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Abstract 
Semi-analytical solutions are derived to investigate the effect of viscous dissipation on the temperature 

distribution and heat transfer characteristics of Couette-Poiseuille flow for pseudo-plastic fluids. The fluid flow 

is steady, laminar and both hydro-dynamically and thermally fully developed, while the thermal boundary 

conditions considered are both plates being kept at asymmetric heat fluxes. For Couette- Poiseuille flow for 

pseudo-plastic fluids, the temperature distribution and the Nusselt number obtained are greatly affected by 

constant heat flux ratio together with velocity of the moving plate, power-law index, modified Brinkman number 

and a dimensionless parameter which is the constant of integration in solving the momentum equation. 
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Nomenclature 

c
A  cross-sectional area of channel  

2
m  P  pressure  P a  

1q
B r  modified Brinkman number defined in Eq. (22) w  half-channel height  m  

p
c  specific heat at constant pressure  /j kg k  W  channel height  m  

h  convective heat transfer coefficient  
2

/W m k  x  coordinate in the axial direction  m  

k  thermal conductivity  /W m k  y coordinate in the vertical direction  m  

L  width of plate  m  Y  dimensionless vertical coordinate 

n  power-law index Greek symbols 

N u  Nusselt number, defined in Eq. (37)   thermal diffusivity  
2

/m s  

1
q  upper wall heat-flux  

2
/W m    parameter defined in Eq. (31) 

2
q  lower wall heat-flux  

2
/W m    constant of integration appearing in Eq. (3) 

T  temperature  K    dynamic viscosity  P a s  

1
T  upper wall temperature  K    density  

3
/kg m  

2
T  lower wall temperature  K    dimensionless temperature 

T  general temperature difference  K  m
  mean dimensionless temperature 

u  velocity of the fluid  /m s  Subscripts 

U  axial velocity of the moving upper plate  /m s  m  mean 

U

 dimensionless velocity of the moving plate, defined 

in Eq. (17) 
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I. INTRODUCTION 
Effect of viscous dissipation plays an important role in the study of heat transfer characteristics and this 

effect is frequently encountered in many applications such as viscous fluid flow, high speed flows and fluid flow 

through microscale channels. For Newtonian fluids, there have been abundant studies investigating, either the-

oretically or experimentally, the viscous dissipation effect on the forced convection in ducts and channels [1-7], 

As pointed out in several recent investigations [8-12], the importance of the effects of viscous dissipation in the 

analysis of forced convection in porous media is also indisputable. This effect is comparatively well-known in 

polymeric fluids which are non-Newtonian in nature. Understanding the viscous dissipation effect in the flow of 
polymeric fluid is of paramount importance in connection with plastics material processing, application of paints 

and lubricants, processing of food stuffs, as well as movement of biological fluids. As the motion of polymeric 

fluids cannot be described by the Navier-Stokes equations, the study of such fluids is becoming a big challenge 

for the past few decades. Many important practical problems of engineering interest involve steady-state shear 

flows and to obtain better physical insights into the elucidation of some of the interesting phenomena, relatively 

simple generalized Newtonian fluids models such as power-law fluids and Bingham plastics have been 

employed to obtain approximate solutions to the heat and fluid flow problems [7], For unsteady flow 

phenomena, the linear viscoelastic fluid model is used to describe the elastic response of the polymeric fluids 

while the retarded-motion expansion is valid for slowly varying flows [7], 

Many important industrial problems involve non-Newtonian flows and numerous studies of viscous 

dissipation effect on convection heat transfer in ducts and channels can be found in the literature. Different 
Theological models have been employed for solving problems in different flow regimes, such as the generalized 

Newtonian fluid model, the linear viscoelastic fluid model and the retarded-motion expansion model [7]. 

Previous studies of viscous dissipation effect of forced convection involving non-Newtonian flows primarily 

focused on the generalized Newtonian fluids, such as power-law fluids [13-20], Bingham fluids [21] and 

Herschel- Bulkley fluids [22], The effect of viscous dissipation has been investigated for third grade fluids [23] 

as well as the viscoelastic fluids obeying the Oldroyd-B model [24], the Phan-Thien-Tanner model [25,26], and 

the FENE-P model [27]. In the case of fluid flow past an unsteady stretching sheet, the viscous dissipation effect 

has been considered for power-law liquid film [28]. In addition, it has been validated that in the second-law 

analysis, the effect of viscous dissipation imposes pronounced influence on the entropy generation rate which is 

strongly related to the flow and temperature fields of the non-Newtonian fluids [29,30]. 

