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Dynamic visual servoing with image moments for an unmanned aerial vehicle using a virtual
spring approach
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aDepartment of Robotics, Ritsumeikan University, Shiga, 525-8577 Japan; bINRIA Rennes-Bretagne Atlantique and IRISA, Rennes
35 042, France

(Received 27 August 2012; accepted 25 November 2012)

This paper presents an image-based visual servoing for controlling the position and orientation of an unmanned aerial
vehicle (UAV) using a fixed downward camera observing landmarks on the level ground. In the proposed method, the
visual servoing of the image moments is used to control the vertical motion and rotation around the roll axis. In contrast,
an undesired positive feedback arises in visual errors because of the under-actuation of the UAV and this positive feedback
makes it difficult to apply the visual servoing to the horizontal motion. Thus, a novel control method using the virtual
spring is introduced to control the horizontal motion. The stability of the system is proved based on Lyapunov’s direct
method. Simulations are presented to validate the proposed method.

Keywords: passivity-based control; image-based visual servoing; unmanned aerial vehicles; under-actuated systems

1. Introduction

Demand of unmanned aerial vehicle (UAVs) is growing last
decade for civilian applications including search and rescue,
wild fire monitoring, traffic monitoring, pipeline patrol and
so on.[1] Attitude control [2] and pose control [3] of UAVs
have become increasingly important to be applied to those
applications. Gyroscopes are used for attitude control and
inertial sensors or global positioning systems (GPSs) are
often used to sense the current pose. However, it is difficult
to obtain accurate current position and orientation using
those sensors.[4] In contrast, a camera is useful in observing
the current state and visual servoing is a powerful tool to
control the pose using a camera. Visual servoing can be
divided into two main classes [5]: position-based visual
servoing (PBVS) and image-based visual servoing (IBVS).
PBVS requires an accurate geometric model to estimate the
current pose and is sensitive to image measurement errors
and geometric model errors. On the other hand, IBVS uses
image features directly, and is less sensitive to those errors
than PBVS, though it has its own problems. It is generally
more difficult to build controllers with IBVS than those with
PBVS due to the complexity of kinematics between control
variables and image features.

Much of the existing researches for visual servoing of
UAVs have used PBVS in an eye-to-hand configuration.
The position of a UAV was controlled using a feedback lin-
earization and a backstepping method.[6] An image-based
PID controller using a stationary camera has been proposed

*Corresponding author. Email: ryuta@se.ritsumei.ac.jp

to control the pose of a helicopter under the assumption the
roll and pitch motion can be neglected.[7] The position and
orientation of multiple UAVs were dynamically controlled
using the high speed tracking system.[8] A PBVS in an eye-
in-hand configuration was executed to track a target that is
manually selected during flight.[9]

IBVS in an eye-in-hand camera configuration for under-
actuated systems such as a quadrotor has been proposed
using the backstepping method to guarantee the conver-
gence of the position of the UAV.[10–12] The key idea
is passivity-like properties of the spherical image and this
properties helped to design the controllers using the back-
stepping method. These controllers require the translational
velocity that is usually difficult to observe. Therefore, an
optical flow was introduced to eliminate the sensing of
the translational velocity.[13,14] These existing IBVS ap-
proaches guarantee the convergence of the position of UAVs.
However, the control of the orientation around the yaw axis
required additional controllers or guaranteed the bounded-
ness of the orientation. Bourquardez et al. [15] have
compared several kinematic IBVS algorithms experimen-
tally using a UAV. They found that an IBVS using
perspective image moments realized the translational mo-
tions more stably than that using the spherical image mo-
ment did. In contrast, the stability problem in the case of
the spherical image moment has been solved [10] but this
problem in the case of the perspective image moments is
still open.

© 2013 Taylor & Francis and The Robotics Society of Japan
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2 R. Ozawa and F. Chaumette

This paper proposes an IBVS for controlling the position
and the yaw rotation of a UAV to the desired ones. We
assumed that the UAV has fixed propellers and a fixed cam-
era directed downward to observe landmarks on the level
ground, and perspective image moments can be computed
from co-planar landmarks on the level ground.[16] The
proposed method is designed based on the transpose Jaco-
bian method.[17]. However, the transpose Jacobian method
cannot be directly applied to control the translations in
the horizontal plane due to the under-actuation of a UAV.
Therefore, we employ two special methods to control the
translations. One is to regard the translational forces, which
are generated by the incline of the UAV, as a result of the
visual servoing. However, these virtual translational forces
increase the image errors [11,18] and destabilize the UAV.
Therefore, we introduce an original method called virtual
spring approach that is based on the kinematic properties
of a UAV to keep the incline of the UAV within a bounded
region.

