuchi, M. Angiotensin II-induced neural differentiation via angiotensin II type 2 (AT2) receptor-MMS2 cascade involving interaction between AT2 receptor-interacting protein and Src homology 2 domain-containing protein-tyrosine phosphatase 1. Mol. Endocrinol., 2007, 21(2), 499-511.
[http://dx.doi.org/10.1210/me.2006-0005] [PMID: 17068200]
[88]
Saavedra, J.M. Beneficial effects of Angiotensin II receptor blockers in brain disorders., Pharmacol. Res., 2017, 125(Pt A), 91-103.
[http://dx.doi.org/10.1016/j.phrs.2017.06.017]
[89]
Chrysant, S.G. Stroke prevention with losartan in the context of other antihypertensive drugs. Drugs Today (Barc), 2004, 40(9), 791-801.
[http://dx.doi.org/10.1358/dot.2004.40.9.850498] [PMID: 15538551]
[90]
Chrysant, S.G. The role of angiotensin II receptors in stroke protection. Curr. Hypertens. Rep., 2012, 14(3), 202-208.
[http://dx.doi.org/10.1007/s11906-012-0257-8] [PMID: 22447068]
[91]
Yusuf, S.; Diener, H.C.; Sacco, R.L.; Cotton, D.; Ounpuu, S.; Lawton, W.A.; Palesch, Y.; Martin, R.H.; Albers, G.W.; Bath, P.; Bornstein, N.; Chan, B.P.; Chen, S.T.; Cunha, L.; Dahlöf, B.; De Keyser, J.; Donnan, G.A.; Estol, C.; Gorelick, P.; Gu, V.; Hermansson, K.; Hilbrich, L.; Kaste, M.; Lu, C.; Machnig, T.; Pais, P.; Roberts, R.; Skvortsova, V.; Teal, P.; Toni, D.; VanderMaelen, C.; Voigt, T.; Weber, M.; Yoon, B.W. Telmisartan to prevent recurrent stroke and cardiovascular events. N. Engl. J. Med., 2008, 359(12), 1225-1237.
[http://dx.doi.org/10.1056/NEJMoa0804593] [PMID: 18753639]
[92]
Yusuf, S.; Teo, K.K.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Dagenais, G.; Sleight, P.; Anderson, C. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med., 2008, 358(15), 1547-1559.
[http://dx.doi.org/10.1056/NEJMoa0801317] [PMID: 18378520]
[93]
Yusuf, S.; Teo, K.; Anderson, C.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Dagenais, G.; Sleight, P. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high risk patients intolerant to angiotensin-converting enzyme inhibitors: A randomized controlled trial. The Telmisartan Randomised Assessment Study in ACE iN tolerant Subjects with Cardiovascular Disease (TRANSCEND) Investigators. Lancet, 2008, 372(9644), 1174-1183.
[http://dx.doi.org/10.1016/S0140-6736(08)61242-8] [PMID: 18757085]
[94]
Sandset, E.C.; Bath, P.M.; Boysen, G.; Jatuzis, D.; Kõrv, J.; Lüders, S.; Murray, G.D.; Richter, P.S.; Roine, R.O.; Terént, A.; Thijs, V.; Berge, E. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet, 2011, 377(9767), 741-750.
[http://dx.doi.org/10.1016/S0140-6736(11)60104-9] [PMID: 21316752]
[95]
Turnbull, F.; Neal, B.; Pfeffer, M.; Kostis, J.; Algert, C.; Woodward, M.; Chalmers, J.; Zanchetti, A.; MacMahon, S. Blood pressure-dependent and independent effects of agents that inhibit the renin-angiotensin system. J. Hypertens., 2007, 25(5), 951-958.
[http://dx.doi.org/10.1097/HJH.0b013e3280bad9b4] [PMID: 17414657]
[96]
Turnbull, F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet, 2003, 362(9395), 1527-1535.