The Couette-Poiseuille non-Newtonian flow describes a macro- molecular fluid confined between two 

horizontal plates with either one moving in the longitudinal direction with a constant speed. The motion of the 
moving plate induces complexity on the solution method of the momentum equation due to the rheological 

properties of non-Newtonian fluids. Theoretical studies with different hydrodynamic and thermal conditions 

have been conducted. 

For Newtonian fluids, analytical solutions for heat transfer with effect of viscous dissipation were 

derived for the Couette-Poiseuille flow between parallel plates which are kept at constant heat flux and one of 

the plates is insulated [31]. Various problems of non-Newtonian Couette-Poiseuille flow such as investigations 

of elastic effect [32] and slip effect [33] on the hydrodynamic behavior as well as stability problem with 

pressure-dependent viscosity [34,35], have been conducted. On the other hand, limited studies on Couette-

Poiseuille non-Newtonian flow taking into account the viscous dissipation effect are available. The plane 

Couette- Poiseuille flow of power-law fluids with viscous dissipation was exactly solved for the case of constant 

heat flux at one wall with the other insulated [36]. By considering Couette-Poiseuille flow, with the stationary 
plate subjected to constant heat flux and the other plate moving with constant velocity but insulated, analytical 

solutions with effect of viscous dissipation were obtained for viscoelastic fluids [37]. Numerical study was 

carried out investigating viscous dissipation effect for Poiseuille-Couette non-Newtonian fluid flow with the 

boundary condition of constant heat flux at one wall and the other plate insulated [38]. Heat transfer on Couette-

Poiseuille flow for viscoelastic non-Newtonian fluid with simplified Phan-Thien-Tanner constitutive equation 

was analyzed, where the stationary plate was maintained at constant temperature and the moving plate is 

insulated [39]. 

Different thermal boundary conditions need to be considered in the design of thermal equipment. The 

heat transfer characteristics of Couette-Poiseuille pseudo-plastic fluid flow through parallel- plate channel with 

asymmetric wall heat fluxes is a fundamental problem which has not been reported in the literature and is worth 

investigating. This type of problems is encountered in a diversity of processing operations, such as in various 

extruders and bearings associated with lubrication problems. The current study complements a prior work by 
Tso et al. [19] in which they analytically investigated the effect of viscous dissipation on heat convection of 
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fully developed laminar power-law fluid flow through fixed parallel plates with asymmetric heat fluxes. On the 

other hand, the effect of viscous dissipation in non-Newtonian Couette-Poiseuille flow is the prime investigation 

of the present study, accentuating the effect induced by the moving plate in Couette-Poiseuille flow on the 
viscous dissipation and hence the heat transfer characteristics of the problem. The variation of the velocity field 

is governed by the moving plate velocity while the temperature field is affected by both the moving plate 

velocity and the asymmetrical heat fluxes at the plate walls. Nonetheless, complicated by the motion of the 

moving plate, a closed form analytical solution for the momentum equation of Couette-Poiseuille flow is not 

obtainable for the case of power-law fluid due to its inherent non-linearity nature. By applying a semi-analytical 

technique to solve the momentum equation and energy equation, the present study is motivated for elucidating 

the changes entailed in the convection heat transfer characteristics under thermal asymmetries for pseudo-plastic 

fluids due to the incorporation of the effect of viscous dissipation. 

 

 
Fig. 1. Notation to the problem 

 

II. STATEMENT OF PROBLEM AND MATHEMATICAL FORMULATION 

Consider two flat parallel plates distanced W , where the upper plate is moving with constant velocity 

U  and the lower plate is fixed. The coordinate system chosen is schematically shown in Fig. 1. The flow 

through the plates is considered at a sufficient distance from the entrance such that it is both hydro-dynamically 

and thermally fully developed. The axial heat conduction in the fluid is negligible. The polymeric fluid is 

considered to be pseudo-plastic and with constant properties. The thermal boundary conditions are the upper 

plate is kept at constant heat flux 
1

q  while the lower plate at different constant heat flux 
2

q . 