Some benefits of the proposed approach are given as
follows. First, the proposed controller is designed based on
the transpose Jacobian method that requires simple kine-
matics and the error sensing. The proposed controller only
needs the camera and propeller models and the mass of
the UAV as the parameters. Second, the proposed approach
only observes the image, the angular velocity and the unit
gravity vector. The unit gravity vector only requires the
acceleration and gyro sensors to predict. In contrast, the
standard IMU sensor system is used to sense the sens-
ing of the complete orientation. The IMU sensor system is
equipped with the magnetic field sensors in addition to these
sensors for sensing the rotation around the yaw axis.[19]
Therefore, the costs about the parameters and sensing in the
proposed method are much less than other computational
approaches.[10]

Third, the proposed approach can control the yaw rotation
of the UAV. This motion was assumed to be constant or
remained within a bounded region.[10,12,14]

Section 2 models a UAV with fixed propellers and Section
3 briefly explains the image moments and the interaction
matrices.[16] Section 4 discusses the feature of the feedback
and proposes the controller. Section 5 discusses the stability
problem of the UAV. Simulation results are finally presented
to validate the effectiveness and robustness of the controller
in Section 6.

2. Modelling of a UAV

First, we consider the kinematics of a UAV as shown in Fig-
ure 1. Let x = (x, y, z) and = (θ1, θ2, θ3), be the position
and the orientation of the UAV in a static reference frame∑

w, where the notation (a, b, · · · , c) in lines expresses
a column vector. Let wRr be the rotational matrix from∑

w to
∑

r , referred to as roll, pitch, and yaw and given as
follows:

wRr =
⎡
⎣ cθ2 cθ3 −cθ2 sθ3 sθ2

cθ1 sθ3 + sθ1 sθ2 cθ3 cθ1 cθ3 − sθ1 sθ2 sθ3 −sθ1 cθ2
sθ1 sθ3 − cθ1 sθ2 cθ3 sθ1 cθ3 + cθ1 sθ2 sθ3 cθ1 cθ2

⎤
⎦ ,

(1)
where sθi = sin θi and cθi = cos θi . The velocity of

the UAV with respect to
∑

r can be described as rv =
r Rw(θ)ẋ, and the angular velocity rω of the UAV is given
as

[ rω]× = r Rw
w

Ṙr = − ˙r Rw
r Rw

T
, (2)

where [·]× is the skew-symmetric matrix that satisfies
[a]×b = a × b. The vector expression of the angular
velocity (2) is given as

rω = Gθ̇

with G =
⎡
⎣ 1 0 sθ2

0 cθ1 −sθ1cθ2

0 sθ1 cθ1cθ2

⎤
⎦ . (3)

Thus, the linear and angular velocity of the UAV is given
as

r ż =
[ rv

rω

]
= V ż, (4)

where

V =
[ r Rw 000

000 G

]
, (5)

and ż = (ẋ, θ̇).
Next, we consider the position of each propeller

zi (i = 1, 2, · · · , N ) in
∑

w given as follows:

zi = x + wRr
rti , (6)

where rti is the position vector from the UAV center of
mass to the center of propeller in

∑
r . Then, the velocity

relationship between
∑

w and
∑

r is

r żi =
[ rvi

rωi

]
= Si

r ż , (7)

where rvi and rωi are the translational and rotational
velocities of rti in

∑
r , and

Si =
[

I3 −[ rti ]×
000 I3

]
. (8)

The force/torque rfi generated at each propeller in
∑

r
is

rfi =
[ rei

κi
rei

]
fi , (9)

where rei is the direction of the axis of the propeller, fi

is the magnitude of force generated at the propeller, and κi

is the torque ratio to fi . This is the generalized formulation
of the multiple fixed propeller force used in [3,8,20].

The Lagrangian of the UAV is given as follows:

L = 1

2
m‖ rv ‖2 + 1

2
rωT Î rω + mgTx, (10)

where m is the mass of the UAV, Î is the inertia moment, and
g = (0, 0,−gr ) is the gravitational vector. By minimizing
the variation
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Advanced Robotics 3

Figure 1. Coordinates of a UAV.

