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1. Introduction

THE Rhind Papyrus of A’hmosé is one of the oldest known mathematical
writings (c. 1650 B.c.) and has been the subject of much study (cf. (8))
during the past eighty years. From the evidence presented in this papyrus
it is generally recognized that Egyptian mathematicians of that time were
able to represent any ‘reasonable-sized’ positive rational number as a
finite sum of distinct unit fractions, i.e. fractions with numerator 1,
although no algorithm was given to accomplish this representation. The
first proof that any positive rational could be so represented appears to
be due to Leonardo Pisano (4) in 1202, whilst later proofs were given by
J. J. Sylvester (6) in 1880, and others (cf. (3)). In 1954 it was shown by
B. M. Stewart (5) and independently by R. Breusch (1) that if p/g>0
and ¢ is odd, then p/g is the sum of a finite number of reciprocals of
distinct odd integers. In this paper we present a theorem which consider-
ably generalizes these results. An exact statement of this theorem requires
a certain amount of terminology and will be postponed until § 3. Roughly
speaking, the theorem gives some very simple necessary and sufficient
conditions for a rational number to be the finite sum of reciprocals of
distinct positive integers taken from a fixed sequence M, where M is any
sequence which belongs to a certain rather large class of sequences of
positive integers. For example, it follows from this result that a rational
number p/q can be expressed as a finite sum of reciprocals of distinct
squares of integers if and only if

j_e 0 _2_, [§] _2
(FOI‘ more examples, see § 4.)

2. Preliminaries
Let 8 = (84,8;,...) be a sequence (possibly finite) of positive real
numbers.

DerFintTiOoN 1. P(8) is defined to be the set of all sums of the form

20
Y €8, where ¢, = 0 or 1 and all but a finite number of the ¢, are 0.
k=1
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DEFINITION 2. § i8 said to be complete if all sufficiently large integers
belong to P(S).

DErINITION 3. 8§ is said to be entirely complete if all positive integers
belong to P(S).
We shall use the following theorem due to J. L. Brown (2).

THEOREM. A non-decreasing sequence 8 = (81582, -..) of positive integers
n

i8 entirely complete if and only if for all n> 0, 28, >8,,1— 1 (where a sum
k=1

b
of the form 3 is taken to be O for b <a).
k=a

DEFINTTION 4. §-1 is defined to be the sequence (s;1,s51,...).

DerINITION 5. Let S = (s;,8,,...) be complete. The threshold of
completeness of S is defined to be the least non-negative integer 6 such that
any integer greater than or equal to 6 belongs to P(S).

Note that S is entirely complete if and only if the threshold of
completeness of § is 0.

DEFINITION 6. Let S = (s,8,,...) be a sequence of positive integers.
M (8) is defined to be the monotone increasing sequence formed from the

m
set of all products [] 8, wherem = 1,2,3, ... and ky<ky<...<k,. (Thus,
i=1

all the terms of M(S) are distinct.)
We conclude this section with a final definition and a lemma.

DEFINITION 7. Let 8 = (s,8,,...) be a sequence of real numbers. A
real number o is said to be S-accessible if, for any €>0, there exists p in
P(8) such that 0<p—a<e.

LeMma 1. Let 8 = (8, 8,, ...) be a sequence of real numbers such that

8>8>... and s,]0,

and suppose that « is S-accessible. Then, for any €> 0, there exist integers
m>0 and ky, ky, ..., k,, such that

8y > 81y > 0 > 8y
m
and 0<a— ¥ 8, <min (s, ,e).
i=1

Proof. Note that we must have o> 0. Suppose that 4 = (a,...,a,) is
a finite subsequence of S such that

n n—1
a—zak<0<ot—-zak.
k=1 k=1

Call such a subsequence ‘special’.
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Let us first assume that there exists only a finite number of ‘special’
finite subsequences of S (where » is allowed to range over all positive
integers), say A;forj=1,2,...,t. (Since « is S-accessible, it is clear that
there exists at least one ‘special’ subsequence of 8 .) Consider the set of all
quantities