 

2.1 Momentum equation 
Under steady-state operation, the equation of motion is given by: 

 
y x

d d p

d y d x


            (1) 

where 
y x

  is the shear-stress. By taking the pressure gradient 
d p

G
d x

   as constant along the axial 

direction, and integrating eq (1) with respect to X  we obtain 

 
1y x

G y C             (2) 

and we define 

1
C G W             (3) 

where   is a constant of integration [7,40]. For non-Newtonian fluids, the Theological behavior of a power law 

fluid with constant fluid properties in between fixed parallel plates is described by the shear-stress relationship 

 

1n

y x

d u d u

d y d y
 



           (4) 
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where   is the consistency factor and d u
d y

 is the velocity gradient perpendicular to the flow direction. The 

n  is the power-law index, with 0 1n   for pseudo-plastic fluids and 1n   for Newtonian fluids. 

Substituting Eq. (4) into Eq. (2) and after rearranging, we obtain 

 

n

d u G W y

d y W




     
      

   

        (5) 

Integrating Eq. (5) with respect to y , we obtain 

 
 

 

 

1 1

1

2

1 1

n

n

y

wG W
u W C

n







 


    
   
  

      (6) 

As the bottom plate is fixed, at 0
2

Wy u   , we can evaluate 
2

C  as 

 
 

 

 

1 1

1

2

1
2

1 1

n

n
G W

C W

n







 
   

  
  

       (7) 

and by substituting 
2

C  into Eq. (6), we obtain 

 

   1 1 11 1

1 1

1 2 21

n n nW G W
u

n

 


  
     

        
     
 

    (8) 

Applying the boundary condition u U  at 
2

Wy   gives  

 

 

   1 1 11 1

1 1

1 2 21

n n nW G W
U

n

 


  
     

        
     
 

    (9) 

By denoting 1s
n

 , Eq. (9) becomes 

 
 

1 1

1 1

1 2 2

s s s

W G W
U

s
 



 
      

        
        

            (10) 

It can be observed that when U  is set to zero, the condition    
1 1

1 1
2 2

s s

 
 

    has to be fulfilled 

and for 1,n   is rendered as complex conjugates. For 1n   (Newtonian fluid), 0   and the velocity 

distribution is reduced to the classical results of plane Poiseuille flow for Newtonian fluids, as observed from 

Eq. (8). Following the steps performed in [7], and after rearranging and simplifying Eq (10) a dimensionless 

parameter   which relates   with the plate distance, the pressure gradient, the moving plate velocity, the 

consistency factor and the power-law index, is given by 

 

 

1

1

1
1

1

1
1

2 2

s

s

s
s

G W W s

U
 




 

 
      

        
  

 

Case I:  
1

1 ss                    (11) 

and 
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 

1

1

1
1

1

1
1

2 2

s

s

s
s

G W W s

U
 




 

 
      

    
    

  

 

Case II:  
1

1 ss                    (12) 

Cases 1 and II are two distinguishable cases where there is no maximum velocity in the velocity profile for Case 

I and there is a maximum velocity in the velocity profile for Case II. Dividing Eq. (8) by Eq. (10), we obtain the 

velocity profile of Couette-Poiseuille flow in terms of   as 

 

   

   

11

1 1

1
2

1 1
2 2

ss

s s

y

Wu

U

 

 



 

  



  

              (13) 

Referring to Eqs. (11) and (12),   can be easily determined if the plate distance, the pressure gradient, the 
moving plate velocity, the consistency factor and the power-law index are specified. With a specific value of 

,   can then be evaluated numerically using Newton-Raphson method from Eq. (11) or Eq. (12). The 

iterations are stopped when the estimated relative error is smaller than 
6

1 1 0


 . 

 

2.2. Energy equation 
The energy equation is given by 

 

1
2

2

n

p

T T d u
c u k

x d yy
 



  
   

   

               (14) 

where the second term on the right-hand side is the viscous-dissipative term. In accordance with the assumption 

of a thermally fully developed flow with uniformly heated boundary walls, the longitudinal conduction term is 

neglected in the energy equation [6], Following this, the temperature gradient along the axial direction is 

independent of the transverse direction and given as 

 
1 2

d T d TT

x d x d x


 


                (15) 

where 
1

T  and 
2

T  are the upper and lower wall temperatures, respectively, as illustrated in 

Fig 1 by taking /k s   and defining the mean velocity as 

 

2

2

1

w

m

w

u u d y
W

                  (16) 

utilizing the following non-dimensional parameters. 

