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Abstract—Image registration is the process by which we deter-
mine a transformation that provides the most accurate match be-
tween two images. The search for the matching transformation can
be automated with the use of a suitable metric, but it can be very
time-consuming and tedious. In this paper, we introduce a registra-
tion algorithm that combines a simple yet powerful search strategy
based on a stochastic gradient with two similarity measures, cor-
relation and mutual information, together with a wavelet-based
multiresolution pyramid. We limit our study to pairs of images,
which are misaligned by rotation and/or translation, and present
two main results. First, we demonstrate that in our application mu-
tual information may be better suited for sub-pixel registration
as it produces consistently sharper optimum peaks than correla-
tion. Then, we show that the stochastic gradient search combined
with either measure produces accurate results when applied to syn-
thetic, as well as multitemporal or multisensor collections of satel-
lite data. Mutual information is generally found to optimize with
one-third the number of iterations required by correlation. Results
also show that a multiresolution implementation of the algorithm
yields significant improvements in terms of both speed and robust-
ness over a single-resolution implementation.

Index Terms—Image registration, mutual information, remote
sensing imagery, stochastic optimization, wavelets.

I. INTRODUCTION

D IGITAL image registration is a process by which the most
accurate match is determined between two images, which

may have been taken at the same or different times, by the
same or different sensors, from the same or different viewpoints.
The registration process determines the optimal transformation,
which will align the two images. This has applications in many
fields as diverse as medical image analysis, pattern matching
and computer vision for robotics, as well as remotely sensed
data processing. In all of these domains, image registration can
be used to find changes in images taken at different times, or to
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build 3-D models from 2-D images taken from different view-
points, or for object recognition.

In the remote sensing framework in particular, with the in-
creasing number of multiple platform remote sensing missions,
different sensors may simultaneously observe the same features.
These sensors may produce data at different resolutions or in dif-
ferent spectral ranges, over multiple times, thus providing very
large amounts of redundant or complementary data. The combi-
nation of all these data will allow for better analysis of various
phenomena, as well as allow the validation of global low-reso-
lution analysis by the use of local high-resolution data analysis.
For all these applications, accurate geo-referencing is the first
step in integrating such data from multiple sources, and it is thus
becoming a very important issue in remote sensing. By using
a model-based systematic correction, newly acquired remote
sensing data is usually geo-referenced to within a few pixels.
Starting with this information, we focus on precision correction
or automatic image registration, which refines the accuracy to
within one pixel or a sub-pixel. For applications such as data
fusion, it is very important to reach sub-pixel accuracy, and au-
tomatic image registration offers a practical means of achieving
this.

In this context, we define image registration as follows:
Given a pair of two-dimensional gray-level images,
and that we denote by the reference and input (or
sensed) images respectively with coordinates ,
where is a region of interest; To register the images is to find
a geometric transformation of a certain class such that
for all ( ), best matches , where is
a set of transform parameters. In this paper, we limit to
a class of transforms that include shift ( ) and rotation ()
and can be written as

(1)

Thus we can write , where we de-
fine to be the transformation matrix given above, for

. Later we can incorporate isometric scaling into our
study.

In order to find the optimum transformation, the image reg-
istration process may include the following steps: 1) the extrac-
tion of features to be used in the matching process, 2) the fea-
ture matching strategy and metrics, and 3) the resampling of
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Fig. 1. Summary of our wavelet-based mutual information registration method.

the data based on the correspondence computed from matched
features. Many automatic image registration methods have been
proposed and a survey can be found in Brown [1]. Our work con-
siders the search strategy and similarity metric to be used in step
2) of the registration process. Many objective functions exist in
the literature, which can be used in automated image registra-
tion schemes. These objective functions may be feature-based
or intensity-based. Feature-based methods establish geometric
correspondences by matching salient features, which have been
extracted by pre-processing the images. A drawback of these al-
gorithms lies in the difficulty of recognizing matched features
in the images, and they require the use of reliable and robust
algorithms for image segmentation and edge detection. By con-
trast intensity-based methods require no prior pre-processing of
the images. Commonly used intensity-based objective functions
include intensity correlation, the mean square difference of the
image intensity values, and mutual information (MI). Cross-cor-
relation is one of the most common similarity metrics used in
registration. It measures similarity by computing global statis-
tics such as mean and variance, and it performs well if the two
images are similar in nature, with an underlying linear rela-
tionship between the image intensities. On the other hand, mu-
tual information measures redundancy between two images by
looking at their intensity distributions, and it represents a mea-
sure of the relative entropy between two sets. Mutual informa-
tion (MI) has been extensively studied for the registration of
medical imagery [3]–[5], and it has been found to be especially
robust for multimodal image registration.

In this paper, we show how mutual information can be suc-
cessfully merged with an optimization scheme and applied to
the registration of remotely sensed imagery. Our first tests are
designed to compare the sharpness of the MI and correlation
curves, and they show that MI produces consistently sharper
peaks at the correct registration values than correlation. More-
over, when used with a multiresolution search strategy, this com-
parative result is also verified for the lower resolution sub-band
images of the Simoncelli pyramid described in Section II. The
use of a multiresolution search provides for large reductions in
computing time, and this result is very important for producing
consistently accurate results within such a scheme.

In our earlier work [2], [6], [14] a simple search strategy,
based on exhaustive search, was used to provide a thorough
comparison of the two different metrics. But exhaustive search
is computationally expensive, and the computational cost in-
creases exponentially with the number of transformation pa-
rameters and the size of the dataset. Therefore, in this work
we describe a more sophisticated search technique, which uses
a gradient approximation, that is applied within a multiresolu-
tion framework based on a wavelet-like pyramid decomposi-
tion. Section II describes our registration framework, while Sec-

tions III and IV present cross-correlation and MI, together with
a comparative study of the performance of these two metrics
when applied to image registration. Section V then describes
our optimization search technique and associated results are pre-
sented in Section VI. Section VII discusses other related work,
in particular comparing the algorithm presented here to that of
Thevenazet al. [5], and it gives conclusions and directions of
future work. The main innovation of this paper is in the use of
the simultaneous perturbation stochastic approximation (SPSA)
gradient strategy for the optimization of the mutual informa-
tion similarity criterion. It provides a simple, more practical ap-
proach to MI-based registration problems than what is currently
found in the literature.