∫ t

0

{
�L −

N∑
i=1

δ rzT
i

rfi

}
dt

=
∫ t

0

{
δL −

N∑
i=1

δzTV TST
i

rfi

}
dt, (11)

and by adding damping terms, the dynamical equation of
the UAV is given as follows [21]:[

mI3 000
000 H

] [
ẍ

θ̈

]
+

[
000

1
2

d
dt Hθ̇ + Sθ̇

]
−

[
mg
000

]
+

[
b1
b2

]

= V TATf , (12)

where H = GTÎG, S is the skew-symmetric matrix
related to the Coriolis and centrifugal force, f =
( f1, f2, · · · , fN ) is the force generated by the propellers, b1
and b2 are the translational and rotational friction compo-
nents, which are modeled as the first and the second powers
of the velocity, respectively. A is the transmission matrix
defined by

AT = [a1 a2 · · · aN ] , where ai =
[

I3
[ r ti ]× + κi I3

]
r ei .

(13)

It is important to understand the feature of the driving
force for designing a controller for the UAV. All the fixed
propellers usually direct upward (i.e. rei = r ê, where
r ê = (0, 0, 1)). Therefore, the translational force τ1 =∑N

i=1 fi can be generated only in the z direction. The hori-
zontal translation can be controlled by inclining the UAV. In
contrast, if rti and κi are selected appropriately, then any
torque τ2 can be generated. Therefore, the four directions
except the horizontal translation can be controlled if the rank
of A is four, which is the minimal number of the propellers
of the UAV.

Therefore, Equation (12) can be rewritten as follows:[
mI3 000

000 H

] [
ẍ

θ̈

]
+

[
000
1
2

d
dt Hθ̇ + Sθ̇

]
−

[
mg
000

]
+

[
b1
b2

]

= V Tu, (14)

where u is the four-dimensional driving force vector and is
expressed as follows:

u =
[

B1
B2

]
τ =

[ r ê 0003×3
0003×1 I3

] [
τ1
τ2

]
. (15)

Note that the dynamical equation (14) is effective if ‖θ2‖ <

π/2 (rad) because G in Equation (3), which is included in
V , is singular at ±π/2 (rad). The quaternion representation
[2] is useful to avoid this singularity. However, the UAV
lies in the vertical plane when θ2 = ±π/2 and cannot
be controlled anymore. Thus, in this paper, we treat the
behavior of the UAV only in the region where ‖θ2‖ < π/2.

3. Image moments and their interaction matrices

First, we consider the general framework of image errors,
and interaction matrices.[5] Let si and s∗

i be the i th com-
ponent of the current and the desired image feature, �si =
si − s∗

i be the image error, and cż = ( cv , cω) be the
camera velocity in the camera coordinates

∑
c. Then,

�ṡi = Lsi
cż = Lsi

cSr
r ż = Psi

r ż , (16)

where the interaction matrix Lsi and the transformation
matrix cSr are given as follows:

Lsi = [
Lsi 1 Lsi 2

]
, and cSr =

[ cRr − cRr [ r tc ]×
000 cRr

]
,

(17)
where cRr = diag.(1,−1,−1) and rtc is the position
vector of the camera from the origin of

∑
r w.r.t.

∑
r .

Therefore,

Pi1 = Lsi 1
cRr , and Pi2 = −Lsi 1

cRr [ r tc ]× + Lsi 2
cRr .

Figure 2 shows the relationship of the projection. We can
easily understand the Jacobian matrices and the velocities of
the image, camera, and the UAV expressed in the different
coordinate systems.

We now give the interaction matrices of perspective im-
age moments as derived in [16]. As will be described later,
the translational parts of these matrices are independent to
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4 R. Ozawa and F. Chaumette

Figure 2. Relationship of the velocities. ż and r ż are the UAV
velocities w.r.t.

∑
w and

∑
r , respectively. r żi is the velocity of

the origin of the propellers w.r.t.
∑

r . cż is the camera velocity
w.r.t.