 1

1

, ,

m

T Ty U
Y U

q WW u

k





                  (17) 

Eq. (14) is non-dimensionalized as 

  

2
1

1 22

sd
b b Y

d Y






                  (18) 

where 

  
1

1

1 ,
2

s

b U 



                  (19) 
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 

   

 

1

1

1

2 1 1

1
,

1 1
2 2

s

s

s

s

q s s

s
b U B r U

 






 

 
 

 
 

   
 

           (20) 

 

   

1

1 1

1 1 1
2 2

m

s s

u Tk W

q x


  
 




 
  

  

             (21) 

In Eq. (20), the modified Brinkman number 
1

q
B r , in terms of 

1
q  denotes the ratio of the viscous dissipation 

term and the thermal diffusion term, and is given by 

 
1

1

1

n n

m

q

W u
B r

q


 

                 (22) 

It should be noted that the definition of the Brinkman number is not unique for non-Newtonian fluid flows. 

Coelho and Pinho [41] developed a generalized Brinkman number for non-Newtonian duct flows independent of 

the rheological constitutive model. In the present study, the generalized Brinkman number can be expressed as 

 

   

 

1

1

1

1 1

1

1

1 1
2 2

s

s

n n

m

q s s

W us
B r

q



 



 

 

 
 


 

   
 

            (23) 

As observed in Eq. (23), the constant of integration   is absorbed into the generalized Brinkman number and 

its effect to the temperature profiles has been normalized. Since   is one of the essential parameters under 

investigation in the present study, for defining the Brinkman number, instead of employing the generalized 

Brinkman number, we resort to the classical definition as depicted in Eq. (22), in which case the Brinkman 

number is independent of the constant of integration so that their effects to the heat transfer characteristics of 

viscous dissipative Couette-Poiseuille flow of pseudoplastic fluids can be studied individually. The thermal 

boundary conditions associated with Eq. (18) are 

 
1

2

1
0 , 1

2
Y

Y
Y






 
   

 

               (24) 

and by utilizing Eq. (24), solution of Eq. (18) can be written as 

  
 3 2

1 2 3 4

s

d Y d Y d Y d 


                   (25) 

where 

 
   

2

1
,

2 3

b
d

s s


 
                (26) 

 
1

2
,

2

b
d                   (27) 

 
 

   

3

2 1 1 1 1

3

14 2 8 4 4 2 4 2
2

,
2 2 2 1

s

s s b b s b s b b

d
s

    





        


 

          (28) 

and 

 

 

 

   

3
2 2 2 2

4 1 1 2 1 1

3

2 1 1

3
2 2

2

12 8 4 2 0 8 5 1 0
2

1    4 0 2 4 8 4 8 6 1 2
2

1     1 6 8 2 5 1 0 6 1 2
2

s

s

s

d b s s s b s s b s b s b s

s b s b b

b s s s s

   

   

   








        



      


     



         (29) 

To evaluate   in Eq. (21), we employ a third thermal boundary condition, given by 
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2

1 1
2

Y

q

Y q



 


 


                (30) 

and subsequently it can be expressed as 

 
1

2

1 2

1

1
q

q
A A B r

q


 
   

 

               (31) 

where 

 
   

   

       

2

1 1
2 2

3 3

2 1 4

1 8 4 2
2

1 14 2 4 2
2 2

s

s s

s

A

s s

U



  

   





 

 


 

   
 

 
 

      
   

           (32) 

 

     

 

       

   

       

1

1 1

3 3

2 1
2 2

3 3

1 11
2 2

1 14 2 4 2
2 2

1 8 4 2
2

1 14 2 4 2
2 2

s

s s s

s s

s

s s

U s

A

s s

U

 

   

  

   



 


 





 

 
     
   

 

  
    

    


 
   

 

 
 

      
   

           (33) 

When defining the Nusselt number in fully developed flow, it is usual to utilize the bulk mean fluid-temperature 

m
T , given by 

 
c

c

A c

m

A c

u T d A

T

u d A









                (34) 

where 
c

A  is the cross-sectional area of the channel. Using Eqs. (14) and (25), the numerator of Eq. (34) can be 

found. The dimensionless mean temperature is given by 

  1

1

m m

k
T T

q W
                   (35) 

At this point, the convective heat transfer coefficient can be evaluated by the equation 

  1 1 m
q h T T                  (36) 

Defining Nusselt number to be 

 
 

1

1

1

0
m m

q Wh W
N u

k k T T
   


              (37) 

the explicit expression for Nusselt number can be evaluated. Since the explicit form of Eq. (37) is excessively 

huge, it is not presented here. 

