Generic placeholder image

Current Cancer Drug _targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

The Role of Bile Acids in Pancreatic Cancer

Author(s): Yanling Wang, Haiyan Xu, Xiaofei Zhang, Jingyu Ma, Shengbai Xue, Daiyuan Shentu, Tiebo Mao, Shumin Li, Ming Yue, Jiujie Cui* and Liwei Wang*

Volume 24, Issue 10, 2024

Published on: 26 January, 2024

Page: [1005 - 1014] Pages: 10

DOI: 10.2174/0115680096281168231215060301

Price: $65

Abstract

Bile acids are well known to promote the digestion and absorption of fat, and at the same time, they play an important role in lipid and glucose metabolism. More studies have found that bile acids such as ursodeoxycholic acid also have anti-inflammatory and immune-regulating effects. Bile acids have been extensively studied in biliary and intestinal tumors but less in pancreatic cancer. Patients with pancreatic cancer, especially pancreatic head cancer, are often accompanied by biliary obstruction and elevated bile acids caused by tumors. Elevated total bile acid levels in pancreatic cancer patients usually have a poor prognosis. There has been controversy over whether elevated bile acids are harmful or beneficial to pancreatic cancer. Still, there is no doubt that bile acids are important for the occurrence and development of pancreatic cancer. This article summarizes the research on bile acid as a biomarker and regulation of the occurrence, development and chemoresistance of pancreatic cancer, hoping to provide some inspiration for future research.

Keywords: Bile acids, pancreatic cancer, biomarker, carcinogenesis, progression of cancer, chemoresistance.