II. M ULTIRESOLUTION IMAGE REGISTRATION

Most of our previous work in image registration has focused
on the use of wavelets or wavelet-like features in step 1) of the
registration process. Fig. 1 summarizes our registration scheme
[2], [6], [14]whenwaveletorwavelet-like information isutilized.
Both the reference and input images are first decomposed
following a multiresolution wavelet or frame decomposition. In
order to achieve computational efficiency, our search strategy
follows the multiresolution decomposition, working iteratively
from the deepest level of decomposition (where the image
size is the smallest) to the top level of decomposition, i.e.,
going from coarse to fine spatial resolution. For all levels of
decomposition, MI or correlation between sub-band images of
the reference image and input image is successively computed
and maximized. The accuracy of this search increases when
going from coarse resolution to fine resolution. At each level the
search focuses in on an interval around the “best” transformation
found at the previous level and is refined at the next level up.
As a preliminary study, our search space is restricted to 2-D
rotations and translations, and this will be extended later to
affine transformations. To obtain the transformed images, data
interpolation is done using cubic B-splines [18]. Maximization
of the metric can be performed by exhaustive search, but it is
more efficient and more accurate if an automated optimization
technique is used.

Different wavelet or wavelet-like filters could be chosen, but
our previous work [7] showed that Steerable Simoncelli filters
[8] are more robust to translation, rotation and noise than the
standard Daubechies wavelet filters. The method described by
Simoncelli [8] enables one to build translation- and rotation-in-
variant filters by relaxing the critical sampling condition of the
wavelet transforms. By invariance, it is meant that the informa-
tion contained in a given sub-band will be invariant to transla-
tion or rotation. The resulting representation is equivalent to an
overcomplete wavelet transform; it is not an orthogonal repre-
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Fig. 2. Four-level decomposition by a steerable pyramid. Sub-bandsBi are
utilized to extract features.

sentation but is an approximation of a “tight-frame,” i.e., invert-
ible. The Simoncelli Steerable Pyramid is summarized in Fig. 2,
where only the analysis decomposition is shown. In Fig. 2, H0
is the result of high-pass filtering, are results
of low-pass filtering, and represent the results
after filtering by a set of oriented band-pass filters which ensure
that the representation is rotation-invariant. In order to ensure
some translation-invariance, the outputs of the high-pass filter
and of the band-pass filters are not sub-sampled. In addition,
that portion of the signal , which is iteratively decomposed
by the band-pass and the low-pass filters, does not contain the
larger high frequency components and has been preprocessed
by a low-pass filter, thus removing most aliased components.
This representation is overcomplete by a factor of , where

is the number of oriented band-pass filters [8]. In the study
described in LeMoigneet al. [6], the steerable filters studied in
a correlation framework, showed very accurate and reliable re-
sponses for registration purposes. Therefore, in the experiments
shown here, we will use Simoncelli steerable filters, and in order
to optimize the computational speed, we chose .

When using the multiresolution approach for registration, a
wide variety of search methods can be utilized to obtain an
approximation to the solution at each pyramid level. Different
search strategies may even be used at different levels. The sim-
plest approach is to apply an exhaustive search method at all
pyramid levels, where one varies one or more of the transforma-
tion parameters over a certain discrete range of values, which
is assumed to include the “true” transformation (or “Ground
Truth,” GT). For each combination of parameters, the similarity
metric is computed and the combination that yields the largest
metric value is chosen as the final approximation at the cur-
rent level. How this discrete mesh is determined depends on
the pyramid level. At the coarsest resolution, the initial range
is usually specified by the user. When moving up the pyramid,
the new range is chosen as a given interval centered around the
solution computed at the previous step. Details of this approach
can be found in [2].

Although this method is quite robust, it is not very practical
for two reasons. First, it is computationally expensive even for
a small number of search parameters. Second, it yields results
of limited accuracy since the accuracy depends on how fine the
discrete mesh is.

III. CORRELATION AND MUTUAL INFORMATION AS

SIMILARITY METRICS

A. Correlation

Correlation is one of the most widely used similarity metrics
in image processing [16]. One of its principal applications is in

the area of template, or prototype matching, where the problem
is to find the closest match between an unknown image and
a set of known images. One approach is to compute the cor-
relation between the unknown and each of the known images.
The closest match can then be found by selecting the image that
yields the correlation with the largest value. Matching of images
A and B can be performed by using the correlation coefficient,
which is defined as

(2)
where the double sums indicated are taken over the rows and
columns of the two images, and , are the pixel values of
images A and B at rowand column , respectively. This statis-
tical measure has the property that it measures correlation on an
absolute scale ranging from [1, 1]. Under the assumption that
the transformation is small enough, it can be shown that maxi-
mizing this correlation measure is equivalent to minimizing the
least-mean-square of the difference in the intensity values of A
and B, see [17]. For many registration methods, correlation is
the primary tool, where A may be an input image to be regis-
tered against a reference image, B. It is equal to one for identical
images, and thus provides the degree of similarity between the
two images.

The cost of a single computation of the spatial correlation
of two images is , where is the number of pixels in
each image. When used for image registration, the total cost is
then a function of the number of steps where the correlation is
computed.