 

III. RESULTS AND DISCUSSION 
As the general result is too complex, various particular cases will next be presented in order to reveal the heat 

transfer characteristics. The values of n  selected for discussion are 1 1,
4 2

 and 1 . 

3.1. Temperature profiles against the channel width for various parameters 

Referring to Eq. (17), it is noted that the dimensionless temperature represents the temperature difference 

between the fluid and the upper impermeable wall, positive when the fluid temperature is higher, and vice versa. 

Fig. 2 shows the dimensionless temperature profiles of   versus Y , where the constant heat flux ratio is kept as 

2 , 1U

  and at 0 .5n   at five selected 

1
q

B r  values such as 5, 2 , 0 , 2   and 5  with 0 .4   and 0 .8  
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for case I and 2 .0  and 3 .8  for case II as shown in Fig. 2a-d. The temperature distributions converge to zero   

at 0 .5X   by definition.  

 

 
 

 
 

 

 
 

Fig. 2. Temperature profiles at (a) 0 .4  , (b) 0 .8  , (c) 2 .0   and (d) 3 .8   at various 
1

q
B r  for 

the case of 2

1

2 1
q

U
q


   and 1

2
n  . The line legend is shown in (b). 
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Since the Brinkman number features the relative importance of viscous dissipation, it plays opposite 

roles for the heating and cooling processes. As depicted in Fig. 2, for the case of positive Brinkman number 

corresponding to the heating process where the fluid is being heated, the temperature gradient increases with the 
Brinkman number. The viscous dissipation generates internal heating inside the fluid leading to the increase of 

difference between the fluid and the wall temperatures. Higher Brinkman number which is attributed to higher 

viscosity and/or velocity of the fluid, contributes to higher internal heat generation. It is observed that the fluid 

temperature of a substantial portion of the channel exceeds the wall temperature, implying that the heat 

converted from the pumping power has overcome the applied heat energy to the walls. On the other hand, the 

negative Brinkman number corresponds to the cooling process where the fluid is being cooled. The value of the 

dimensionless temperature is negative due to the negative sign of the heat flux applied at the wall. The cooling 

process is opposed by the heating effect of the viscous dissipation. As expected, generally the motion of the 

upper plate tends to impart more heat into the fluid layers that are dragged along, unless off-set by the viscous 

dissipation effects. For different values of  , when 
1

q
B r  is negative, the temperature profiles take only 

negative values, whereas, for positive 
1

,
q

B r   takes mostly positive values with minimum negative values. 
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Fig. 3. Temperature profiles at (a) 2

1

0
q

q
  (b) 2

1

1
q

q
  (c) 2

1

2
q

q
  (d) 2

1

5
q

q
 at various

 
1

q
B r  for the case of 0 .8 , 1U


    and 1

2
n  . The line legend is shown in 

(b). 

 

The effect of viscous dissipation is seen in the value of modified Brinkman number. It is interesting to observe 

the behavior of the temperature profiles for various heat flux ratios and for various modified Brinkman number 

and hence to note the effect of viscous dissipation. Fig. 3 shows the temperature profiles for a fixed 

0 .8 , 1U


    and 0 .5n   for various heat flux ratios such as 0 ,1, 2  and 5 . From Fig. 3a, it is seen that 

when 2

1

0
q

q
  and 

1

2
q

B r   and 5 , the temperature profile are positive with minimum negative values, 

whereas, when 
1

0 , 2 , 5
q

B r    , the temperature profiles are all negative. Fig. 3b shows a similar pattern, but 

in this case, the absence of viscous dissipation leads the temperature profile to take both positive as well as 

negative values for the case of equal heat fluxes at both the plates. Fig 3c also follows similar pattern for the 

case of 2

1

2
q

q
  with temperature profile being purely negative only for when 

1

5
q

B r   . However, it is 

observed from Fig 3d that the temperature distributions manifests differently in the sense that all the values of 

  are positive, except that when 
1

5 ,
q

B r    is near to zero. 

 

(a)  
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Fig. 4. Temperature profiles at (a) 0 .1U

  (b) 0 .5U


  (c) 1U


  and (d) 2U


 at various 

1
q

B r  for 

the case of 0 .8  . 2

1

2
q

q
  and 1

2
n  . The line legend is shown in (b). 