Ya—oa for j=1,2,..,¢
aed;
Since this is a non-empty finite set of positive numbers, it has some least
element, say 8> 0. Since « is S-accessible, there exist integers m >0 and
ky, ky, ..., k,, such that

ki<ky<...<k,
and
m
< —a<=.
0< i§18k1 a<g
Consider the quantities
m—j+1

Yi= 2 Sy—a for j=1,2,3, ...
i=1

From the above we have y, > 0. Ify, = 0 then the lemma is proved. Thus,
assume that y; > 0. Now, if y, <0 then we reach a contradiction. For in

this case we have
m m—1
Y= Zsk‘—oc>0>'y2 = Z SI“—Q
i=1 i=1
and consequently the subsequence (Sky Skgs --+»S%,,) 18 ‘special’, which is
impossible since
§ 8
Sp— <o,
o 2
Thus we must have y,>0. If y, = 0 then the lemma is proved. Therefore
assume that y,> 0. Now, if y; <0 then, as above, we see that (St 581, _,)
is a ‘special’ subsequence, which is impossible since

m—1 m S
2 Sk‘—ag Zsk‘-—a<—.
i=0 i=1 2

If y; =0 then the lemma is proved. We may therefore assume that
¥3>0,..., &c. By repeating this argument we can conclude that either
y» =0 for some r (in which case the lemma is proved) or y,>0 for
r=12,3,.... However, this latter case is impossible since Yme1 = —a<0.
To complete the proof, assume now that there are infinitely many ‘special’
subsequences, say A, for j=1,2,.... Let ¢>0. Then some A, must
contain a least term s, <e, since there are only a finite number of the 8
which are greater than or equal to € and hence only a finite number of the
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4, can consist entirely of these terms. Therefore

O0<a— Y a<s,<e
aed,
AFS8,y,

since 4, is ‘special’. This proves the lemma.

3. The main theorems
In this section we proceed to the main results of the paper. All italic
symbols will denote positive integers unless otherwise specified.

THEOREM 1. Let S = (3,,8,,...) be a sequence of positive integers such that

(1) M(8) is complete,

(2) s, is unbounded,

(3) 8,41/8, 8 bounded.
Suppose that p|q is a rational number, with (p,q) = 1, such that

(4) p/q is (M(8S))L-accessible,

(8) q divides some term of M(S).
Then plqe P(M(S))™).

Proof. (a) By hypothesis there exists an A such that
Snti 4 for n= 1,2,3,...,

8’”
and 4 can be taken greater than 1. Let d be an arbitrary positive integer.
Denote the sequence M(S) by (m,,m,,...) (recalling that my<my<...).
Choose  so that
25 A.
Mg
Let M denote the finite sequence (m,,m,, ...,m,). Since each m; is the
product of a finite number of the s, there exists a y such that 8; does
not occur in any of the terms
My, My, ..., M,
for j>y. Choose u so that
u>y and s,>0,

where 0 is the threshold of completeness of M(S). By condition (5), there
exist 7 and e such that
P _pe pe

g ge 8;8,...8,°
Hence, by condition (4) and Lemma 1, we can find integers w, and Ny,
and terms ¢#; of M ((s,, s, s 8yy)) for j =1,2, ... n,, so that

l<ty<..<t,
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and
LG 1
Osg—- Zl 1 = L < ,
q jg.l j 8182...8wl 8182...8,“
and such that
R <_1_

81898y, bn,

If R = 0 then the theorem is proved. Hence we may assume that R > 0.
By condition (2), there exists w, > w, such that

By t1 St -+ Sup = 0.
By condition (1), there exists w; such that if

0<k<mdsu-1:0
then
kEP(M((sl, 89, "'1'swa)))'
Choose w so that
w>wy+wg+u and 8,8, <8,

(Again, condition (2) guarantees the existence of such a w.)
(b) Let
Noto that BR* = R.8,, 11842+ Swr
o a
Al R*>1.8, 18,128y =0
80,
R* R 1

and hence R*<s,,...8,. Therefore,
OSR*—0<8,,1... 8
(c) Form the finite sequence L = (L,,L,,...,L,) (whose terms are
considered to be just formal products of the s;) in the following way:
(1) L, = s,.
(2) Suppose that
L, =8,08,,10...08,
for some v satisfying u + 2 <v<w. Then L, , is defined to be the expression
8,08,1108,08,,108,,90...08, ;.
(3) Suppose that

L = 8;,08,0...08,;,

where o .
ULl <Py< ... <0 <W,
and where there is a largest m such that
1sm<h and w2i,+1#i; for j=1,2,..,h
Then L, ,, is defined to be the expression
8

,0...08; 1 08; 108; 0..08,.
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The formation of L, ,; from L, is continued until the term

Ly = 8,,108,,50...08,

is reached.
As an example of L, suppose that w = 5 and w = 9. Then
L = (85, 86, 87, 85, 89, 85 0 8, 85,0 87,850 8, 850 89,860 8y,
87089, 830 89, 850860 85, 85086089, 850 8,08y, 8508508,
860840 89,87 08508y, 85085087085, 850 808,08, 850808508,
85087085084,8408,08508,).
(d) For
L; = s;08;0...08
n
let |L;| denote the numerical value of s, 1Sig++ S 1.8, | L] is just the

ordlnary product of the integers Sip> Sigs ...,si". Form the finite sequence
= (fi.f2 ---,f,) as follows:

(1) fo =1L4|.
(2) fr411s defined to be the smallest integer g such that

. 9>fr and g=|L;|
for some 5 <b.