B. Mutual Information (MI)

The concept of mutual information represents a measure of
relative entropy between two sets, which can also be described
as a measure of information redundancy [3]–[5]. From this def-
inition, it can easily be shown that the MI of two images is max-
imal when these two images are perfectly aligned. Therefore, in
the context of image registration, MI can be utilized as a sim-
ilarity measure which, through its maximum, will indicate the
best match between a reference image and an input image. Ex-
periments show that, in this context, MI enables one to extract
an optimal match with a much better precision than cross-cor-
relation.

If A and B are two images to register, and are
defined as the marginal probability distributions, and
is defined as the joint probability distribution of A and B. Then
MI is defined as

(3)
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This quantity can be computed using the histograms of the two
images A and B, and respectively, as well as their
joint histogram . The MI is then defined by

(4)
where is the sum of all the entries in the histogram, see [3].
The histograms are computed using original gray levels or gray
levels of pre-processed images, such as edge gradient magni-
tudes or wavelet coefficients.

In this work a histogram with 64 bins is used, since it pro-
duces a significantly smoother MI surface than the 256-bin his-
togram. The smoother surface works better with the optimiza-
tion algorithm, and the reduced number of bins dramatically im-
proves the runtime for MI registration. The joint histogram is
obtained by the following computation. The transformed refer-
ence image is obtained using cubic B-spline interpolation [18].
The gray values of the input image and the transformed refer-
ence image are linearly rescaled into the range [0,255]. The gray
values ( ) of those pairs of pixels, which lie in the same po-
sition are then used to build the histogram, using the following
update law:

(5)

where for , .
Note that represents the integer part of, and a 64-bin his-
togram is produced.

The cost of computing the MI of two images depends both
on the number of data points or pixels in each image,, and
also on the number of bins used to form the histogram. If both
images have the same number of pixels,, the computational
cost of computing the histogram is . The computational
cost relative to the number of histogram bins,used in the
computation, is ).

IV. EVALUATION OF MUTUAL INFORMATION VERSUS

CORRELATION FOR THEREGISTRATION OFREMOTE SENSING

IMAGERY

In this section, we present results of a number of different
tests, which provide a comparison between MI and correlation
as two potential similarity measures for remote sensing image
registration. In order to obtain high registration precision, it is
important to use a similarity measure that produces a sharp peak
at the correct transformation point with significantly smaller
values elsewhere, especially in the vicinity of the correct trans-
formation. Other important considerations for the choice of a
similarity measure include the resolution and/or accuracy of the
final solution, speed of computation, and the presence or ab-
sence of local extrema. These will be discussed in later Sections.
In this Section, the following set of tests has been designed to
compare sharpness of MI and correlation curves. The first set of
tests illustrates that MI provides a sharper peak than correlation
at the correct registration value of either a rotation, or a trans-
lation in one of the - or - directions, when searching exhaus-

Fig. 3. Landsat – U.S. Pacific Northwest reference image for sharpness of MI
and correlation curves.

tively over a range of values. This sharper peak enables one to
obtain a higher precision of the registration. These experiments
are performed on a 512512 image (Fig. 3) with no wavelet
decomposition, and also on multiple resolutions of a Simon-
celli decomposition. The second set of experiments investigates
the sensitivity of the MI and correlation metrics to compositions
of translations and rotations of the reference image when used
in conjunction with the Simoncelli steerable filter decomposi-
tion. This sensitivity is then investigated for input images with
varying levels of noise.

The experiments described in this section include many of the
issues that will be present in “real-life” imagery, although the
list is not exhaustive. In particular, this set of experiments deals
only with uncorrelated noise and single-modality inputs, but the
results are still informative, and show the main characteristics of
the two similarity metrics.

A. Sharpness of MI and Correlation Curves

After the curves for both metrics have been normalized to lie
in the range [0,1] we restrict the neighborhoodV0, for which the
area under the curveis computed, to one centered around the
maximal point and bounded by the points where the two curves
intersect, when this does occur. Then for the correlation and
mutual information curves which are produced, the following
assumptions are noted to be true:

• the two functions are defined and continuous inV0;
• the two functions are both positive inV0;
• the two functions do not intersect inV0except at the max-

imum.
Under these assumptions, we say that a functionis sharper

than a function in a neighborhoodV0 if there exists a neigh-
borhoodV1, that is a subset ofV0centered on the maximal point,
such that the magnitude of the slope ofis larger than that of

for all points inV1. Since the two curves do not intersect in
this neighborhood, and they are both normalized to the same
maximal value of 1, it is then easy to show that this definition
is equivalent to stating that the area under the curvein V0 is
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smaller than the area under the curve ofin V0. An alternative
definition for the neighborhood,V0 could be that of the region
around the peak bounded by the closest inflexion points of the
two curves. Inflexion points indicate the presence of other local
maxima to which the optimization may possibly be attracted,
and this neighborhoodV0, would then define theregion of at-
traction for each of these measures, indicating the maximum
distance from which convergence to the optimum can be guar-
anteed. This issue is discussed further in Section VI-C-I. For the
curves of this section we note that these two definitions yield
neighborhoods,V0, which differ only slightly, and we use the
first, more easily computable definition here.

1) Original Grey Level Imagery:First a 1024 1024 image
is extracted from Band 4 of a Landsat-TM (“Thematic
Mapper”) scene of the Pacific Northwest, and a 512512
reference image is produced from the center of this scene
(Fig. 3). From the same scene, forty-two 512512 input im-
ages are produced, with either a single translation or a single
rotation of the reference image. The ground truth translations
range from to pixels in the -direction, and the
rotations, , range from to . We then register each
of the 42 reference-input pairs by executing a one-dimensional
exhaustive search where the reference is transformed either
by a rotation ranging between60 and 60 , or by a shift
ranging between and 50 pixels. Both correlation and MI
are measured between the input and the transformed reference,
and we compare the sharpness of the peak in the neighbor-
hood, V0 between each of the 42 correlation curves and the
corresponding MI curves.