Next »
Graphical Abstract
Luo W.; Tao J.; Zheng L.; Zhang T.; Current epidemiology of pancreatic cancer: Challenges and opportunities. Chin J Cancer Res 2020,32(6),705-719 10.21147/j.issn.1000-9604.2020.06.04 33446994 Siegel R.L.; Miller K.D.; Fuchs H.E.; Jemal A.; Cancer statistics, 2021. CA Cancer J Clin 2021,71(1),7-33 10.3322/caac.21654 33433946 Rahib L.; Smith B.D.; Aizenberg R.; Rosenzweig A.B.; Fleshman J.M.; Matrisian L.M.; Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014,74(11),2913-2921 10.1158/0008-5472.CAN-14-0155 24840647 Cai J.; Chen H.; Lu M.; Zhang Y.; Lu B.; You L.; Zhang T.; Dai M.; Zhao Y.; Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Lett 2021,520,1-11 10.1016/j.canlet.2021.06.027 34216688 Kleeff J.; Korc M.; Apte M.; La Vecchia C.; Johnson C.D.; Biankin A.V.; Neale R.E.; Tempero M.; Tuveson D.A.; Hruban R.H.; Neoptolemos J.P.; Pancreatic cancer. Nat Rev Dis Primers 2016,2(1),16022 10.1038/nrdp.2016.22 27158978 Tempero M.A.; Malafa M.P.; Al-Hawary M.; Behrman S.W.; Benson A.B.; Cardin D.B.; Chiorean E.G.; Chung V.; Czito B.; Del Chiaro M.; Dillhoff M.; Donahue T.R.; Dotan E.; Ferrone C.R.; Fountzilas C.; Hardacre J.; Hawkins W.G.; Klute K.; Ko A.H.; Kunstman J.W.; LoConte N.; Lowy A.M.; Moravek C.; Nakakura E.K.; Narang A.K.; Obando J.; Polanco P.M.; Reddy S.; Reyngold M.; Scaife C.; Shen J.; Vollmer C.; Wolff R.A.; Wolpin B.M.; Lynn B.; George G.V.; Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2021,19(4),439-457 10.6004/jnccn.2021.0017 33845462 Ridlon J.M.; Harris S.C.; Bhowmik S.; Kang D.J.; Hylemon P.B.; Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016,7(1),22-39 10.1080/19490976.2015.1127483 26939849 Ridlon J.M.; Kang D.J.; Hylemon P.B.; Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006,47(2),241-259 10.1194/jlr.R500013-JLR200 16299351 Hofmann A.F.; Hagey L.R.; Key discoveries in bile acid chemistry and biology and their clinical applications: History of the last eight decades. J Lipid Res 2014,55(8),1553-1595 10.1194/jlr.R049437 24838141 Chiang J.Y.L.; Regulation of bile acid synthesis. Front Biosci 1998,3(4),A273 10.2741/A273 9450986 Chiang J.Y.L.; Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 2004,40(3),539-551 10.1016/j.jhep.2003.11.006 15123373 Chiang J.Y.; Bile acid metabolism and signaling. Compr Physiol 2013,3(3),1191-1212 10.1002/cphy.c120023 23897684 Fiorucci S.; Distrutti E.; Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med 2015,21(11),702-714 10.1016/j.molmed.2015.09.001 26481828 Cai J.; Sun L.; Gonzalez F.J.; Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 2022,30(3),289-300 10.1016/j.chom.2022.02.004 35271802 Jia W.; Xie G.; Jia W.; Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 2018,15(2),111-128 10.1038/nrgastro.2017.119 29018272 Gafar A.A.; Draz H.M.; Goldberg A.A.; Bashandy M.A.; Bakry S.; Khalifa M.A.; AbuShair W.; Titorenko V.I.; Sanderson J.T.; Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells. PeerJ 2016,4,e2445 10.7717/peerj.2445 27896021 Goldberg A.A.; Beach A.; Davies G.F.; Harkness T.A.A.; LeBlanc A.; Titorenko V.I.; Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Onco_target 2011,2(10),761-782 10.18632/onco_target.338 21992775 Mikó E.; Vida A.; Kovács T.; Ujlaki G.; Trencsényi G.; Márton J.; Sári Z.; Kovács P.; Boratkó A.; Hujber Z.; Csonka T.; Antal-Szalmás P.; Watanabe M.; Gombos I.; Csoka B.; Kiss B.; Vígh L.; Szabó J.; Méhes G.; Sebestyén A.; Goedert J.J.; Bai P.; Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim Biophys Acta Bioenerg 2018,1859(9),958-974 10.1016/j.bbabio.2018.04.002 29655782 Ross R.K.; Hartnett N.M.; Bernstein L.; Henderson B.E.; Epidemiology of adenocarcinomas of the small intestine: Is bile a small bowel carcinogen? Br J Cancer 1991,63(1),143-145 10.1038/bjc.1991.29 1989654 Garewal H.; Bernstein H.; Bernstein C.; Sampliner R.; Payne C.; Reduced bile acid-induced apoptosis in “normal” colorectal mucosa: A potential biological marker for cancer risk. Cancer Res [J].1996,56(7),1480-1483 8603388 Kitamura T.; Srivastava J.; DiGiovanni J.; Kiguchi K.; Bile acid accelerates erbB2-induced pro-tumorigenic activities in biliary tract cancer. Mol Carcinog 2015,54(6),459-472 10.1002/mc.22118 24839254 Winter J.M.; Maitra A.; Yeo C.J.; Genetics and pathology of pancreatic cancer. HPB (Oxford) 2006,8(5),324-336 10.1080/13651820600804203 18333084 Chávez-Talavera O.; Tailleux A.; Lefebvre P.; Staels B.; Bile acid control of metabolism and inflammation in obesity, Type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 2017,152(7),1679-1694.e3 10.1053/j.gastro.2017.01.055 28214524 Klein A.P.; Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 2021,18(7),493-502 10.1038/s41575-021-00457-x 34002083 Feng H.Y.; Chen Y.C.; Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective. World J Gastroenterol 2016,22(33),7463-7477 10.3748/wjg.v22.i33.7463 27672269 Wu Z.; Lü Y.; Wang B.; Liu C.; Wang Z.R.; Effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer cell lines. World J Gastroenterol 2003,9(12),2759-2763 10.3748/wjg.v9.i12.2759 14669328 Zhu S.; Yang K.; Yang S.; Zhang L.; Xiong M.; Zhang J.; Chen B.; A high bile acid environment promotes apoptosis and inhibits migration in pancreatic cancer. Bioengineered 2022,13(3),6719-6728 10.1080/21655979.2022.2045823 35245979 Nagathihalli N.S.; Beesetty Y.; Lee W.; Washington M.K.; Chen X.; Lockhart A.C.; Merchant N.B.; Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphiregulin and TGF-α: Impact on gastrointestinal cancers driven by secondary bile acids. Cancer Res 2014,74(7),2062-2072 10.1158/0008-5472.CAN-13-2329 24520077 Tucker O.N.; Dannenberg A.J.; Yang E.K.; Fahey T.J.; Bile acids induce cyclooxygenase-2 expression in human pancreatic cancer cell lines. Carcinogenesis 2003,25(3),419-423 10.1093/carcin/bgh010 14656949 Schwarcz S.; Kovács P.; Kovács T.; Ujlaki G.; Nyerges P.; Uray K.; Bai P.; Mikó E.; The pro- and antineoplastic effects of deoxycholic acid in pancreatic adenocarcinoma cell models. Mol Biol Rep 2023,50(6),5273-5282 10.1007/s11033-023-08453-x 37145211 Wang S.; Chen J.; Li H.; Qi X.; Liu X.; Guo X.; Metabolomic detection between pancreatic cancer and liver metastasis nude mouse models constructed by using the PANC1-KAI1/CD Cell Line. Technol Cancer Res Treat [J].2021,20 10.1177/15330338211045204 Yang C.; Yuan H.; Gu J.; Xu D.; Wang M.; Qiao J.; Yang X.; Zhang J.; Yao M.; Gu J.; Tu H.; Gan Y.; ABCA8-mediated efflux of taurocholic acid contributes to gemcitabine insensitivity in human pancreatic cancer via the S1PR2-ERK pathway. Cell Death Discov 2021,7(1),6 10.1038/s41420-020-00390-z 33431858 Kim Y.; Jeong S.; Kim E.K.; Kim E.; Cho J.; Ursodeoxycholic acid suppresses epithelial-mesenchymal transition and cancer stem cell formation by reducing the levels of peroxiredoxin II and reactive oxygen species in pancreatic cancer cells. Oncol Rep 2017,38(6),3632-3638 10.3892/or.2017.6045 29130098 Gál E.; Veréb Z.; Kemény L.; Rakk D.; Szekeres A.; Becskeházi E.; Tiszlavicz L.; Takács T.; Czakó L.; Hegyi P.; Venglovecz V.; Bile accelerates carcinogenic processes in pancreatic ductal adenocarcinoma cells through the overexpression of MUC4. Sci Rep 2020,10(1),22088 10.1038/s41598-020-79181-6 33328627 Meng Q.; Shi S.; Liang C.; Xiang J.; Liang D.; Zhang B.; Qin Y.; Ji S.; Xu W.; Xu J.; Ni Q.; Yu X.; Diagnostic Accuracy of a CA125-Based biomarker panel in patients with