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Abstract
Euler’s totient function φ has the property that φ(n) is the order of the

group U(n) of units in Zn (the integers mod n). In the early years of the
twentieth century, Carmichael defined a similar function λ, where λ(n) is the
exponent of U(n). He called an element of U(n) with order λ(n) a primitive
λ-root of n.

Subsequently, primitive λ-roots have not received much attention until
recently, when they have been used in the construction of terraces and dif-
ference sets, and in cryptography.

The purpose of these notes is to outline the theory of primitive λ-roots
and to describe some recent developments motivated by the design-theoretic
applications.

1 Motivation
Consider the following sequence of the elements of Z35:

START
10 15 5 3 9 27 11 33 29 17 16 13 4 12 1 21 7 ↘

0
25 20 30 32 26 8 24 2 6 18 19 22 31 23 34 14 28 ↙
FINISH

The last 17 entries, in reverse order, are the negatives of the first 17, which, with
the zero, can also be written

55 56 57 31 32 33 34 35 36 37 38 39 310 311 312 74 75 0.
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If we write the respective entries here as xi (i = 1,2, . . . ,18), then the successive
differences xi+1 − xi (i = 1,2, . . . ,17) are

5 −10 −2 6 −17 −16 −13 −4 −12 −1 −3 −9 8 −11 −15 −14 −7.

Ignoring minus signs, these differences consist of each of the values 1,2, . . . ,17
exactly once. Thus the initial sequence of 35 elements is a special type of terrace.
Indeed, it is a narcissistic half-and-half power-sequence terrace – see [2, 3] for the
explanation of these terms. Its construction depends in particular on the sequence
31 32 . . . 311 312 (with 312 = 30 = 1) consisting of the successive powers of 3,
which is a primitive λ-root of 35.

Consider now the following sequence of the elements of Z15:

6 3 2 4 8 1 10 0 5 14 7 11 3 12 9.

This too is a terrace, and is of the same special type as before. Its construc-
tion depends in particular on the segment | 2 4 8 1 | which is | 21 22 23 24 | (with
24 = 20 = 1); this consists of the successive powers of 2, which is a primitive
λ-root of 15. The second, third, fourth and fifth segments of the terrace make up a
Whiteman difference set [17, Theorem 1, p. 112], with unsigned differences (writ-
ten under the difference set, with the element in the ith row being the unsigned
difference of the two elements i steps apart in the 0th row symmetrically above it)
as follows:

2 4 8 1 10 0 5
2 4 7 6 5 5

6 3 2 1 5
1 6 7 4

7 4 3
2 1

3

Thus primitive λ-roots are important in the construction of both terraces and
difference sets.

We have written these notes in expository style. Basic results on number the-
ory and on finite abelian groups can be found in any standard text, for example
Hardy and Wright [10] or LeVeque [12], and Hartley and Hawkes [11], respec-
tively. We are grateful to Donald Keedwell, Matt Ollis and David Rees for their
comments.
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2 Finite abelian groups
In these notes, Cn denotes a cyclic group of order n (which is usually written
multiplicatively), and Zn denotes the integers modulo n (which is additively a
cyclic group of order n but has a multiplicative structure as well).

The Fundamental Theorem of Finite Abelian Groups asserts that every such
group can be written as a direct product of cyclic groups. This statement, however,
needs refining, since the same group may be expressed in several different ways:
for example, C6 ∼= C2 ×C3.

There are two commonly used canonical forms for finite abelian groups. Each
of them has the property that any finite abelian group is isomorphic to exactly one
group in canonical form, so that we can test the isomorphism of two groups by
putting each into canonical form and checking whether the results are the same.
We refer to Chapter 10 of Hartley and Hawkes [11] for further details.

2.1 Smith canonical form
Definition The expression

Cn1 ×Cn2 ×·· ·×Cnr

is in Smith canonical form if ni divides ni+1 for i = 1, . . . ,r − 1. Without loss of
generality, we can assume that n1 > 1; with this proviso, the form is unique; that
is, if

Cn1 ×·· ·×Cnr
∼= Cm1 ×·· ·×Cms

where also m j divides m j+1 for j = 1, . . . ,s − 1, then r = s and ni = mi for i =
1, . . . ,r.

The numbers n1, . . . ,nr are called the invariant factors, or torsion invariants,
of the abelian group.

The algorithm for putting an arbitrary direct product of cyclic groups into
Smith canonical form is as follows. Suppose that we are given the group Cl1 ×
·· ·×Clq , where l1, . . . , lq are arbitrary integers greater than 1. Define, for i > 0,

i

∏
j=1

n′
j = lcm

(
i

∏
j=1

lk j : 1 ≤ k1 < · · · < ki ≤ q

)
.
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If r is the least value such that n′
r+1 = 1, then write the numbers n′

1, . . . ,n
′
r in

reverse order:
ni = n′

r+1−i for i = 1, . . . ,r.

Then the Smith canonical form is

Cn1 ×Cn2 ×·· ·×Cnr .

For example, suppose that we are given C2 ×C4 ×C6. We have

n′
1 = lcm(2,4,6) = 12,

n′
1n′

2 = lcm(8,12,24) = 24,

n′
1n′

2n′
3 = lcm(48) = 48,

so that the Smith canonical form is C2 ×C2 ×C12.
One feature of the Smith canonical form is that we can read off the exponent

of an abelian group A, the least number m such that xm = 1 for all x ∈ A; this is
simply the number nr, the largest invariant factor.