Examples of these curves are shown in Fig. 4. The scaled
MI and correlation curves are shown in Fig. 4(a) for an input
image which has a transformation of the reference given by

. Rotation, is varied over the range [60,
60]. Fig. 4(b) shows the same curve for an input image with a
transformation as is varied in the
range [ 50, 50]. The solid curve represents MI and the dashed
curve represents correlation. We showed [14] that MI produces a
much sharper peak than correlation in both cases. More specif-
ically, we find that for rotations, the average value of the area
under the MI curve is 2.46 as compared to an average correla-
tion value of 15.26, while for the translations the average MI
value is 5.76, as compared to the correlation average of 32.02.
These results quantitatively indicate how much sharper the MI
curve is, compared to the correlation curve.

2) Simoncelli Band-Pass Imagery:In the second part of this
experiment we use a single reference-input pair with both im-
ages produced from the same source as above. The reference is
the 512 512 center of the source and the input is the 512512
center of the source shifted by 32 pixels in the-direction (hor-
izontally). Thus the correct transformation between the refer-
ence and the input is . The tested pair
is then decomposed using single-orientation Simoncelli filters.
Four levels of decomposition are produced, which correspond
to scaling of the images by 1, 2, 4 and 8. At wavelet level,
we fix the parameters, and vary in the interval
[ ], where is the correct transformation
scaled to the level resolution. Thus, for instance, at the 4th
level, and is varied between and 14 with

(a)

(b)

Fig. 4. Scaled MI & correlation curves for registration of 512 images, with
single-resolution. (a) Image transformation:� = 4,Tx = Ty = 0. (b) Image
Transformation:Tx = �9, � = Ty = 0.

a step of 1, which corresponds to varyingbetween and
112 with a step of 8 at the original (finest) level. For MI and
correlation, we generate a set of 4 curves of the measure value
corresponding to the 4 levels of the Simoncelli decomposition.
These curves are shown in Fig. 5.

The solid curve represents MI and the dashed curve repre-
sents correlation. As expected, at all decomposition levels both
correlation and MI produce their largest values at the points that
correspond to the correct transformation. However, MI produces
consistently sharper peaks than correlation. As in previous ex-
periments, the area under the scaled correlation and MI curves
indicated in Fig. 5, is used as a measure of sharpness of the
curves, and again at all levels MI produces smaller areas. It is
important to note that the correlation curves tend to be concave
around the maximum, while the MI curves are often convex.
This property, which explains the sharpness of the curves, could
pose problems for the application of second order optimization
methods.
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Fig. 5. Correlation and mutual information curves with values scaled to range [0,1] for the different levels of the Simoncelli decomposition.

B. Sensitivity to Noise

The followingsetof tests isdesigned tocompare thesensitivity
of the registration results to the amount of noise present in the
data, when utilizing either correlation or MI. A collection of
input images is generated using only one transformation, namely

, and then adding different amounts of
Gaussian white noise. The added noise is measured by the
signal-to-noise ratio,expressed in decibels (dB), defined as

(6)

In this experiment, the SNR is varied between 20 dB (al-
most noise-less) and (extremely noisy). Two levels of
single-orientation Simoncelli wavelet decomposition are com-
puted for all images. Results are presented in Figs. 6 and 7,
which show rotation and shift errors, respectively. We observe
that both measures produce perfect results even with levels of
noise as large as . However, correlation-based results
deteriorate faster than the MI-based results.

As a summary, we have shown that for these experiments,
MI produces consistently sharper peaks at the correct registra-
tion values than correlation, which is important for obtaining
sub-pixel registration accuracy. Moreover, sharper peaks are
also produced at the lowest resolution of the sub-band images
produced by a wavelet-like decomposition. This indicates
that MI can produce more accurate results than correlation in
a multiresolution registration scheme based on wavelet-like

filters. Registration is achieved in a more efficient manner in
this framework, since one can start with a smaller image for the
initial search, and successfully narrow down the search range
for the larger images. Our results show that even when noise
is present in the input image, both correlation and MI produce
perfect registration for Gaussian noise levels up to for
our tests with Simoncelli filters, and MI is more robust to noise
than correlation.

V. STOCHASTIC GRADIENT OPTIMIZATION FOR IMAGE

REGISTRATION

In the previous sections, the search for the optimum trans-
formation was done by an exhaustive search over an allow-
able range of parameters. But as previously stated, this com-
putational cost increases exponentially with both the dimension
of the parameter space and the dimension of the dataset. Ex-
haustive search becomes even more expensive when the goal is
sub-pixel accuracy, thus an alternate iterative search method is
considered in this Section.

A. Brief Survey of Optimization Techniques

The choice of optimization search technique depends on
the type of problem under consideration. Traditional nonlinear
programming methods, such as the constrained conjugate
gradient, or the standard backpropagation in neural network
applications, are well suited to deterministic optimization
problems with exact knowledge of the gradient of the objective
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Fig. 6. Rotation error as a function of noise.

Fig. 7. Translation error as a function of noise.

function. Optimization algorithms have been developed for a
stochastic setting where randomness is introduced either in the
noisy measurements of the objective function and its gradient,
or in the computation of the gradient approximation. These
optimization algorithms can be divided into two categories:
Gradient-based algorithms, such as the Robbins-Monro sto-
chastic approximation algorithm can be considered to be a
generalization of the deterministic steepest descent. It requires
that direct measurements of the gradient are available, but
these measurements are generally a gradient estimate because
the underlying data is usually noisy.Gradient-free algorithms
include some general-purpose optimizers such as the simple
random search, or the genetic algorithm, which works with
a population of candidate solutions and randomly alters the
solution over a sequence of generations. Both these methods
can be useful for a broad search over the domain of the param-
eters being optimized, and can provide initialization for a more

powerful local search algorithm. Other nongradient optimiza-
tion methods include Simulated annealing, the Nelder-Mead
Simplex method which attempts to minimize a scalar-valued
nonlinear function using only function evaluations, and the
Kiefer-Wolfowitz algorithm which is a finite-difference method
for optimization of noisy data. Approaches based on the use
of gradient estimations tend to be fast, but are sensitive to
the presence of local optima. Additional discussion of these
methods can be found in [23].