[http://dx.doi.org/10.1016/S0140-6736(03)14739-3] [PMID: 14615107]
[97]
Law, M.R.; Morris, J.K.; Wald, N.J. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ, 2009, 338, b1665.
[http://dx.doi.org/10.1136/bmj.b1665] [PMID: 19454737]
[98]
Simões e Silva, A.C.; Silveira, K.D.; Ferreira, A.J.; Teixeira, M.M. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol., 2013, 169(3), 477-492.
[http://dx.doi.org/10.1111/bph.12159] [PMID: 23488800]
[99]
Etelvino, G.M.; Peluso, A.A.; Santos, R.A. New components of the renin-angiotensin system: alamandine and the MAS-related G protein-coupled receptor D. Curr. Hypertens. Rep., 2014, 16(6), 433.
[http://dx.doi.org/10.1007/s11906-014-0433-0] [PMID: 24760442]
[100]
Santos, R.A.S. Angiotensin-(1-7). Hypertension, 2014, 63(6), 1138-1147.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01274] [PMID: 24664288]
[101]
Xu, P.; Sriramula, S.; Lazartigues, E. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(4), R804-R817.
[http://dx.doi.org/10.1152/ajpregu.00222.2010] [PMID: 21178125]
[102]
Chen, J.; Xiao, X.; Chen, S.; Zhang, C.; Chen, J.; Yi, D.; Shenoy, V.; Raizada, M.K.; Zhao, B.; Chen, Y. Angiotensin-converting enzyme 2 priming enhances the function of endothelial progenitor cells and their therapeutic efficacy. Hypertension, 2013, 61(3), 681-689.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00202] [PMID: 23266545]
[103]
Jiang, T.; Yu, J.T.; Zhu, X.C.; Zhang, Q.Q.; Tan, M.S.; Cao, L.; Wang, H.F.; Lu, J.; Gao, Q.; Zhang, Y.D.; Tan, L. Angiotensin-(1-7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br. J. Pharmacol., 2014, 171(18), 4222-4232.
[http://dx.doi.org/10.1111/bph.12770] [PMID: 24824997]
[104]
Xie, W.; Zhu, D.; Ji, L.; Tian, M.; Xu, C.; Shi, J. Angiotensin-(1-7) improves cognitive function in rats with chronic cerebral hypoperfusion. Brain Res., 2014, 1573, 44-53.
[http://dx.doi.org/10.1016/j.brainres.2014.05.019] [PMID: 24854124]
[105]
Wu, J.; Zhao, D.; Wu, S.; Wang, D. Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9. Eur. J. Pharmacol., 2015, 748, 30-36.
[http://dx.doi.org/10.1016/j.ejphar.2014.12.007] [PMID: 25523481]
[106]
Kangussu, L.M.; Almeida-Santos, A.F.; Bader, M.; Alenina, N.; Fontes, M.A.; Santos, R.A.; Aguiar, D.C.; Campagnole-Santos, M.J. Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behav. Brain Res., 2013, 257, 25-30.
[http://dx.doi.org/10.1016/j.bbr.2013.09.003] [PMID: 24016839]
[107]
Almeida-Santos, A.F.; Kangussu, L.M.; Moreira, F.A.; Santos, R.A.; Aguiar, D.C.; Campagnole-Santos, M.J.; Campagnole-Santos, M.J. Anxiolytic- and antidepressant-like effects of angiotensin-(1-7) in hypertensive transgenic (mRen2)27 rats. Clin. Sci. (Lond.), 2016, 130(14), 1247-1255.
[http://dx.doi.org/10.1042/CS20160116] [PMID: 27129185]
[108]
Kangussu, L.M.; Almeida-Santos, A.F.; Moreira, F.A.; Fontes, M.A.P.; Santos, R.A.S.; Aguiar, D.C.; Campagnole-Santos, M.J. Reduced anxiety-like behavior in transgenic rats with chronically overproduction of angiotensin-(1-7): Role of the Mas receptor. Behav. Brain Res., 2017, 331, 193-198.