∑
c. �si (i = h, v) is the velocity of the image error.

each other, and this property is useful to design our new
controller. Let n points form a landmark on the level ground.
Then, the moments are defined by:

mi j =
n∑

k=1

xi
k y j

k , (18)

where (xi , yi ) is the position of the i th landmark in image
space. Let (xg, yg) be the center of gravity of the landmarks
in the image. The centered moments are defined by:

μi j =
n∑

k=1

(xk − xg)
i (yk − yg)

j , (19)

where xg = m10/n and yg = m01/n, m00 = n. Let a be
defined by

a = μ20 + μ02. (20)

As visual features to control the translation, we choose
xn, yn and an which are given by [16]

xn = an xg, yn = an yg, an = Z∗
√

a∗
a

, (21)

where the superscript ∗ expresses the quantity when the
UAV is in the desired configuration. Then, we define a first
image error as follows:

�sh =
[

�xn

�yn

]
=

[
xn − x∗

n
yn − y∗

n

]
. (22)

The interaction matrix of the image error for the horizontal
motions is given as follows:

�ṡh = Psh
r ż = [

Psh1 Psh2

] r ż . (23)

When the points are coplanar and parallel to the image plane,
Pshi (i = 1, 2) can be described as follows [16]:

Psh1 = −Lsh1
cRr , and Psh2 = Psh1[ rtc ]×

+Lsh2
cRr , (24)

with Lsh1 =
[−1 0 0

0 −1 0

]

and Lsh2 =
[

anε11 −an(1 + ε12) yn

an(1 + ε21) −anε22 −xn

]
, (25)

where⎧⎪⎨
⎪⎩

ε11 = n11 + xg(yg − ε31), ε12 = n20 + xg(xg − ε32),

ε21 = n02 + yg(yg − ε31), ε22 = n11 + yg(xg − ε32),

ni j = μi j /m00.

Due to the particular form of Lsh1 and cRr , we can note
that

Psh1 =
[

1 0 0
0 −1 0

]
and

Psh2 =
[

anε11 1 + an(1 + ε12) −yn

1 + an(1 + ε21) anε22 xn

]
.

(26)

Next, we consider a second image error �sv ,

�sv =
[

�an

�α

]
=

[
an − a∗

n
α − α∗

]
, (27)

where α is the object orientation angle defined as

α = 1

2
tan−1

(
2μ11

μ20 − μ02

)
. (28)

The interaction matrix of the image error �sv is given as
follows:

�ṡv = Psv
r ż ,= [

Psv1 Psv2

] r ż . (29)

When the points are coplanar and parallel to the image plane,
Psvi is given as follows [16]:

Psv1 = −Lsv1
cRr , and

Psv2 = Psv1[ rtc ]× + Lsv2
cRr , (30)

with Lsv1 =
[

0 0 −1
0 0 0

]

and Lsv2 =
[−anε31 anε32 0

αwx αwy −1

]
, (31)

where

ε31 = yg + (ygμ02 + xgμ11 + μ21 + μ03)/a and

ε32 = xg + (xgμ20 + ygμ11 + μ12 + μ30)/a,

αwx = (β[μ12(μ20 − μ02) + μ11(μ03 − μ21)]
+ γ xg[μ02(μ20−μ02)−2μ2

11]+γ ygμ11[μ20−μ02])/d,

αwy = (β[μ21(μ02 − μ20) + μ11(μ30 − μ12)]
+ γ xgμ11[μ20+μ02]+γ [μ20(μ02−μ20)−2μ2

11])/d,

d = (μ20 − μ02)2 + 4μ2
11,

where β = 4 and γ = 2. Here again, we can note that the
forms of Psv1 and Psv2 simplify to

Psv1 =
[

0 0 −1
0 0 0

]
and Psv2 =

[−anε31 −anε32 0
αwx −αwy 1

]
.

(32)

4. Controller design for a UAV

The control objective is to design the control input u for
stabilizing the state p = (xn, yn, an, α, θ1, θ2) of the UAV
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Advanced Robotics 5

(a) (b)

Figure 3. Translational and rotational motions of the UAV in the vertical plane.(a) translational motion, (b) rotational motion.

(a) (b)

Figure 4. The effect of Rotation for translational motion in horizontal plane. (a) x direction, (b) y direction.

Figure 5. Effect of Image errors for translational motion in horizontal plane. Positive feedback of the image errors inclines the UAV and
generates the translational force in the horizontal direction. As a result, the image errors are eliminated by moving on the left.

Figure 6. Instability of the positive image feedback and the stabilization using the virtual spring. Positive visual feedback effect provides
translational force, but the UAV over-rotates and the system becomes unstable. A virtual spring approach prevents from turning the UAV
over, and is effective to eliminate the position errors.

to the desired point p∗ = (x∗
n , y∗

n , a∗
n , α∗, 0, 0). The desired

visual features x∗
n , y∗

n , a∗
n and α∗ can be chosen to reach any

particular configuration of the UAV such that it is parallel

to the level ground. We divide the controllers into the four
parts as follows:

u = u0 + u1 + u2 + u3. (33)
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Figure 7. Simulation results in Case 1. (a) Position error, (b) orientation error, (c) image error, and (d) image trajectories.