Thus,
fi<fe<...<f,
and fj, is in M((s,, 8,41, -.-,8,)) for k= 1,2, ..., 2. Now, for L, in (c)2 we
have
ILk+l| Su Sut1
=22l 1< A.
1Ll

Also, for L, in (c)3 we have

w

| Ly | Simt1
= <A.
| Ly | 8;

im

Thus,

'Lk-'l—ll
<4 .for k=1,2,..b-1.
L

Therefore, for f, in F, where n = 1,2,...,2—1, it follows from the
definition of f,, that

f J n+1
NN

f1=8u and fz>su+18u+2"'3w'

Note that

(e) Suppose that
B*e P(M((81, 85, ---58,)))-
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Then there exist n, and uy, Uy, ..., %y, in M((8;, 82, ---5S,,)) such that

Uy <Ug< ... <y,

and
N
Z uk = .R*-
k=1
Thus,
R* g u ne ]
=y =3

- b
8189...8y K=18183..-8p  k=1ly
where £}, belongs to M((sy, sy, .--,8,,)) and

t>t> ... >t
Since, by (a), :

R* R < 1
818.--8y 818308y by
we have
1 < 1
bty buy
Therefore,
p_wl, R 3 1.1

4 iSiby 8138w K=ily K=aly
where all the denominators are distinct elements of M((sy, 8, ...,8))-

Therefore,
EPAE) ).

Thus, to prove the theorem it suffices to show that

R*c P(M((81, 895 -++38)))-
(f) By (b), we have

£ 0<R*—9<8u+18u+2...SwngSmxfz.
I
myf;>R*—0
then
6 < R*¥<mf; +0<mys,+0.

By the definition of w, we have
R*¥e P(M((81,825 --+38w)))
and hence, by (e), the theorem is proved in this case. Therefore, suppose
that my f, < R*—0.
Since m,f; >m, f;,, forj =1,2,...,2—1, and
myfy<R*—0<m,f,

there exists at least one integer p’ <z —1 such that there is an f, in F

such that
My [ SB*—0<mp s fo
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Let p* be the largest integer such that there exists an Jo in F such that
Mpsfo S B*—0<mye,, f,.
There are two cases:
(i) Suppose that p* <d. Then we must have

mgf, > R*—8.
For suppose not, i.e. suppose that

mafy <R¥*—6.
Then

Mgy fr<R*—6
since if

Mgy fy>R*—0
then

mafy SB*—0<mg, fy,
which is in contradiction to the definition of p*. Similarly,
Myofr <B* -6,
Mma,sfr <R* -9,

H

m,f1 < R¥—0.
But
_ My fy>mafy
since
54 >J—cg .
d f
Therefore
mafy < B*—

Thus, as before, we must have
M1 fa<B* -0,

Mg fa < R*—0

2

m:cfz < B*—
But
Js
> A>3
Je
Therefore
myfs < R* —
and
Mgy fa <B* -9,
md+2f3 < R*— 0’
and finally, S

mzfzsR*_o’



ON FINITE SUMS OF UNIT FRACTIONS 201

which is a contradiction to our hypothesis on the size of R*—8.

Consequently, we must have
mgf, >R*—0.
Therefore,
O<R*<myf,+0 = mys8,+0.

Hence, by hypothesis on w, we know that
R*e P(M((81,83 -+, 8y)))s
and, by (e), the theorem is proved in this case.
(ii) Suppose that p*>d. Again we have two cases:
(1) Suppose that there exists ¢ such that

kzc=>my+my+...+mp>my,.