pancreatic cancer: A systematic review and meta-analysis. J Cancer 2017,8(17),3615-3622 10.7150/jca.18901 29151947 van Manen L.; Groen J.V.; Putter H.; Vahrmeijer A.L.; Swijnenburg R.J.; Bonsing B.A.; Mieog J.S.D.; Elevated CEA and CA19-9 serum levels independently predict advanced pancreatic cancer at diagnosis. Biomarkers 2020,25(2),186-193 10.1080/1354750X.2020.1725786 32009482 Song W.S.; Park H.M.; Ha J.M.; Shin S.G.; Park H.G.; Kim J.; Zhang T.; Ahn D.H.; Kim S.M.; Yang Y.H.; Jeong J.H.; Theberge A.B.; Kim B.G.; Lee J.K.; Kim Y.G.; Discovery of glycocholic acid and taurochenodeoxycholic acid as phenotypic biomarkers in cholangiocarcinoma. Sci Rep 2018,8(1),11088 10.1038/s41598-018-29445-z 30038332 Costarelli V.; Sanders T.A.; Plasma bile acids and risk of breast cancer. IARC Sci Publ [J].2002,156,305-306 12484193 Angsuwatcharakon P.; Rerknimitr R.; Kongkam P.; Ridtitid W.; Ponauthai Y.; Srisuttee R.; Kitkumthorn N.; Mutirangura A.; Identification of pancreatic cancer in biliary obstruction patients by FRY site-specific methylation. Asian Pac J Cancer Prev [J].2016,17(9),4487-4490 27797266 Krupa Ł.; Staroń R.; Dulko D.; Łozińska N.; Mackie A.R.; Rigby N.M.; Macierzanka A.; Markiewicz A.; Jungnickel C.; Importance of bile composition for diagnosis of biliary obstructions. Molecules 2021,26(23),7279 10.3390/molecules26237279 34885858 Rees D.O.; Crick P.J.; Jenkins G.J.; Wang Y.; Griffiths W.J.; Brown T.H.; Al-Sarireh B.; Comparison of the composition of bile acids in bile of patients with adenocarcinoma of the pancreas and benign disease. J Steroid Biochem Mol Biol 2017,174,290-295 10.1016/j.jsbmb.2017.10.011 29031685 Xiong Y.; Shi C.; Zhong F.; Liu X.; Yang P.; LC-MS/MS and SWATH based serum metabolomics enables biomarker discovery in pancreatic cancer. Clin Chim Acta 2020,506,214-221 10.1016/j.cca.2020.03.043 32243985 Adachi T.; Tajima Y.; Kuroki T.; Mishima T.; Kitasato A.; Fukuda K.; Tsutsumi R.; Kanematsu T.; Bile-reflux into the pancreatic ducts is associated with the development of intraductal papillary carcinoma in hamsters. J Surg Res 2006,136(1),106-111 10.1016/j.jss.2006.04.025 16863651 Pinho A.V.; Rooman I.; Reichert M.; De Medts N.; Bouwens L.; Rustgi A.K.; Real F.X.; Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis. Gut 2011,60(7),958-966 10.1136/gut.2010.225920 21193456 Pinho A.V.; Chantrill L.; Rooman I.; Chronic pancreatitis: A path to pancreatic cancer. Cancer Lett 2014,345(2),203-209 10.1016/j.canlet.2013.08.015 23981573 Tran Q.T.; Tran V.H.; Sendler M.; Doller J.; Wiese M.; Bolsmann R.; Wilden A.; Glaubitz J.; Modenbach J.M.; Thiel F.G.; de Freitas Chama L.L.; Weiss F.U.; Lerch M.M.; Aghdassi A.A.; Role of bile acids and bile salts in acute pancreatitis. Pancreas 2021,50(1),3-11 10.1097/MPA.0000000000001706 33370017 Lu Y.; Onda M.; Uchida E.; Yamamura S.; Yanagi K.; Matsushita A.; Kobayashi T.; Fukuhara M.; Aida K.; Tajiri T.; The cytotoxic effects of bile acids in crude bile on human pancreatic cancer cell lines. Surg Today 2000,30(10),903-909 10.1007/s005950070042 11059730 Jansen P.L.M.; Endogenous bile acids as carcinogens. J Hepatol 2007,47(3),434-435 10.1016/j.jhep.2007.06.001 17624466 Liu C.; Lu Y.; Wang H.; Cytotoxic effects of bile acids on human pancreatic cancer cell. J Fourth Military Med Uni [J].2003,24(22),2084-2086 Evan G.I.; Vousden K.H.; Proliferation, cell cycle and apoptosis in cancer. Nature 2001,411(6835),342-348 10.1038/35077213 11357141 Liu J.; Peng Y.; Wei W.; Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol 2022,32(1),30-44 10.1016/j.tcb.2021.07.001 34304958 Meng X.; Xiao W.; Sun J.; Li W.; Yuan H.; Yu T.; Zhang X.; Dong W.; CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett 2023,554,216023 10.1016/j.canlet.2022.216023 36436682 Okada Y.; Takahashi N.; Takayama T.; Goel A.; LAMC2 promotes cancer progression and gemcitabine resistance through modulation of EMT and ATP-binding cassette transporters in pancreatic ductal adenocarcinoma. Carcinogenesis 2021,42(4),546-556 10.1093/carcin/bgab011 33624791 Yu S.; Wang M.; Zhang H.; Guo X.; Qin R.; Circ_0092367 inhibits emt and gemcitabine resistance in pancreatic cancer via regulating the miR-1206/ESRP1 Axis. Genes 2021,12(11),1701 10.3390/genes12111701 34828307 Pastushenko I.; Blanpain C.; EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019,29(3),212-226 10.1016/j.tcb.2018.12.001 30594349 Brabletz S.; Schuhwerk H.; Brabletz T.; Stemmler M.P.; Dynamic EMT: A multi-tool for tumor progression. EMBO J 2021,40(18),e108647 10.15252/embj.2021108647 34459003 Goossens J.F.; Bailly C.; Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy. Pharmacol Ther 2019,203,107396 10.1016/j.pharmthera.2019.107396 31356908 Lim S.C.; Han S.I.; Ursodeoxycholic acid effectively kills drug-resistant gastric cancer cells through induction of autophagic death. Oncol Rep 2015,34(3),1261-1268 10.3892/or.2015.4076 26133914 Peiró-Jordán R.; Krishna-Subramanian S.; Hanski M.L.; Lüscher-Firzlaff J.; Zeitz M.; Hanski C.; The chemopreventive agent ursodeoxycholic acid inhibits proliferation of colon carcinoma cells by suppressing c-Myc expression. Eur J Cancer Prev 2012,21(5),413-422 10.1097/CEJ.0b013e32834ef16f 22395148 Gautam S.K.; Kumar S.; Dam V.; Ghersi D.; Jain M.; Batra S.K.; MUCIN-4 (MUC4) is a novel tumor antigen in pancreatic cancer immunotherapy. Semin Immunol 2020,47,101391 10.1016/j.smim.2020.101391 31952903 Andrianifahanana M.; Moniaux N.; Schmied B.M.; Ringel J.; Friess H.; Hollingsworth M.A.; Büchler M.W.; Aubert J.P.; Batra S.K.; Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: A potential role of MUC4 as a tumor marker of diagnostic significance. Clin Cancer Res [J].2001,7(12),4033-4040 11751498 Sagar S.; Leiphrakpam P.D.; Thomas D.; McAndrews K.L.; Caffrey T.C.; Swanson B.J.; Clausen H.; Wandall H.H.; Hollingsworth M.A.; Radhakrishnan P.; MUC4 enhances gemcitabine resistance and malignant behaviour in pancreatic cancer cells expressing cancer-associated short O-glycans. Cancer Lett 2021,503,91-102 10.1016/j.canlet.2021.01.015 33485947 Wilson K.T.; Fu S.; Ramanujam K.S.; Meltzer S.J.; Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res [J].1998,58(14),2929-2934 9679948 Eberhart C.E.; Coffey R.J.; Radhika A.; Giardiello F.M.; Ferrenbach S.; Dubois R.N.; Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994,107(4),1183-1188 10.1016/0016-5085(94)90246-1 7926468 Tucker O.N.; Dannenberg A.J.; Yang E.K.; Zhang F.; Teng L.; Daly J.M.; Soslow R.A.; Masferrer J.L.; Woerner B.M.; Koki A.T.; Fahey T.J.; Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res [J].1999,59(5),987-990 10070951 Zhu Y.; Zhu M.; Lance P.; Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells. Biochem Biophys Res Commun 2012,425(3),607-612 10.1016/j.bbrc.2012.07.137 22885178 Abdel-Latif M.M.; Inoue H.; Reynolds J.V.; Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells. Eur J Cancer Prev 2016,25(5),368-379 10.1097/CEJ.0000000000000198 26378497 Mohammad R M; Broad _targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015,35(0),78-103 Vogler M.; _targeting BCL2-proteins for the treatment of solid tumours. Adv Med 2014,2014,1-14 10.1155/2014/943648 26556430 Wang Z.; Azmi A.S.; Ahmad A.; Banerjee S.; Wang S.; Sarkar F.H.; Mohammad R.M.; TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and induces apoptosis in pancreatic cancer: Involvement of Notch-1 signaling pathway. Cancer Res 