[http://dx.doi.org/10.1016/j.bbr.2017.05.026] [PMID: 28502733]
[109]
Martins Lima, A.; Xavier, C.H.; Ferreira, A.J.; Raizada, M.K.; Wallukat, G.; Velloso, E.P.; dos Santos, R.A.; Fontes, M.A. Activation of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am. J. Physiol. Heart Circ. Physiol., 2013, 305(7), H1057-H1067.
[http://dx.doi.org/10.1152/ajpheart.00433.2013] [PMID: 23873801]
[110]
Gironacci, M.M. Angiotensin-(1-7): beyond its central effects on blood pressure. Ther. Adv. Cardiovasc. Dis., 2015, 9(4), 209-216.
[http://dx.doi.org/10.1177/1753944715599875] [PMID: 26287021]
[111]
Hellner, K.; Walther, T.; Schubert, M.; Albrecht, D. Angiotensin-(1-7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas. Mol. Cell. Neurosci., 2005, 29(3), 427-435.
[http://dx.doi.org/10.1016/j.mcn.2005.03.012] [PMID: 15950155]
[112]
Lazaroni, T.L.; Raslan, A.C.S.; Fontes, W.R.; de Oliveira, M.L.; Bader, M.; Alenina, N.; Moraes, M.F.; Dos Santos, R.A.; Pereira, G.S. Angiotensin-(1-7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol. Learn. Mem., 2012, 97(1), 113-123.
[http://dx.doi.org/10.1016/j.nlm.2011.10.003] [PMID: 22067210]
[113]
Jiang, T.; Gao, L.; Shi, J.; Lu, J.; Wang, Y.; Zhang, Y. Angiotensin-(1-7) modulates renin-angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats. Pharmacol. Res., 2013, 67(1), 84-93.
[http://dx.doi.org/10.1016/j.phrs.2012.10.014] [PMID: 23127917]
[114]
Gironacci, M.M.; Vicario, A.; Cerezo, G.; Silva, M.G. The depressor axis of the renin-angiotensin system and brain disorders: a translational approach. Clin. Sci. (Lond.), 2018, 132(10), 1021-1038.
[http://dx.doi.org/10.1042/CS20180189] [PMID: 29802208]
[115]
Mecca, A.P.; Regenhardt, R.W.; O’Connor, T.E.; Joseph, J.P.; Raizada, M.K.; Katovich, M.J.; Sumners, C. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp. Physiol., 2011, 96(10), 1084-1096.
[http://dx.doi.org/10.1113/expphysiol.2011.058578] [PMID: 21685445]
[116]
Sumners, C.; Horiuchi, M.; Widdop, R.E.; McCarthy, C.; Unger, T.; Steckelings, U.M. Protective arms of the renin-angiotensin-system in neurological disease. Clin. Exp. Pharmacol. Physiol., 2013, 40(8), 580-588.
[http://dx.doi.org/10.1111/1440-1681.12137] [PMID: 23735163]
[117]
Bennion, D.M.; Haltigan, E.; Regenhardt, R.W.; Steckelings, U.M.; Sumners, C. Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-Mas axis in stroke. Curr. Hypertens. Rep., 2015, 17(2), 3.
[http://dx.doi.org/10.1007/s11906-014-0512-2] [PMID: 25620630]
[118]
Regenhardt, R.W.; Mecca, A.P.; Desland, F.; Ritucci-Chinni, P.F.; Ludin, J.A.; Greenstein, D.; Banuelos, C.; Bizon, J.L.; Reinhard, M.K.; Sumners, C. Centrally administered angiotensin-(1-7) increases the survival of stroke-prone spontaneously hypertensive rats. Exp. Physiol., 2014, 99(2), 442-453.