 

Fig. 4 shows the temperature profiles for a fixed 0 .8   and 2

1

2
q

q
  at 0 .5n   for various U


 values 

such as 0 .1, 0 .5 ,1U

  and 2  and for various modified Brinkman values such as 

1

5 , 2 , 0 , 2
q

B r     and 

5 . Fig. 4a shows there is a rapid decrease in the temperature, reaches negative minimum and then increases to 

zero   at 0 .5Y   for 0 .1U

 . When 0 .5U


 , the values for the temperature are both positive and 

negative. However, when 1U

 . 

1

5
q

B r    and when 2U

 . 

1

5
q

B r   , and 2 , the temperature are 

only negative. 
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(b)  
 

 

 
 

(d) 
 

Fig. 5. Temperature profiles at (a) 2

1

0
q

q
  (b) 2

1

1
q

q
  (c) 2

1

2
q

q
  (d) 2

1

5
q

q
 at various U


 values 

for the case of 
1

10 .8 , 2
2q

B r n    . The line legend is shown in (b). 
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Fig. 5 shows the temperature profiles for a fixed 
1

0 .8 , 2
q

B r    and 0 .5n   for various U


 values such 

as 0 .5 ,1, 2 , 3U

  and 4  and specified values of 2

1

0 ,1, 2
q

q
  and 5 . For the above specified values, it is 

observed that the temperature decreases and reaches to zero  . For the insulated lower plate, when 0 .5U

 , 

the negative values taken by   is minimum near to zero. 

 

3.2. Heat transfer characteristics of cases of unequal heat fluxes 

3.2.1. Newtonian fluids 

Nusselt number expressed in Eq. (37) characterizes the heat transfer between the fluid and the upper wall, with 

the inclusion of the effect of viscous dissipation. For a Newtonian fluid  1n  0 .5   and 1U

  we 

have the result as 

 

1

2

1

1

0 .2 5 2 8 0 .2 3 1 3 0 .1 1 3 6
q

N u
q

B r
q


 

  
 

             (38) 

It can be deduced from Eq. (38), at a given ratio of 2

1

q

q
. the behavior of N u  at 1n   versus 

1
q

B r , will form 

a rectangular hyperbola on both sides of an asymptote of 

 
1

2

1

2 .2 2 5 6 2 .0 3 6 0
q

q
B r

q

 
   

 
              (39) 

 

3.2.2. Pseudo plastic fluids 

For the pseudo plastic fluids  1n  , when 1 , 0 .5
4

n     and 1U

 , 

 

1

2

1

1

0 .2 7 6 6 0 .2 2 2 4 0 .1 5 1 5
q

N u
q

B r
q


 

  
 

             (40) 

and when 1 , 0 .8
2

n     and 1U

 , 

 

1

2

1

1

0 .2 6 6 4 0 .2 1 5 9 0 .1 5 1 5
q

N u
q

B r
q


 

  
 

             (41) 

It is observed form Eq. (40), at a given ratio of 2

1

q

q
, the behavior of N u  at 1

4
n   versus 

1
q

B r  will from a 

rectangular hyperbola on both sides of an asymptote of 

 
1

2

1

1 .8 2 6 5 1 .4 6 8 6
q

q
B r

q

 
   

 
              (42) 

and from Eq. (41), at a given ratio of 2

1

q

q
 the behavior of N u  at 1

2
n   versus 

1
q

B r  will form a 

rectangular hyperbola on both sides of an asymptote of 

 
1

2

1

1 .7 5 8 0 1 .4 2 4 7
q

q
B r

q

 
   

 
              (43) 
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Fig. 6. Nusselt number versus 
1

q
B r  at (a) 2

1

0
q

q
  (b) 2

1

0 .5
q

q
  (c) 2

1

1
q

q
  and (d) 2

1

2
q

q
  at 

various U

 values  for  the case of 0 .8   and 1

2
n  . 
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Fig. 6 illustrates the variation of the Nusselt number against the modified Brinkman number at various U


 

values such as 0 .5 ,1, 2U

  and 3  for the case of 0 .8   and 1

2
n   and at various 2

1

q

q
 values such 

as 2 2 2

1 1 1

10 , , 1
2

q q q

q q q
    and 2

1

2
q

q
 . All the curves display rectangular hyperbolic profiles 

and the values of 
1

q
B r  inducing singularities on the Nusselt number are shown in Table 1. For both pseudo-

plastic fluids ( 1
4

n   and 1
2

n  ) and Newtonian fluids  1n  , the Nusselt number profiles against 
1

q
B r  

are asymptotic, as can be deduced from Eqs. (38), (40) and (41). 