2009,69(7),2757-2765 10.1158/0008-5472.CAN-08-3060 19318573 Zhou M.; Zhang Q.; Zhao J.; Liao M.; Wen S.; Yang M.; Phosphorylation of Bcl-2 plays an important role in glycochenodeoxycholate-induced survival and chemoresistance in HCC. Oncol Rep 2017,38(3),1742-1750 10.3892/or.2017.5830 28731137 Burris H.A.; Moore M.J.; Andersen J.; Green M.R.; Rothenberg M.L.; Modiano M.R.; Cripps M.C.; Portenoy R.K.; Storniolo A.M.; Tarassoff P.; Nelson R.; Dorr F.A.; Stephens C.D.; Von Hoff D.D.; Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997,15(6),2403-2413 10.1200/JCO.1997.15.6.2403 9196156 Amrutkar M.; Gladhaug I.; Pancreatic cancer chemoresistance to gemcitabine. Cancers 2017,9(12),157 10.3390/cancers9110157 29144412 Kawamata Y.; Fujii R.; Hosoya M.; Harada M.; Yoshida H.; Miwa M.; Fukusumi S.; Habata Y.; Itoh T.; Shintani Y.; Hinuma S.; Fujisawa Y.; Fujino M.; A G protein-coupled receptor responsive to bile acids. J Biol Chem 2003,278(11),9435-9440 10.1074/jbc.M209706200 12524422 Duboc H.; Taché Y.; Hofmann A.F.; The bile acid TGR5 membrane receptor: From basic research to clinical application. Dig Liver Dis 2014,46(4),302-312 10.1016/j.dld.2013.10.021 24411485 Režen T.; Rozman D.; Kovács T.; Kovács P.; Sipos A.; Bai P.; Mikó E.; The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022,79(5),243 10.1007/s00018-022-04278-2 35429253 Casaburi I.; Avena P.; Lanzino M.; Sisci D.; Giordano F.; Maris P.; Catalano S.; Morelli C.; Andò S.; Chenodeoxycholic acid through a TGR5-dependent CREB signaling activation enhances Cyclin D1 expression and promotes human endometrial cancer cell proliferation. Cell Cycle 2012,11(14),2699-2710 10.4161/cc.21029 22751440 Qi Y.C.; Duan G.Z.; Mao W.; Liu Q.; Zhang Y.L.; Li P.F.; Taurochenodeoxycholic acid mediates cAMP-PKA-CREB signaling pathway. Chin J Nat Med 2020,18(12),898-906 10.1016/S1875-5364(20)60033-4 33357720 Qi Y.; Duan G.; Wei D.; Zhao C.; Ma Y.; The bile acid membrane receptor TGR5 in Cancer: Friend or foe? Molecules 2022,27(16),5292 10.3390/molecules27165292 36014536 Luu T.H.; Bard J.M.; Carbonnelle D.; Chaillou C.; Huvelin J.M.; Bobin-Dubigeon C.; Nazih H.; Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cell Oncol 2018,41(1),13-24 10.1007/s13402-017-0353-5 28993998 Zhao R-Y.; He S-J.; Ma J-J.; Hu H.; Gong Y.P.; Wang Y.L.; Hu B.J.; Xie J.Z.; Tu W.Z.; Huang Q.; Cheng J.; High expression of TGR5 predicts a poor prognosis in patients with pancreatic cancer. Int J Clin Exp Pathol [J].2018,11(7),3567-3574 31949735 Forman B.M.; Goode E.; Chen J.; Oro A.E.; Bradley D.J.; Perlmann T.; Noonan D.J.; Burka L.T.; McMorris T.; Lamph W.W.; Evans R.M.; Weinberger C.; Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995,81(5),687-693 10.1016/0092-8674(95)90530-8 7774010 Makishima M.; Okamoto A.Y.; Repa J.J.; Tu H.; Learned R.M.; Luk A.; Hull M.V.; Lustig K.D.; Mangelsdorf D.J.; Shan B.; Identification of a nuclear receptor for bile acids. Science 1999,284(5418),1362-1365 10.1126/science.284.5418.1362 10334992 Kainuma M.; Takada I.; Makishima M.; Sano K.; Farnesoid X receptor activation enhances transforming growth factor β-induced epithelial-mesenchymal transition in hepatocellular carcinoma cells. Int J Mol Sci 2018,19(7),1898 10.3390/ijms19071898 29958417 Muili K.A.; Jin S.; Orabi A.I.; Eisses J.F.; Javed T.A.; Le T.; Bottino R.; Jayaraman T.; Husain S.Z.; Pancreatic acinar cell nuclear factor κB activation because of bile acid exposure is dependent on calcineurin. J Biol Chem 2013,288(29),21065-21073 10.1074/jbc.M113.471425 23744075 Kirkegård J.; Mortensen F.V.; Cronin-Fenton D.; Chronic pancreatitis and pancreatic cancer risk: A systematic review and meta-analysis. Am J Gastroenterol 