[http://dx.doi.org/10.1113/expphysiol.2013.075242] [PMID: 24142453]
[119]
Zhang, Y.; Lu, J.; Shi, J.; Lin, X.; Dong, J.; Zhang, S.; Liu, Y.; Tong, Q. Central administration of angiotensin-(1-7) stimulates nitric oxide release and upregulates the endothelial nitric oxide synthase expression following focal cerebral ischemia/reperfusion in rats. Neuropeptides, 2008, 42(5-6), 593-600.
[http://dx.doi.org/10.1016/j.npep.2008.09.005] [PMID: 18990443]
[120]
Chen, J.; Zhao, Y.; Chen, S.; Wang, J.; Xiao, X. Ma, X.; Penchikala, M.; Xia, H.; Lazartigues, E.; Zhao, B.; Chen, Y. Neuronal overexpression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology, 2014, 79, 550-558.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.004] [PMID: 24440367]
[121]
Regenhardt, R.W.; Desland, F.; Mecca, A.P.; Pioquinto, D.J.; Afzal, A.; Mocco, J.; Sumners, C. Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke. Neuropharmacology, 2013, 71, 154-163.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.025] [PMID: 23583926]
[122]
Lu, J.; Jiang, T.; Wu, L.; Gao, L.; Wang, Y.; Zhou, F.; Zhang, S.; Zhang, Y. The expression of angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas receptor axis are upregulated after acute cerebral ischemic stroke in rats. Neuropeptides, 2013, 47(5), 289-295.
[http://dx.doi.org/10.1016/j.npep.2013.09.002] [PMID: 24090950]
[123]
Arroja, M.M.C.; Reid, E.; Roy, L.A.; Vallatos, A.V.; Holmes, W.M.; Nicklin, S.A.; Work, L.M.; McCabe, C. Assessing the effects of Ang-(1-7) therapy following transient middle cerebral artery occlusion. Sci. Rep., 2019, 9(1), 3154.
[http://dx.doi.org/10.1038/s41598-019-39102-8] [PMID: 30816157]
[124]
Bennion, D.M.; Haltigan, E.A.; Irwin, A.J.; Donnangelo, L.L.; Regenhardt, R.W.; Pioquinto, D.J.; Purich, D.L.; Sumners, C. Activation of the neuroprotective angiotensin-converting enzyme 2 in rat ischemic stroke. Hypertension, 2015, 66(1), 141-148.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05185] [PMID: 25941346]
[125]
Bennion, D.M.; Jones, C.H.; Donnangelo, L.L.; Graham, J.T.; Isenberg, J.D.; Dang, A.N.; Rodriguez, V.; Sinisterra, R.D.M.; Sousa, F.B.; Santos, R.A.S.; Sumners, C. Neuroprotection by post-stroke administration of an oral formulation of angiotensin-(1-7) in ischaemic stroke. Exp. Physiol., 2018, 103(6), 916-923.
[http://dx.doi.org/10.1113/EP086957] [PMID: 29663576]
[126]
Jiang, F.; Yang, J.; Zhang, Y.; Dong, M.; Wang, S.; Zhang, Q.; Liu, F.F.; Zhang, K.; Zhang, C. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic _targets. Nat. Rev. Cardiol., 2014, 11(7), 413-426.
[http://dx.doi.org/10.1038/nrcardio.2014.59] [PMID: 24776703]
[127]
Haschke, M.; Schuster, M.; Poglitsch, M.; Loibner, H.; Salzberg, M.; Bruggisser, M.; Penninger, J.; Krähenbühl, S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin. Pharmacokinet., 2013, 52(9), 783-792.