 

3.3. Heat transfer characteristics of special case of lower plate insulated 

For the case of lower plate insulated, 
2

0q  , and for Newtonian fluid, we obtain the result 

 

1

1

0 .2 5 2 8 0 .1 1 3 6
q

N u
B r




               (44) 

From Eq. (44), it is observed that when 
2

0q   at 1,n N u  versus 
1

q
B r  is asymptotic and the asymptote 

appears at 
1

2 .2 2 5 6
q

B r  . For pseudo plastic fluid when 1
4

n  , 

 

1

1

0 .2 7 6 6 0 .1 5 1 5
q

N u
B r




               (45) 

From Eq. (45), it is observed that when 
2

0q   at 1 ,
4

n N u  versus 
1

q
B r  is asymptotic and the asymptote 

appears at 
1

1 .8 2 6 5
q

B r  .  Y  For 1
2

n  , 

 

1

1

0 .2 6 6 4 0 .1 5 1 5
q

N u
B r




               (46) 

From Eq. (46), it is observed that when 
2

0q   at 1 ,
2

n N u  versus 
1

q
B r  is asymptotic and the asymptote 

appears at 
1

1 .7 5 8 0
q

B r  . For 1
2

n  , the asymptotic values of 
1

q
B r  and the graphical representations are 

depicted in table 1 and fig 6 respectively 

Table 1 asymptotic values of 
1

q
B r  at various 2

1

q

q
 and U


 for the case of 1

2
n   and 0 .8   

2

1

q

q
 

U

    

 0.5 1.0 2.0 3.0 

0 4.9724 1.7580 0.6216 0.3383 

0.5 2.9576 1.0457 0.3697 0.2012 

1 0.9427 03333 0.1178 0.0641 

2.0 -3.0870 -1.0914 -0.3859 -0.2100 

 

3.4. Heat transfer characteristics of case of equal heat fluxes 

Of particular interest here is the case when both the upper and lower plates are of equal heat flux, i.e. 
1 2

q q . 

3.4.1. Newtonian fluids 

For the Newtonian fluid, the Nusselt number reduced to 

 

1

1

0 .0 2 1 5 0 .1 1 3 6
q

N u
B r




               (47) 

The expression of Nu N u  in Eq. (47) corresponds to the classical problem of Couette-Poiseuille viscous-

dissipative problem in parallel- plate channel, for fully developed flow of Newtonian fluid with isoflux 
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boundary condition when 1U

  and 0 .5  . For the case of no viscous dissipation 

1

0
q

B r  , the Nusselt 

number becomes 

 46.4248N u                   (48) 

 

3.4.2. Pseudo plastic fluids 

For the pseudo plastic fluids, when 1
4

n  , 

 

1

1

0 .0 5 4 2 0 .1 5 1 5
q

N u
B r




               (49) 

When 1
4

n   and 
1

0
q

B r  . 18 .4470N u  . When 1
2

n  , 

 

1

1

0 .0 5 0 5 0 .1 5 1 5
q

N u
B r




               (50) 

When 1
2

n   and 
1

0
q

B r  . 19 .7999N u  . 

 

IV. CONCLUSIONS 
Heat transfer with the effect of viscous dissipation for steady, laminar, both hydro-dynamically and 

thermally fully developed pseudo-plastic fluid through a channel of Couette-Poiseuille flow, where both the 

plates are kept at specified but different constant heat flux ratios being considered as thermal boundary 
conditions is discussed. The momentum equation is solved semi-analytically where the upper plate is kept 

stationary and the lower plate is moving with constant velocity and in turn the energy equation can be solved 

analytically. Due to the mathematical nature of the model, the results developed are invalid for the case when 

the moving plate velocity approaching zero, i.e. the plane Poiseuille flow problem. The study reveals various 

characteristics for temperature distributions and Nusselt numbers which are influenced by the velocity of the 

moving plate, the heat flux ratio, power-law index, modified Brinkman number and the values of X which is in 

terms of the pressure gradient and channel dimension. The velocity and temperature profiles as well as the 

explicit Nusselt number correlations predicted in the present study would be a useful analytical tool for the 

design and performance analysis in a diversity of processing operations, such as in various extruders and 

bearings associated with lubrication problems. 
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