Now d was chosen to be an arbitrary positive integer. Hence we can
assume that d was chosen so that d >¢. Consider the quantities

p‘fa’
(m o+ Mpe_1) fos

— (mp¢ +mp._1+ .ee +’ml)fa.
Since p* >d,
my;+my+... +Mye ?mpa+1-
Therefore,
—(mpe+...+my) f, < R*—mye,, f, <0

by the definition of p*.
Let k be the smallest integer such that

(m st Mpe_y+.. +mh)fa>0

Thus
2<k<p* and R*- (Mps+Mpe_y+ ... +my_y) f, <6.
Hence,
- (mp. + Mps_1+ ...+ mk)fa <0 +mk-1fa'
But
. mk—lfa+0<mkfa
since

fo28,>0 and my_ +1<my,
and consequently
Theref (my—myq)fa>1.8,>0.
erefore,
R** = R*— (mye +Mpa_y + ... +my) fy <my f,,

and consequently

R* = ptfa‘i'mpt_lfa'*' oee +mkfa+R**,
where
O0<R**<m,f, and R**<R*.
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Thus, to show that
R*ec P(M((8,82 ---584)))
it suffices to show that
R** e P(M((s1, 825 ---58y)))-
For, any term used in representing R** cannot exceed R** and hence

must be less than m,f,, and from the definition of u it follows immediately
that if m is in M and fis in F then

meM((sb 82’ (RS sw))'
Now we return to the beginning of (f), replace R* by R**, and repeat the
preceding argument (which is possible since 6 < R** < R* <m,f,).
(2) Suppose that for any c there exists k, such that

k.>2c and my+mg+ ... +my, <my .

Now, by hypothesis, M(8) is complete. Thus, if there exists an n (where,
of course, n denotes a positive integer) such that

n¢ P(M(S))
then we have

k,
2 m;—ng¢P((my,...,m)) for ¢=1,23,...
i=1

(For it is clear that if 4 = (a,,...,q;) is any finite sequence then n ¢ P(4)
i
if and only if 3 a;,—n¢P(A4).) But
k=1
k,
i‘_‘,lm,- <My g <My o< ...

j=
so that

ke
Xm;—n¢P(M(S)) for ¢=1,2,3,....
i=1

Therefore, there are infinitely many positive integers which do not belong
to P(M(S)). This is a contradiction to the assumption that M(S) is
complete. Hence there cannot exist an » such that

n¢ P(M(S)).
In other words, M(S) is entirely complete and thus § = 0. Consider the
quantities '

B* —myf,,

B*— (mp‘ +mp‘—1)fa’

B* — (mye+Mpe_y+ ... +my) f,.
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Since M (S) is entirely complete, by the theorem of Brown mentioned in
§2 we have

§k]mj> my,,—1 forall k.
Therefore, !
RS (Mot oo 410y S BY = (Mo = 1)fy = B —miper fot o <04,
= fa<myf,.
Let k be the smallest integer such that
B* — (myu+mpa_y+ ... +m) f,>0.
Then 1 <k<p*. Ifk =1, then

.R** = .R*_(mp"'l‘ cee +m1)fa<m1fa
and

R¥* < R*,
Thus,
B* = myufy+ ... +myf, + R**.
Hence, it suffices to show that
R** e P(M((81,85 ---58,)))-

We return to the beginning of (f), replace B* by R**, and repeat the
preceding argument (which is possible since 0 = 8 < R** < R*<m,f,). If
k>1, then
B* — (mps +Mpe_y+ ... +my_) f, < 0.
Thus,
B¥* = B* — (et Mpe_y + ... +1) fo <mye_y fo <y f,y
and
R** < R*,
Hence, as before, it suffices to show that
B**c P(M((34,895 ---,8y)))-

Now we return to the beginning of (f), replace R* by R**, and repeat the
preceding argument (which is possible since 0 = 6<R**<R*<m,_f,).
Now, each time the argument of (f) is applied the ‘new’ remainder
R*n+D ig strictly less than the ‘starting’ remainder R*®™). But all the
remainders B*( are always non-negative integers. Hence the argument
must terminate in a finite number of steps, resulting in the conclusion that

-R* EP(M((SI’ 82? ceey sw)))‘
Therefore, by (e), we have
%eP«M(S»-I).

This proves the theorem.
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TaeorEM 2. Condition (2) in Theorem 1 can be replaced by
(2') s, 18 bounded and there exist infinitely many s, which are not equal to 1.

Proof. By hypothesis it follows that there exist

k,nqy,ng,mg, ...
such that

N <nyg<ng<.. and l<k=g

n forj=1,23, ...

Let
S* = (8, k, 89, k, K, 85, F, k2, k3, 8, ...).

Then it follows at once that
M(8) = M(S*).
Thus
(M(8*))7t = (M(8))* and P((M(8*))7) = P(M(8))™).
But in §* we have s,* is unbounded and

8 *

+1

———: + Smax (k,s;,8,,...) <c0.
n

Thus, S§* satisfies conditions (1), (2), and (3) of Theorem 1. Therefore,

since
M(8*) = M(8),
the theorem is proved.

Remark. Note that if there exist only finitely many n such that s, #1,
then M (S) must contain just a finite number of terms and therefore M(S)
is not complete. Combining this fact with Theorems 1 and 2 we have

THEOREM 3. Condition (2) in Theorem 1 can be omitted.