Table 1. Feedback gains used in the simulator.

Parameter Symbol Value

Feedback gain of �sv Kv 1.00I2
spring coefficient K 10.0I3

where u0 is the damping force and defined as

u0 =
[

0
−γ rω

]
, (34)

where γ is the feedback gain. rω can be observed from
the gyro sensor. u1 and u2 are the visual servoing term in
and around the z axis, and the term in the horizontal plane,
respectively. u3 is a special spring term to stabilize the ro-
tation around x and y axes. In the following subsections, we
design each term separately and combine them to guarantee
the convergence of the desired point.

4.1. Visual servoing in and around the z axis

We employ the transpose Jacobian method [17] for control-
ling the motion in and around the z axis using the visual
error �sv , as shown in Figure 3. Roughly speaking, the
UAV approaches to the target if the observed area of the
image is smaller than the desired one, and the UAV rotates

around the z axis to eliminate the angle error calculated
from the longest and shortest axes of the first-order image
moments. The virtual potential V1 composed of the square
errors of the image moments in and around the z axis is
given as follows:

V1 = 1

2
�sT

vKv�sv, (35)

where Kv = diag.(kv1, kv2) is a positive diagonal matrix.
V1 is regarded as a kind of potential functions, thus the con-
trol input to eliminate the image errors is given as follows:

u1 = − ∂V1

∂ rz

T

= −P T
svKv�sv =

[
utran

1
urot

1

]

=
⎡
⎣−P T

sv1
Kv�sv

−P T
sv2

Kv�sv

⎤
⎦ . (36)

The problem is that the translational motion of the UAV is
under-actuated and we need to confirm whether utran

1 is in
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Figure 8. Simulation results in Case 2, configured as Figure 7.

the range space of B1. The range space of P T
sv1

coincides
with that of B1, because, from Equation (32),

P T
sv1

=
⎡
⎣ 0 0

0 0
0 1

⎤
⎦ (37)

and

span B1 = span { r ê} = span

⎧⎨
⎩

⎡
⎣ 0

0
1

⎤
⎦

⎫⎬
⎭ . (38)

Therefore, u1 can be applied to control the translational
and rotational z motions.

4.2. Visual servoing in the horizontal plane

Likewise in the previous subsection, we consider the fol-
lowing virtual potential V2.

V2 = 1

2
�sT

hKh�sh, (39)

where Kh is a positive diagonal matrix. Then, the control
input for the motions in the horizontal plane is as follows:

− ∂V2

∂ rz

T

= −P T
sh

Kh�sh =
⎡
⎣−P T

sh1

−P T
sh2

⎤
⎦Kh�sh . (40)

However, in this case, the translational part of Equation
(40) is not in the range space of r ê because

P T
sh1

=
⎡
⎣−1 0

0 1
0 0

⎤
⎦ �∈ span { r ê} = span

⎧⎨
⎩

⎡
⎣ 0

0
1

⎤
⎦

⎫⎬
⎭ .

(41)
Therefore, we cannot realize this control input (40), and
need to compensate this term using other effects. As shown
in Figure 4(a), when the UAV inclines around the y axis and
generates the gravity compensation force, the vertical force
is canceled and the translational force in the x direction
is generated implicitly. Then, the UAV can move in the x
direction. (For y translational force, see Figure 4(b)). To
realize this pure horizontal force, the propeller force in the
z direction is given as follow:

utran
2 = − mgr

r ê
T rysen

r ê , (42)

where rysen is the unit vector of the gravity, which is
observed by the inertial sensors and is defined as follows:

rysen = − r Rw
r ê =

⎡
⎣−sθ2

sθ1cθ2−cθ1cθ2

⎤
⎦ . (43)

D
ow

nl
oa

de
d 

by
 [

In
ri

a 
R

oc
qu

en
co

ur
t]

 a
t 0

8:
14

 0
5 

A
pr

il 
20

13
 



8 R. Ozawa and F. Chaumette

(a)

Time (s)

Po
si

tio
n 

er
ro

r 
(m

)

  x
  y
  z

Δ
Δ
Δ

0 10 20 30
-0.5

-0.25

0

0.25

0.5 (b)

Time (s)

O
ri

en
ta

tio
n 

er
ro

r 
(r

ad
)

 Δ θ
 Δ θ
 Δ θ

1
2
3

0 10 20 30
-0.2

0

0.2

0.4

0.6

0.8

(c)

Time (s)

Im
ag

e 
er

ro
r

 x
 y
 a

n

n
n

0 10 20 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 αnΔ
Δ
Δ
Δ

(d)

 target

-150 -100 -50 0 50 100 150
-120

-90

-60

-30

0

30

60

90

120

Figure 9. Simulation results in Case 3, configured as Figure 7.