[http://dx.doi.org/10.1007/s40262-013-0072-7] [PMID: 23681967]
[128]
Bennion, D.M.; Rosado, C.A.; Haltigan, E.A.; Regenhardt, R.W.; Sumners, C.; Waters, M.F. Serum activity of angiotensin converting enzyme 2 is decreased in patients with acute ischemic stroke. J. Renin Angiotensin Aldosterone Syst., 2016, 17(3)1470320316661060
[http://dx.doi.org/10.1177/1470320316661060] [PMID: 27488276]
[129]
Tao, M.X.; Xue, X.; Gao, L.; Lu, J.L.; Zhou, J.S.; Jiang, T.; Zhang, Y.D. Involvement of angiotensin-(1-7) in the neuroprotection of captopril against focal cerebral ischemia. Neurosci. Lett., 2018, 687, 16-21.
[http://dx.doi.org/10.1016/j.neulet.2018.09.024] [PMID: 30219484]
[130]
Ohkuma, H.; Suzuki, S.; Fujita, S.; Nakamura, W. Role of a decreased expression of the local renin-angiotensin system in the etiology of cerebral aneurysms. Circulation, 2003, 108(7), 785-787.
[http://dx.doi.org/10.1161/01.CIR.0000087339.31094.3C] [PMID: 12912805]
[131]
Aoki, T.; Nishimura, M.; Kataoka, H.; Ishibashi, R.; Miyake, T.; Takagi, Y.; Morishita, R.; Hashimoto, N. Role of angiotensin II type 1 receptor in cerebral aneurysm formation in rats. Int. J. Mol. Med., 2009, 24(3), 353-359.
[http://dx.doi.org/10.3892/ijmm_00000239] [PMID: 19639227]
[132]
Ishibashi, R.; Aoki, T.; Nishimura, M.; Miyamoto, S. Imidapril inhibits cerebral aneurysm formation in an angiotensin-converting enzyme-independent and matrix metalloproteinase-9-dependent manner. Neurosurgery, 2012, 70(3), 722-730.
[http://dx.doi.org/10.1227/NEU.0b013e3182326188] [PMID: 21937941]
[133]
Timaru-Kast, R.; Wyschkon, S.; Luh, C.; Schaible, E.V.; Lehmann, F.; Merk, P.; Werner, C.; Engelhard, K.; Thal, S.C. Delayed inhibition of angiotensin II receptor type 1 reduces secondary brain damage and improves functional recovery after experimental brain trauma. Crit. Care Med., 2012, 40(3), 935-944.
[http://dx.doi.org/10.1097/CCM.0b013e31822f08b9] [PMID: 21926585]
[134]
Villapol, S.; Yaszemski, A.K.; Logan, T.T.; Sánchez-Lemus, E.; Saavedra, J.M.; Symes, A.J. Candesartan, an angiotensin II AT1-receptor blocker and PPAR-γ agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology, 2012, 37(13), 2817-2829.
[http://dx.doi.org/10.1038/npp.2012.152] [PMID: 22892395]
[135]
Villapol, S.; Balarezo, M.G.; Affram, K.; Saavedra, J.M.; Symes, A.J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain, 2015, 138(Pt 11), 3299-3315.
[http://dx.doi.org/10.1093/brain/awv172] [PMID: 26115674]
[136]
Janatpour, Z.C.; Korotcov, A.; Bosomtwi, A.; Dardzinski, B.J.; Symes, A.J. Subcutaneous administration of angiotensin-(1-7) improves recovery after traumatic brain injury in mice. J. Neurotrauma, 2019, 36(22), 3115-3131.
[http://dx.doi.org/10.1089/neu.2019.6376] [PMID: 31037999]
[137]
Maas, A.I.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol., 2008, 7(8), 728-741.
[http://dx.doi.org/10.1016/S1474-4422(08)70164-9] [PMID: 18635021]
[138]
Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill. Summ., 2017, 66(9), 1-16.
[http://dx.doi.org/10.15585/mmwr.ss6609a1] [PMID: 28301451]
[139]
Kumar, A.; Loane, D.J. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav. Immun., 2012, 26(8), 1191-1201.