The stochastic gradient technique, which is used in this work
is a gradient-free approach. It does not require an explicit deriva-
tion of the required gradient vector, but it uses instead an ap-
proximation to the gradient. In the next Sections we show how
it can be applied to image registration, and integrated within the
multiresolution framework of the Simoncelli steerable pyramid
described in Section II.

B. Spall’s Optimization Technique

The optimization technique, which is implemented in this
work is the Simultaneous Perturbation Stochastic Approxima-
tion (SPSA) algorithm. It was first introduced by Spall in [12],
where a detailed description can be found. It has recently at-
tracted attention for solving challenging optimization problems
where it is difficult or impossible to obtain an analytic expres-
sion for the gradient of the objective function. This is espe-
cially true of the MI function, since the probabilities required in
the computation of (3) are estimated using the joint image his-
togram. The dependence of the MI function on this discrete his-
togram makes the computation of its derivative complex. SPSA
is based on an easily implemented and highly efficient gradient
approximation that relies only on measurements of the objective
function to be optimized. It does not rely on explicit knowledge
of the gradient of the objective function, or on measurements of
this gradient.

Let us call , the objective function to be optimized. In our ex-
periments, represents either MI or the correlation similarity
measure. We consider a parameter search space of two-dimen-
sional rigid transformations, consisting of rotation and transla-
tion in the and -directions. There are thus three parameters to
be optimized, represented in a vector form as .
At each iteration, the gradient approximation is based on only
two function measurements (regardless of the dimension of the
parameter space). An additional function measurement is made
at each newly computed point, in order to decide (subject to a
preset threshold) whether to block or to update the parameters.
At iteration , the update law for the parameters is steepest as-
cent

(7)

where the gradient vector for the
-dimensional parameter space is determined by

(8)
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In this study, three parameters are to be updated at each itera-
tion, i.e., . Each element of the vector, takes on
a value of or , as generated by a Bernoulli distribution,
and and are positive sequences of the form

(9)

(10)

such that

(11)

The SPSA algorithm is a very powerful technique, which can
get through some local maxima of the objective function to find
the global maximum because of the stochastic nature of the gra-
dient approximation. All the elements of are randomly per-
turbed to obtain two measurements of . Each component
of the gradient vector is then formed by the ratio defined in (8).
The algorithm works by iterating from an initial guess of the op-
timal parameters, by using this calculated gradient. Spall [12]
presents sufficient conditions for convergence of the SPSA iter-
ative process in the stochasticalmost sure. Convergence is es-
tablished by requiring to be sufficiently smooth (i.e., three
times continuously differentiable) near the optimum, and im-
posing the following conditions on the gain sequencesand

, such that they go to zero at rates that are neither too fast nor
too slow, i.e.,

(12)

The elements of the perturbation vector are required to be
independent and symmetrically distributed about 0 with finite
inverse moments for all , . The conditions on

make the gradient approximation, an almost unbiased
estimator of the true gradient , i.e.,

. For small, these misdirections act like random errors,
which average and cancel out over a number of iterations.

When the transformed image is obtained using cubic B-spline
interpolation, it produces a smooth MI surface as shown in
Fig. 8(a). An important consideration in the application of the
optimization scheme, is that the further away the initial guess
is from the global maximum, the more local maxima the algo-
rithm may need to overcome to reach the global maximum, and
thus the more likely it is to fail. Note that the coarser the images
(i.e., the deeper the level of the Simoncelli decomposition) the
less smooth is the MI surface, and failure at this coarser level
can be catastrophic to the optimization algorithm. For these
smaller, lower resolution images, a further reduction in the
number of bins in the histogram may be necessary, in order
to get a smooth surface. As an illustration, Fig. 8(b) shows

(a)

(b)

Fig. 8. Mutual information surfaces. (a) Spline-interpolated sub-pixel MI
surface for one data pair at level 1 (� = 0). (b) MI surface at level 4, showing
the global maximum and some local maxima.

the MI surface for level 4 for one pair of images from our test
dataset, where ripples on the MI surface can be seen as one
moves away from the global maximum. These are indicative
of local maxima, which may trap the algorithm causing it to
fail. Significant smoothing of the MI surface at the coarsest
decomposition level results from using a histogram with 64
bins, as opposed to 256 bins.

VI. EXPERIMENTS AND RESULTS

In this Section, multiresolution registration combining
Simoncelli band-pass features, MI and the Spall optimization
scheme is thoroughly tested and compared using synthetic
test data as well as multitemporal data and remotely sensed
imagery from different sensors. Results are also provided to
compare MI with correlation. These experiments are conducted
on an SGI Octane 195 MHz computer, and timing results are
provided for that machine.
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A. Description of the Parameters

Using Simoncelli filter size 9 and the Steerable Pyramid de-
composition of Fig. 2, four levels of decomposition are com-
puted and the feature space is composed of the gray levels of im-
ages , , and . These images correspond
to a decimation of 8, 4, 2, and 1 of the original image, respec-
tively. The constants, , , and for the SPSA algorithm
are chosen and optimized within the range of values suggested
by Spall [12], which would ensure convergence. The chosen pa-
rameter values are , , , ,

using a threshold of 0.1 for blocking; i.e., the param-
eter values are not updated if the MI value for the new point falls
more than 0.1 below the current MI value. These values were
found to work well for both MI and correlation for the datasets
tested, so they were fixed for all the experiments to follow, pro-
viding a single frame of reference for the comparative study. In
general, it may be more judicious to set the threshold at some
percentage of the starting MI value.