THEOREM 4. Let S = (8,85, ...) and suppose that p/qe P((M(8))1), where
(p,q) = 1. Then

(1) p/q is (M(S))-accessible,

(2) g divides some term of M(S).

Proof. Condition (1) is immediate from the definition of accessibility.
To get condition (2), we have by hypothesis

1 1 r
2. Fot -
q 8.8 8j - 8j,  8185...8,
for some r and n. Therefore,

P8y 8g... 8, = qr.

But we also have
(p,q)=1.

Thus ¢ divides s, s,...s,, where g, 8,...s, is a term of M(S). This proves
the theorem.
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We now combine the preceding theorems to obtain the main result of
this paper.
THEOREM 5. Let 8 = (s, 8, ...) be a sequence of positive integers such that
(1) M(S) is complete,
(2) 8,41/8, 18 bounded.
Then

%eP((M(S»-l)

(where (p,q) = 1) if and only if
(3) p/q is (M(8))1-accessible,
(4) q divides some term of M(S).

Proof. The proof follows immediately from Theorems 3 and 4.

Remark. It might be surmised that in Theorem 5 either condition (1)
or condition (2) could be weakened or even removed. While no examples
are known which show that condition (2) cannot be omitted, the following
example shows that condition (1) cannot be omitted.

ExaMpPLE. Let S be the sequence

(4,1,3,3%,33,...,3",...).
Then
M(S) =(1,3,4,32%,4-3,33,4-32, ...)

and § satisfies condition (2) of Theorem 5 but not condition (1) (since,
e.g., 2:3"¢ P(M(8)) for n = 0,1,2,...). Consider the rational number %.
Since
e}
1= 33+
k=1
and

[+ o]
Y 3% =3m121=(63")1 forany m,
k=m+2

+1
mz 3k + (4.3m)—1 — %_ (6'3"‘)—1 + (4.3m)—1 = %__‘_ (12.3m)—1_
k=1
Since m is arbitrary, } is (M(S))-1-accessible. We also know that 2 divides

4, and since 4 is a term of M(S) conditions (3) and (4) of Theorem 5 are
satisfied. It is now asserted that

3¢ P((M(8))7).
3 P((M(8))™).

For suppose that

Then
3=3"%4 . +3mp 4130 430,
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where 0<a,<a,<...<a, and 0<b,<by<...<b,. Now, a,>1 since

a1=0impﬁesth&t 1=14..,

which is impossible. If a,, <b, then
3m—am=0 (mod 3).
Thus 30
? .
2:30n = 4.3 | 4 4-30n—0m  (Z0a~br 4 1),

which is a contradiction since the left-hand side is divisible by 3 while
the right-hand side is not. A similar contradiction is reached if we assume
that a,,>b,. Hence we must have a,, = b, (note that a,,>a,>1). This
implies that

ba
%— =3 43 m 4 (B0t 4+ 1) = 3k+14+47Y3d+1)

for some % and d. Therefore
23 = 12k 4+-44+3d+1,

which again is a contradiction for the same reason as above. Thus,

¢ P((M(S))™),

=3t | 4 300m 4L (Bl 1),

which proves the assertion.

4. Concluding remarks

Theorem 5 can now be applied to a variety of sequences S which satisfy
conditions (1) and (2). While the proofs involved in these applications
will be left to a later paper, several results will be stated here.

(1) Let a and b be arbitrary positive integers and let p/q denote some
positive rational with (p,q) = 1.

Then p n o1

¢~ Bak T

for some positive integers n and k, <k, <... <k, if and only if

( q _a_) —1
(9, (@,0))’ (a,0)
(where (z,y) denotes the g.c.d. of z and y). (This result is obtained by
considering the sequence (a+1,2¢+1,3a+1,...).)

(2) A rational number p/g can be expressed as a finite sum of
reciprocals of distinct squares of integers if and only if

?_[o7_ 2
20,71 o[1,%).
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(3) For any positive integer n, every sufficiently small positive rational
can be expressed as the finite sum of reciprocals of distinct nth powers
of integers.

(4) A positive rational p/q with (p,q) = 1 can be expressed as the finite
sum of reciprocals of distinct square-free integers if and only if g is square-
free. ‘

(5) Let T' be a set of integers which contains all sufficiently large prime
numbers and all sufficiently large squares. Then every positive rational
number can be expressed as a finite sum of reciprocals of distinct integers
taken from 7'.

It may be remarked that (1) and (5) settle two questions raised by
H. S. Wilfin (7).
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