2017,112(9),1366-1372 10.1038/ajg.2017.218 28762376 Zhou X.; Xie L.; Bergmann F.; Endris V.; Strobel O.; Büchler M.W.; Kroemer G.; Hackert T.; Fortunato F.; The bile acid receptor FXR attenuates acinar cell autophagy in chronic pancreatitis. Cell Death Discov 2017,3(1),17027 10.1038/cddiscovery.2017.27 28660075 Hu H.; Wu L.L.; Han T.; Zhuo M.; Lei W.; Cui J.J.; Jiao F.; Wang L.W.; Correlated high expression of FXR and Sp1 in cancer cells confers a poor prognosis for pancreatic cancer: A study based on TCGA and tissue microarray. Onco_target 2017,8(20),33265-33275 10.18632/onco_target.16633 28402278 Chen X.L.; Xie K.X.; Yang Z.L.; Yuan L.W.; Expression of FXR and HRG and their clinicopathological significance in benign and malignant pancreatic lesions. Int J Clin Exp Pathol [J].2019,12(6),2111-2120 31934033 Joshi S.; Cruz E.; Rachagani S.; Guha S.; Brand R.E.; Ponnusamy M.P.; Kumar S.; Batra S.K.; Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer. Mol Oncol 2016,10(7),1063-1077 10.1016/j.molonc.2016.04.007 27185392 Arikawa K.; Takuwa N.; Yamaguchi H.; Sugimoto N.; Kitayama J.; Nagawa H.; Takehara K.; Takuwa Y.; Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. J Biol Chem 2003,278(35),32841-32851 10.1074/jbc.M305024200 12810709 Karimian G.; Buist-Homan M.; Schmidt M.; Tietge U.J.F.; de Boer J.F.; Klappe K.; Kok J.W.; Combettes L.; Tordjmann T.; Faber K.N.; Moshage H.; Sphingosine kinase-1 inhibition protects primary rat hepatocytes against bile salt-induced apoptosis. Biochim Biophys Acta Mol Basis Dis 2013,1832(12),1922-1929 10.1016/j.bbadis.2013.06.011 23816565 An S.; Zheng Y.; Bleu T.; Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J Biol Chem 2000,275(1),288-296 10.1074/jbc.275.1.288 10617617 Ponnusamy S.; Selvam S.P.; Mehrotra S.; Kawamori T.; Snider A.J.; Obeid L.M.; Shao Y.; Sabbadini R.; Ogretmen B.; Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med 2012,4(8),761-775 10.1002/emmm.201200244 22707406 Pang M.; Li C.; Zheng D.; Wang Y.; Wang J.; Zhang W.; Li F.; Jing H.; S1PR2 knockdown promotes migration and invasion in multiple myeloma cells via NF-κB activation. Cancer Manag Res 2020,12,7857-7865 10.2147/CMAR.S237330 32922084 Liu R.; Zhao R.; Zhou X.; Liang X.; Campbell D.J.W.; Zhang X.; Zhang L.; Shi R.; Wang G.; Pandak W.M.; Sirica A.E.; Hylemon P.B.; Zhou H.; Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology 2014,60(3),908-918 10.1002/hep.27085 24700501 Wang Y.; Aoki H.; Yang J.; Peng K.; Liu R.; Li X.; Qiang X.; Sun L.; Gurley E.C.; Lai G.; Zhang L.; Liang G.; Nagahashi M.; Takabe K.; Pandak W.M.; Hylemon P.B.; Zhou H.; The role of sphingosine 1-phosphate receptor 2 in bile-acid–induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology 2017,65(6),2005-2018 10.1002/hep.29076 28120434 Zhang Y.H.; Luo D.D.; Wan S.B.; Qu X.J.; S1PR2 inhibitors potently reverse 5-FU resistance by downregulating DPD expression in colorectal cancer. Pharmacol Res 2020,155,104717 10.1016/j.phrs.2020.104717 32088343 Luo D.; Zhang Y.; Yang S.; Tian X.; Lv Y.; Guo Z.; Liu X.; Han G.; Liu S.; Wang W.; Cui S.; Qu X.; Wan S.; Design, synthesis and biological evaluation of sphingosine-1-phosphate receptor 2 antagonists as potent 5-FU-resistance reversal agents for the treatment of colorectal cancer. Eur J Med Chem 2021,225,113775 10.1016/j.ejmech.2021.113775 34411894 Sarkar J.; Aoki H.; Wu R.; Aoki M.; Hylemon P.; Zhou H.; Takabe K.; Conjugated bile acids accelerate progression of pancreatic cancer metastasis via S1PR2 signaling in cholestasis. Ann Surg Oncol 2023,30(3),1630-1641 10.1245/s10434-022-12806-4 36396870

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy
  NODES
Idea 1
idea 1
inspiration 2
Note 2
Project 1
todo 1