B. Description of the Test Datasets

In this study, four datasets were used. For datasets 1– 3
below, only one band of each sensor was utilized. This is
band 4 for Landsat-TM (“Thematic Mapper”) data and band
2 for AVHRR-LAC (Local Area Coverage) data. These bands
correspond to the Near-Infrared bands and usually show the
best contrast of land features. In the future, an investigation
could be done of whether a combination of several bands might
improve the registration accuracy. The datasets are as follows:

1) From the same Landsat-TM (“Thematic Mapper”) scene
of the Pacific Northwest used to produce the image of
Fig. 3, the 192 192 center of this image is extracted
and utilized as the “Reference Image.” “Input images” are
artificially created by translating and rotating the original
image and then extracting the 192192 centers of the
transformed images

• translation parameters are varied in the horizontal
direction by amounts of 0 to 5 pixels;

• rotation parameters are varied with angles ranging
from 0 to 6 .

2) The second set of images comes from a series of mul-
titemporal NOAA Advanced Very High Resolution Ra-
diometer (AVHRR) scenes which differ from the refer-
ence by very small translations and no rotations; these are
shown in Fig. 9. These images are all of size 5121024.
Note the varying locations of clouds in the images.

3) The third dataset consists of seven pairs of images of
size 256 256, each of which extracted from Band 4 of
two scenes taken by Landsat-5 (in 1997) and Landsat-7
(in 1999) over the Chesapeake Bay area (Eastern United
States). These pairs of images, shown in Fig. 10, are re-
ferred to as wind and chip respectively, and the Landsat-5
windows are registered to the corresponding Landsat-7
chips.

4) The fourth dataset used for this study represents multi-
sensor data acquired by four different sensors over one of
the MODIS Validation Core Sites. The site is the Konza
Prairie in the state of Kansas, in the Middle West region

Fig. 9. Second dataset: Series of multitemporal AVHRR images over South
Africa.

of the United States. Overall, we consider eight different
images corresponding to different bands of different sen-
sors. The four sensors and their respective bands and spa-
tial resolutions involved in this study are

• IKONOS Bands 3 (Red) and 4 (Near-Infrared), spa-
tial resolution of 4 meters per pixel, resampled to
3.91 m;

• Landsat-7/ETM+ Bands 3 (Red) and 4 (Near-In-
frared), spatial resolution of 30 meters per pixel, re-
sampled to 31.25 m;

• MODIS Bands 1 (Red) and 2 (Near Infrared), spa-
tial resolution of 500 meters per pixel;

• SeaWIFS Bands 6 (Red) and 8 (Near Infrared), spa-
tial resolution of 1000 meters per pixel.

Fig. 11 shows one band of each of these scenes.

C. Algorithm Implementation

First, we conduct a series of experiments using the synthetic
imagesgenerated from the referenceofdataset1, to test the sensi-
tivityofouralgorithmtoseveralparameters.Thenbasedonourre-
sults, an automated optimization scheme is designed and applied
to the remaining datasets (2–4) in a multiresolution manner. The
optimization algorithm is tested on these multisensor and multi-
temporal datasets using both correlation and MI.

The optimization scheme starts with an “initial guess” of the
correct registration value, based on prior information from a
coarser registration scheme. The initial guess is then scaled to
the corresponding starting value at the lowest decomposition
level to be registered, and the optimization scheme is applied
for a fixed number of iterations. The final registration transla-
tion-values at this level, are then doubled and passed with the
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(a)

(b)

Fig. 10. Third dataset: (a) Seven chips (256� 256) extracted from band 4 of a
1999 Landsat-7 Scene. (b) Seven corresponding windows (256� 256) extracted
from band 4 of a 1997 Landsat-5 scene.

rotation-value, up to the next level as a new starting point. This
process is iterated up to level 1, which provides the final regis-
tration result. Note with this multiresolution approach, it is crit-
ical for a correct result to be obtained at the coarsest level of the
decomposition so as not to propagate and multiply errors.

1) Sensitivity to Initial Guess and Number of Decomposi-
tion Levels: In this subsection, we test the sensitivity of our
algorithm to the following parameters: the choice of the Simon-
celli subband (low-pass versus band-pass), the number of levels
of decomposition, and the distance between the initial guess
and the correct result. Finally we compare MI to correlation in
terms of their respective regions of attraction. These tests are
performed using dataset 1. The plots of Fig. 12 correspond to

Fig. 11. Fourth dataset: IKONOS, Landsat/ETM, MODIS and SeaWIFS
images of the Konza Prairie in Kansas, U.S.

MI optimization for the band-pass outputs of the Simoncelli de-
composition for the images of dataset 1. They show the average
of the final RMS errors measured in pixels, for the images of
dataset 1 versus the number of iterations, for starting points (or
initial guesses) at various horizontal distances from the correct
result (or ground truth). Each starting point has a rotational error
of 5 , in addition to the translational error indicated.

The average errors are computed as follows. For each of the
42 reference-input pairs, individual errors are computed by
taking the root mean square (RMS) error over all the pixels in
each image as follows:

(13)

for with ; where
represents the correct (“Ground Truth”) transformation and

is the computed transformation, is the Euclidean distance
and is the total number of pixels in the image. This error is
averaged over all the image pairs.