This term contains the roll and pitch angles of the UAV,
while previous approaches need to sense wRr , which re-
quires an additional sensor such as a magnetic sensor to
detect the yaw angle.[6–12]

Then, the static horizontal force hg is obtained by sub-
tracting the gravity from Equation (42) as follows:

hg = m r Rw g − r ê
mgr

r ê
T rysen

= mgr

{
rysen − r ê

1
r ê

T rysen

}
. (44)

Here, we regard hg as the resultant force of the first row of
the visual feedback of Equation (40). Then,

hg = −P T
sh1

Kh�sh . (45)

Therefore,
Kh�sh = −(P T

sh1
)+hg, (46)

where

(P T
sh1

)+ = (Psh1P
T
sh1

)−1Psh1 = Psh1 . (47)

The time derivative of Kh�sh is given as follow:

d

dt
(Kh�sh) = −(P T

sh1
)+

∂hg

∂ rω
rω = Hh( rysen ) rω ,

(48)

with

Hh( r ysen )

= mgr (P T
sh1

)+
{

I3 + 1

( r êT r ysen )2
r ê r êT

}
[ r ysen ]×,

(49)

where, to derive Hh , we used the time derivative of ry[sen]
given by

r ẏsen = − r
Ṙw

wRr
r Rw

r ê = rω × rysen

= − rysen × rω = − [ rysen
]
× Gθ̇. (50)

Then, the feedback term of the image errors in the hori-
zontal plane using the transpose Jacobian method is given
as follows:

urot
2 = −HT

h �sh . (51)

Therefore,

u2 =
[

utran
2

urot
2

]
=

[− mgr
r ê

T rysen

r ê

−HT
h �sh

]
. (52)

Note that we introduced Kh to define the virtual potential
but never used this in the controller. Instead of that, we use
the gravitational potential, which is equivalent to this virtual
potential from Equation (46).
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Figure 10. Simulation results in Case 4, configured as Figure 7.

To control the translational and rotational motions in and
around the z axis in Figure 3, we consider the case where
the UAV is parallel to the level ground above the target. We
will see in the simulation results that the controller is also
effective when it is not the case.

4.3. A virtual spring approach

We now consider the relationship between the image error
and the translational motion.As shown in Figure 5, the UAV
would like to move to the left for eliminating the image error
(Phase 1). The UAV inclines to generate the positive force
in x direction, and the image error becomes larger (Phase
2). Then, the UAV moves till the image error is eliminated
(Phase 3). Thus, to generate the translational force in the
x direction, the image error must be fed back positively.
However, the positive visual feedback makes the system
unstable, and we must prevent the UAV from giving the
overthrow so that a virtual spring is added as shown in
Figure 6 (b) right. To realize the virtual spring effect, we
consider the following artificial potential.

V3 = 1

2
� rysen

T K� rysen , (53)

where

� rysen = rysen − eg. (54)

Then, from Equation (50),

u3 = − ∂V3

∂ rz

T

=
[

0003×1[ rysen
]
× K� rysen

]
. (55)

By substituting Equations (36), (52), and (55) into Equa-
tion (33), the control input for the rotational part can be
calculated as follows,

u =
⎡
⎢⎣

−P T
sv1

Kv�sv − mgr
r ê

T r ysen

r ê

−P T
sv2Kv�sv − HT

h ( r ysen )�sh

+[ r ysen ]× K� r ysen − γ r ω

⎤
⎥⎦ . (56)

The damping term can be omitted when the UAV is enough
damped by the natural damping bi (i = 1, 2). Note that the
controller (56) uses only the sensing of the landmarks, the
gravity direction rysen and the angular velocity rω. In
addition, the required parameters are only the mass of the
UAV and the camera internal parameters used in Equation
(56), and the propellers’ information used in Equation (13).
Therefore, the implementation of this controller is easy.