[http://dx.doi.org/10.1016/j.bbi.2012.06.008] [PMID: 22728326]
[140]
Woodcock, T.; Morganti-Kossmann, M.C. The role of markers of inflammation in traumatic brain injury. Front. Neurol., 2013, 4, 18.
[http://dx.doi.org/10.3389/fneur.2013.00018] [PMID: 23459929]
[141]
Nwachuku, E.L.; Puccio, A.M.; Adeboye, A.; Chang, Y-F.; Kim, J.; Okonkwo, D.O. Time course of cerebrospinal fluid inflammatory biomarkers and relationship to 6-month neurologic outcome in adult severe traumatic brain injury. Clin. Neurol. Neurosurg., 2016, 149, 1-5.
[http://dx.doi.org/10.1016/j.clineuro.2016.06.009] [PMID: 27450760]
[142]
de Freitas Cardoso, M.G.; Faleiro, R.M.; de Paula, J.J.; Kummer, A.; Caramelli, P.; Teixeira, A.L.; de Souza, L.C.; Miranda, A.S. Cognitive impairment following acute mild traumatic brain injury. Front. Neurol., 2019, 10, 198.
[http://dx.doi.org/10.3389/fneur.2019.00198] [PMID: 30906278]
[143]
Kehoe, A.D.; Eleftheriou, K.I.; Heron, M.; Coats, T.J.; Montgomery, H.E. Angiotensin-converting enzyme genotype may predict survival following major trauma. Emerg. Med. J., 2008, 25(11), 759-761.
[http://dx.doi.org/10.1136/emj.2006.045336] [PMID: 18955615]
[144]
Inci, S.; Spetzler, R.F. Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg. Neurol., 2000, 53(6), 530-540.
[http://dx.doi.org/10.1016/S0090-3019(00)00244-5] [PMID: 10940419]
[145]
Kissela, B.M.; Sauerbeck, L.; Woo, D.; Khoury, J.; Carrozzella, J.; Pancioli, A.; Jauch, E.; Moomaw, C.J.; Shukla, R.; Gebel, J.; Fontaine, R.; Broderick, J. Subarachnoid hemorrhage: a preventable disease with a heritable component. Stroke, 2002, 33(5), 1321-1326.
[http://dx.doi.org/10.1161/01.STR.0000014773.57733.3E] [PMID: 11988610]
[146]
Takenaka, K.; Yamakawa, H.; Sakai, H.; Yoshimura, S.; Murase, S.; Okumura, A.; Nakatani, K.; Kimura, T.; Nishimura, Y.; Yoshimi, N.; Sakai, N. Angiotensin I-converting enzyme gene polymorphism in intracranial saccular aneurysm individuals. Neurol. Res., 1998, 20(7), 607-611.
[http://dx.doi.org/10.1080/01616412.1998.11740571] [PMID: 9785588]
[147]
Keramatipour, M.; McConnell, R.S.; Kirkpatrick, P.; Tebbs, S.; Furlong, R.A.; Rubinsztein, D.C. The ACE I allele is associated with increased risk for ruptured intracranial aneurysms. J. Med. Genet., 2000, 37(7), 498-500.
[http://dx.doi.org/10.1136/jmg.37.7.498] [PMID: 10882751]
[148]
Slowik, A.; Borratynska, A.; Pera, J.; Betlej, M.; Dziedzic, T.; Krzyszkowski, T.; Czepko, R.; Figlewicz, D.A.; Szczudlik, A. II genotype of the angiotensin-converting enzyme gene increases the risk for subarachnoid hemorrhage from ruptured aneurysm. Stroke, 2004, 35(7), 1594-1597.
[http://dx.doi.org/10.1161/01.STR.0000131655.45227.f7] [PMID: 15166392]

© 2025 Bentham Science Publishers | Privacy Policy
  NODES
admin 4
Idea 1
idea 1
INTERN 2
Note 1
Project 1