For all the cases shown in Fig. 12, the algorithm consistently
converges using four levels of decomposition, when the starting
distance is 12 pixels or less in a single direction from the
“ground truth” value. The algorithm fails at 16 pixels, with the
error increasing with the number of iterations. This may be
due to the algorithm getting trapped at a local maximum at a
coarser level, with this incorrect registration being propagated
through subsequent levels. For one level of decomposition,
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(a) (b)

(c) (d)

Fig. 12. RMS pixel error curves for MI with different initial distances over varying numbers of decomposition levels (band-pass). (a)Initial guess = 4 pixels
from correct result. (b)Initial guess = 8 pixels from correct result. (c)Initial guess = 12 pixels from correct result. (d)Initial guess = 16 pixels from
correct result. (Algorithm failure for all decomposition levels.).

registration is done using the band-pass outputB0only, and for
all cases the algorithm does not converge. Convergence can be
achieved for this size image by using the original image, with
no Simoncelli decomposition.

Similar plots were generated using the low-pass outputs of
the Simoncelli decomposition. For the varying numbers of de-
composition levels, the final value of the average error after 220
iterations was about the same as for the band-pass outputs (be-
tween and ) with the low-pass being less sensitive
than the band-pass to the distance of the initial guess from the
correct result. However, when more complex test data is used,
such as noisy and/or multisensor imagery, band-pass appears to
achieve better precision than low-pass, while being just as ro-
bust. This is consistent with results reported in [20]. Based on
these observations, the remaining tests are done using four levels
of the Simoncelli band-pass output from a starting point, which
is less than 12 pixels from the expected solution. We expect that

such a starting point can be determined from a coarser registra-
tion scheme such as an exhaustive search [2].

The results for the identical experiment optimizing correla-
tion for the band-pass outputs, are shown in Fig. 13. We note that
in this case, algorithm failure occurs at a distance of 24 pixels
from the “ground truth” values [see Fig. 13(d)].

Comparing the results of the experiments shown in Figs. 12
and 13, we note that correlation converges if the starting dis-
tance is less than 24 pixels from the optimum point, and we say
that its optimum has a region of attraction of about 24 pixels.
With a similar definition, the MI optimum has an attraction re-
gion of about 16 pixels. Inspecting the plots of Fig. 5, at level
4 we observe that the neighborhoodV0, defined by inflexion
points, is 3 pixels for correlation, which is consistent with 24
pixels in full resolution units, and it is 2 pixels for MI, which is
consistent with 16 pixels in full resolution units. We also note
that MI achieves better accuracy than correlation, since after 220
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(a) (b)

(c) (d)

Fig. 13. RMS pixel error curves for correlation with different initial distances over varying numbers of decomposition levels (band-pass). (a)Initial guess =
4 pixels from correct result. (b)Initial guess = 12 pixels from correct result. (c)Initial guess = 16 pixels from correct result. (d)Initial guess = 24 pixels

from correct result. (Algorithm failure for all decomposition levels.).

iterations the sub-pixel precision of the final result is for
correlation, compared to about for MI optimization.

D. Results on Multitemporal and Multisensor Imagery

Tables I and II show details of the optimization algorithm ap-
plied to dataset 3, referred to as the wind and chip image pairs,
for a total of 10 iterations only. Convergence occurred to a “rea-
sonable” set of final parameters for all the pairs in this dataset,
and intermediate results are provided at all four levels of the Si-
moncelli decomposition. The initial guess for starting the opti-
mization, is about 8 pixels away from the final registration value
in the -direction, and less than 4 pixels in the-direction. Re-
sults of using MI are provided in Table I, while those for corre-
lation are given in Table II. Note the similar timings for the two
metrics when using the same number of iterations.

Since no good ground truth is available for this dataset, we
evaluate these results visually by obtaining the mosaics using

the SPSA registration values of [23,32,0] for [wind2, chip2],
and [23,35,0] for [wind5, chip5], as shown in Fig. 14.

Table III provides the results for the AVHRR images (i.e.,
dataset 2) with four levels of decomposition. For this dataset
the average RMS error between the manual registration values
and those from the MI optimization is 0.6385 pixels, while the
average error from the correlation optimization is 0.5156 pixels.

Results for the multisensor images of dataset 4 are provided
in Table IV. For the multisensor images, the average error be-
tween the manual registration values and those from the MI op-
timization is 0.3446, while the average error with the correlation
optimization is 1.2522, and sub-pixel accuracy is not achieved
on average. The correlation error is skewed by the much larger
error produced by the NIR pair of modis and etm. Excluding this
data pair, the average error is 0.3538 for MI versus 0.4756 for
correlation. It is important to also note that manual registration
values were not provided at the sub-pixel level.
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TABLE I
WIND AND CHIP, MUTUAL INFORMATION USING SIMONCELLI DECOMPOSITIONS: STARTING POINT (16,32,0),Max: No: Iterations = 10

TABLE II
WIND AND CHIP, CORRELATION USING SIMONCELLI DECOMPOSITIONS: STARTING POINT (16,32,0),Max: No: Iterations = 10

E. Parameter Convergence

By further expanding the results of Tables I and II for the
[wind2, chip2] data pair of dataset 3, we can observe the
convergence rates using MI optimization versus correlation
optimization. In Fig. 15, the plots show the convergence rate of
the relevant parameters with the optimization of MI compared
with that of correlation. We compare convergence for the original
[wind2, chip2] images with an “arbitrary” starting point of

, and also for Simoncelli decomposition
level 1 using the starting point obtained from the previous
three-level optimization. For the original image with no pyramid
decomposition, one observes that using MI optimization, each of
parameters converge in about one third the number of iterations

required by correlation optimization. Note that the wavelet
starting points at level 1 are very close to the optimum in all cases.

The timing for the 4-level registration of [wind2, chip2] from
the starting point over 400 iterations
is 999.7 s for MI, while that for correlation is 985.9 s. Nev-
ertheless, it is important to note that for the original [wind2,
chip2] image pair over 400 iterations, the maximum MI value
is achieved in 72 iterations, while the maximum correlation is
achieved at 395 iterations.