The interaction matrices (23) and (29) are obtained un-
der the assumption that the visual feature points lie in the
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Figure 11. Simulation results in Case 5, configured as Figure 7.

plane parallel to the image plane. The robustness of these
approximations will be confirmed in the simulations.

5. Stability analysis

In this section, we prove the stability of the system (12) at
the equilibrium point (p, ż) = (p∗,000) using the controller
(56). Using Equations (14) and (56), the closed loop of the
system becomes

mẍ = −b1 + wRr {hg − P T
sv1

Kv�sv}Hθ̈ + 1

2
Ḣθ̇

= −Sθ̇ − b2 − GT
{
HT

h �sh + P T
sv2

Kv�sv

+ [ rysen ]×K� rysen + γ rω
}
. (57)

To prove the stability of the system, we choose the following
as the candidate of the Lyapunov function,

V = 1

2

{
m‖ẋ‖2 + θ̇THθ̇

}
+

3∑
i=1

Vi , (58)

where Vi (i = 1, 2, 3) is defined in Eqs. (35), (39) and (53).
This function is obviously positive definite. Then, the time

derivative of V is given as follows:

V̇ = mẋTẍ + θ̇T
(

Hθ̈ + 1

2
Ḣθ̇

)
+ r v̇T P T

sv1
Kv�sv

+ r ωT P T
sv2

Kv�sv + r ωT HT
h �sh

− r ωT [ r ysen ]×K� r ysen

= −vTb1 − ωTb2 − γ ‖ r ω ‖2 ≤ 0, (59)

where γ is positive scalar. The closed-loop dynamics (57)
was used in the derivation. The time derivative is semi-
negative definite and the system is stable. From the LaSalle’s
invariant theorem [22], the state of the system that remains
in a neighborhood of the desired point asymptotically
approaches the set defined by

wRr

{
hg − P T

sv1
Kv�sv

}
= 0, (60)

GT
{
HT

h �sh + P T
sv2

Kv�sv + [ r ysen ]×K� r ysen

}
= 0.

(61)

wRr is non-singular, therefore, the vector in the parenthe-
sis of Equation (60) must be zeros. From (43) and (44),
the vector in the parenthesis of Equation (60) is given as
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Figure 12. Simulation results in Case 6, configured as Figure 7.

Table 2. Controller parameters. Point A is that x = (0, 0, 0.5) (m) and θ3 = 0 (rad), Point B is that x = (0.5, 0.5, 5.5) (m) and θ3 = 0.2π
(rad), Point C is that x = (0.0, 0.5, 5.5) and θ3 = 0 (rad).

Natural damping Damping gain Image sample time

Symbol (unit) Initial point Final point d1, d2 (kg/m),

(
kgm2

(rad)2

)
γ

(
kgm2

rad·s
)

(ms) Image noise

Case 1 B A (100, 0.5) 1.5 33 None
Case 2 B A (10.0, 0.5) 1.5 33 None
Case 3 B A (100, 0.5) 0.0 33 None
Case 4 B A (10.0, 0.5) 0.0 10 None
Case 5 A B (100, 0.5) 1.5 33 None
Case 6 B A (100, 0.5) 1.5 33 Gaussian noise (s.d. 2 pixels)
Case 7 A C (100, 0.5) 1.5 33 Gaussian noise (s.d. 2 pixels)

follows:

hg − P T
sv1

Kv�sv = mgr

⎡
⎣− tan θ2/ cos θ2

tan θ1
0

⎤
⎦

− kv1�an

⎡
⎣ sθ2−sθ1cθ2

cθ1cθ2

⎤
⎦ = 000. (62)

�an = 0 or θi = π/2(i = 1, 2) from the last raw of (62).
If θi = π/2, then �an becomes infinity from the first two
rows. �an and θi must be bounded, and this is contradicted.
Thus, �an = 0, and θ1 = θ2 = 0.

When θ1 = θ2 = 0, the matrix G is non-singular. Then,
the vector in the parenthesis of Equation (61) must be zeros.
Substituting �an = θ1 = θ2 = 0 int Eq. (61) and multiply-
ing (GT)−1 from the left, we obtain the following equation:

HT
h �sh + P T

sh2
Kv

[
0
�α

]
= T

⎡
⎣�xn

�yn

�α

⎤
⎦ = 0, (63)

where

T =
⎡
⎣ 0 mgr kv2αw1

mgr 0 −kv2αw2
0 0 kv2

⎤
⎦ . (64)
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Figure 13. Simulation results in Case 7, configured as Figure 7.

xn, yn , and α converge to zero because T is non-singular.
Thus, we proved that the equilibrium point of the UAV is
asymptotic stable.

6. Simulation

In this section, six selected simulations are presented to
validate the effectiveness of the proposed controller using
the conditions given in Table 1, and these gains were tuned
through some preliminary simulations. The UAV has four
propellers and its transmission matrix A is given as follows:

A =

⎡
⎢⎢⎣

0 0 1 0 − κ

0 0 1  0 −κ

0 0 1 0  κ

0 0 1 − 0 −κ

⎤
⎥⎥⎦ , (65)

where  is the length of the moment arm, and κ is a ratio
between the translational force to the rotational torque. The
following parameters are used for the simulations: m =
0.90 (kg),= 0.30 (m), Î = (1.20, 1.20, 2.00)×10−3(kgm2),
and κ = 0.0158 (m). The damping terms are modeled
as the quadratic form of the velocities arising from the
aerodynamics [20] and defined as follows:

b1 = d1Q( sv) sv ,b2 = d2Q( sv) sv , (66)

where Q(a) is a diagonal matrix and the i th diagonal ele-
ment is absolute value of the i th element of a. The damping
coefficients d1 and d2 are modeled as constant, based on
experimental results in [23], and given in Table 2. The visual
data is updated every 33 ms except Case 4, while rysen and
θ̇ are measured and the control input is updated every 1 ms.
We use four feature points, which are distributed around the
origin of the base frame. As shown in Table 2, in Cases 1 to
4, the initial configuration is assigned so that the UAV goes
from the vicinity to the above of the base frame. In Case 5,
the initial configuration is assigned so that the UAV goes
away from the above of the base frame. The differences in
each configuration are shown in the image sampling time,
the feedback gain γ . In Case 6, a Gaussian noise with mean
zero and standard deviation 2 pixels, which correspond to
about 7.5 (mm) in the horizontal plane, 0.5 (m) above on the
target, is added to the image. Other conditions are the same
in Case 1. In Case 7, the UAV goes to the target on the same
horizontal plane to validate the pure translational motions
attained by the virtual spring approach. Other conditions
are the same in Case 6.

Figures 7–11 show the translation and orientation errors
of each case as well as the image features error and the image
points trajectory. In Case 1, a good damping is used as shown
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in Table 2, and the errors converge to zero around 15 s. In
Case 2, less damping in the translational directions is used
as shown in Table 2. Then, the system is under-damped and
the convergence is retarded compared to Case 1. In Case
3, the damping feedback in the rotational directions is not
used. Then, residual errors remain and the motion becomes
vibrationally as in a limit cycle. This is due to the sampling
time of the visual data. This motion is improved using 10-
ms image sampling time as shown in Case 4, where the
less damping in the translational directions and no damping
feedback in the rotational directions are used, as well as
using larger rotational damping as shown in Case 2.

In Case 5, the convergence is a little bit slower than in
Case 1 because of the difference of the desired configura-
tion. We can get the better performance when the landmarks
are just below the UAV at a desired configuration. Indeed,
the interaction matrix plays role of the moment arm of
the image error, and the desired configuration in Case 5
becomes more sensitive to the image error than in Cases 1
to 4.

In Case 6, image errors appeared due to the introduction
of the image noise. These errors induced some vibrations
in the position and orientation of the UAV. However, the
controller attenuated the vibrations and the magnitudes are
smaller than those in the image. The proposed scheme is
thus robust with respect to image noise.

In Case 7, the UAV approached to the target as the expo-
nential maps and the image errors are almost straight lines.

7. Conclusion

This paper proposed an IBVS for controlling the position
and the orientation of a UAV with a fixed camera, which
points the downward direction. The transpose Jacobian con-
trol from image moments is used to control the transla-
tional and the rotational motions in the vertical axis. On
the other hand, the lateral motion cannot be generated with
this method due to the under-actuation of UAVs. Positive
feedback structure of the image errors to the lateral motion
was revealed, and a virtual spring was introduced to stabilize
the pose of the UAV. Simulations showed that this method
is effective to control the pose of a UAV, even if the low
sampling rate of the visual data and the image errors may
cause some residual errors. We also showed that it is better
to put the landmarks right below the desired pose of the
UAV.

Future works will be devoted to realize experiments on
a real platform. The current controller depends on the per-
spective image moment, and the controller is also undergo-
ing to be generalized to algorithms, which can use any other
image features, and camera configuration.
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