VII. D ISCUSSION ANDCONCLUSIONS

Prior work on optimization techniques for image registration
can be found in references [3]–[5] and [9]–[11]. The techniques
described in [9]–[11] are all based on minimizing a sum of square
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(a) (b)

Fig. 14. Checkerboard Mosaiced images using SPSA optimization values. (a) SPSA registration for [wind2,chip2]. (b) SPSA registration for [wind5,chip5].

TABLE III
AVHRR, MUTUAL INFORMATION AND CORRELATION, USING SIMONCELLI DECOMPOSITIONS: STARTING POINT (0,0,0),Max: No: Iterations = 250

TABLE IV
MULTI-SENSOR, MUTUAL INFORMATION AND CORRELATION, USING SIMONCELLI DECOMPOSITIONS: STARTING POINT (0,0,0),Max: No: Iterations = 250

differences. Maeset al. [3] use Powell’s method to optimize
MI. Following this gradient-based methods were investigated in
[22], which uses an explicit calculation of the required derivative
based on a partial volume interpolation of the criterion, and
the search is implemented in a multiresolution framework.
Irani and Peleg [10] choose to minimize the square error of a
“disparity vector” between the two images. It proceeds by a
Newton-Raphson technique, and also requires computation of
the necessary gradients. The scheme described in [10] does not
involve multiple resolutions of the images. Finally, Eastmanet
al. [11] integrate the gradient-descent techniques described in
[9] and [10] in a multiresolution framework, while focusing on
the radiometric component of the registration transform which is
associatedwith thedifferentviewingconditionsofmultitemporal
or multisensor data. Thevenazet al. in [9], develop a scheme to
optimize an integrated sum of square differences in the intensity
values of the images, which works in a multiresolution manner.
They use a Marquardt-Levenberg algorithm, and computations
of the derivatives and of the Hessian matrix are based on a

spline pyramid. Their work is applied to medical imagery, and is
extended in [5] to the maximizationof the MIsimilarity criterion.

The registration algorithm proposed by Thevenaz and Unser
in [5], solves a problem similar to the one described here. Their
algorithm is based on a combination of MI together with a mul-
tiresolution gradient search. By using the spline data model both
for image interpolation and for the probability density estima-
tion with Parzen windows, smoothing is achieved and the gra-
dient components of MI are computed exactly in a determin-
istic fashion. An optimizer similar to the Levenberg-Marquardt
is then designed specifically for this criterion.

The algorithm presented here is generally simpler and thus
less computationally intensive, while the optimizer in [5] is
more involved and may therefore be more robust. Our gradient
components are computed approximately and stochastically,
and we also use trivial windowing in the form of a reduced
number of histogram bins, to achieve smoothing. In addition,
our search strategy is essentially gradient ascent, which is
robust when far from the solution but it converges more slowly
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(a) (b)

(c) (d)

Fig. 15. Parameter optimization curves for mutual information versus correlation for [wind2,chip2] data pair. (a) Optimization curves for MI and correlation.
(b) Optimization curves forTx. (c) Optimization curves forTy. (d) Optimization curves for rotation,�.

than the Levenberg-Marquardt type optimizer of [5], when
close to the solution. Also because of the stochastic nature of
the gradient approximation, our algorithm exhibits a somewhat
oscillatory convergence behavior compared to the smooth
convergence in [5]. It is unclear which algorithm performs
better under various conditions, and more testing is necessary
to evaluate this, but this is beyond the scope of this paper.
However, we note that due to the simplicity of its components,
our algorithm may yield itself more easily to a distributed or
parallel implementation, which may be essential for real-time
processing of satellite scenes.

The study presented in this paper has applied the SPSA opti-
mization technique for the registration of remote sensing images
in a multiresolution framework, using Simoncelli wavelet-like
filters. In the multiresolution approach provided by this steer-
able decomposition, when convergence occurs at a coarser level,
it provides a near optimal starting point for the next level. This
can produce immediate convergence at that level, providing a
considerable speed up in the overall registration process. The

multiresolution approach also increases the robustness of the al-
gorithm since it is less likely to get trapped in a local maximum
at the higher resolutions. From Figs. 12 and 13, we note that the
algorithm consistently converges when using 4 decomposition
levels for registration, provided that the initial starting point is
not too far from the global optimum.

On average for these experiments, registration of a 256256
image over the same number of iterations, took about equal time
for MI with 64 bins as for correlation on an SGI Octane 195
Mhz computer. The advantage of using MI optimization over
correlation can be found in its faster convergence rate in terms
of number of iterations. MI was generally observed to converge
in about one third the number of iterations required by correla-
tion. In this work, the algorithm was run for a fixed number of
iterations, in the future we will investigate the definition of an
automatic stopping criterion for the optimization.

Using the area under the curve as a measure of sharpness of
the MI and correlation peaks, it was shown in Section IV-A that
the MI curve for the original gray levels is about 6 times as sharp
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as the correlation curve, but it is 2.5 times as sharp when using
the Simoncelli sub-bands in a neighborhood about the optimum.
Thus it is possible that faster convergence and better precision
can be achieved at the finest level of the decomposition by using
MI together with the original gray level images, in place of the
level 1 outputs of the Simoncelli wavelets. We also observe that
while the MI curve is convex around the optimum for the reg-
istration of the synthetically generated images in Figs. 4 and 5,
this curve becomes concave for the real-life images of Fig. 10,
as shown in Fig. 8(a). This may indicate less precise registration
for those images, but it also allows for the possibility of applying
second order optimization methods.

Current work involves the inclusion of isometric scaling as
an additional parameter to be optimized by the algorithm. The
experiment using the multisensor images of dataset 4 indicates
that the scheme presented here may, in fact, work well for mul-
tisensor registration also. We will continue to test this algorithm
on other types of datasets in future work, and its performance
will be compared to other registration schemes [13].
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