2.2 Primary canonical form
Using the fact that, if n = pa1

1 pa2
2 · · · par

r , where p1, . . . , pr are distinct primes, then

Cn = Cp
a1
1

×Cp
a2
2

×·· ·×Cpar
r
,

we see that any finite abelian group can be written as a direct product of cyclic
groups each of prime power order.

If we order the primes in increasing order, and then order the factors first by
the prime involved and then by the exponent, the resulting expression is unique:
this is the primary canonical form.

For example, the primary canonical form of C2 ×C4 ×C6 is

C2 ×C2 ×C4 ×C3.

The exponent is given by taking the orders of the largest cyclic factors for each
prime dividing the group order and multiplying these.

The orders of the factors in the primary canonical form are called the elemen-
tary divisors of the abelian group.
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3 Möbius inversion
We sketch here the definition of the Möbius function and the Möbius inversion for-
mula. These will be used several times without comment below. See Chapter 16
of Hardy and Wright [10].

Definition The Möbius function is the function µ defined on the positive integers
by the rule

µ(n) =

{1 if n = 1;
(−1)k if n is the product of k distinct primes;
0 if n has a square factor greater than 1.

The Möbius inversion formula is the following statement.

Theorem 3.1 Let f and g be functions on the natural numbers. Then the follow-
ing conditions are equivalent:

(a) g(n) = ∑
m|n

f (m);

(b) f (n) = ∑
m|n

µ(n/m)g(m).

For example, Euler’s totient φ is the function on the natural numbers given by the
rule that φ(n) is the number of integers m ∈ [0,n−1] for which gcd(m,n) = 1. (In
other words, it is the order of the group U(n) of units of Zn: see the next section.)
Now, if gcd(m,n) = d, then gcd(m/d,n/d) = 1; there are φ(n/d) such integers m,
for each divisor d of n. Thus we have

n = ∑
d|n

φ(n/d) = ∑
m|n

φ(m),

and so by Möbius inversion,

φ(n) = ∑
m|n

µ(n/m)m = ∑
d|n

µ(d)n/d.

From here it is an exercise to derive the more familiar formula

φ(n) = n ∏
p prime

p|n

(
1− 1

p

)
.
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4 The units modulo n

If x is an element of Zn (that is, a residue class modulo n), and m is a divisor of
n, then we may regard x also as a residue class modulo m. We usually denote
this new residue class by the same symbol x. But really, we have a map from Zn
to Zm. This map θ is a ring homomorphism: that is, θ(x + y) = θ(x)+ θ(y) and
θ(xy) = θ(x)θ(y). We call this the natural map from Zn to Zm.

The Chinese remainder theorem is crucial for what follows. It asserts that, if
n = n1 · · ·nr, where n1, . . . ,nr are pairwise coprime, and θi is the natural map from
Zn to Zni for i = 1, . . . ,r, then the map

x 7→ (θ1(x), . . . ,θr(x))

from Zn to Zn1 × ·· · ×Znr is a bijection: indeed, it is an isomorphism from Zn to
the direct sum of the rings Zni .

Let U(n) denote the group (under multiplication mod n) of units of Zn (the
integers mod n). The units are the non-zero elements of Zn which are coprime
to n. The number of them is φ(n), where φ is Euler’s totient function, defined in
the preceding section.

The structure of the group U(n) is given by the following well-known result.
The first part follows immediately from the Chinese remainder theorem.

Theorem 4.1 (a) Let n = pa1
1 pa2

2 · · · par
r , where p1, . . . , pr are distinct primes and

a1, . . . ,ar > 0. Then

U(n) ∼= U(pa1
1 )×U(pa2

2 )×·· ·×U(par
r ).

(b) If p is an odd prime and a > 0, then U(pa) is a cyclic group of order pa−1(p−
1).

(c) U(2) is the trivial group and, for a > 1, we have U(2a) ∼= C2 ×C2a−2 , where
the generators of the two cyclic factors are −1 and 5.

Thus, if n = pa or n = 2pa, where p is an odd prime, then U(n) is a cyclic
group. A generator of this group is called a primitive root of n.

For example,
U(18) = {1,5,7,11,13,17}.

The successive powers 50,51, . . . (mod 18) are

1,5,7,17,13,11,
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with 56 = 50 = 1; so 5 is a primitive root of 18.
For n > 4, the converse is also true: if there is a primitive root of n, then n is an

odd prime power or twice an odd prime power. This is because all the non-trivial
cyclic factors given by Theorem 4.1 have even order, so if there are at least two
of them, then C2 ×C2 is a subgroup of U(n); this happens if n has two odd prime
divisors, or if n is divisible by 4 and an odd prime, or if n is divisible by 8.

The elements of U(n) can be divided into subsets called power classes: these
are the equivalence classes of the relation ∼, where x ∼ y if y = xd for some d
with gcd(d,φ(n)) = 1. (This relation is symmetric because, if gcd(d,φ(n)) = 1,
then there exists e with de ≡ 1 (mod φ(n)); then ye = xde = x. It is easily seen to
be reflexive and transitive.) Said otherwise, x ∼ y if and only if x and y generate
the same cyclic subgroup of U(n). If x has order m (a divisor of φ(n)), then the
size of the power class containing x is φ(m).

Note that all elements of a power class have the same multiplicative order
mod n.

It follows from Theorem 5.2 (and is easy to prove directly) that, given any
finite abelian group A, there are only a finite number of positive integers n such
that U(n) ∼= A.

Problem 1 Is it true that, in general, arbitrarily many values of n can be found for
which the groups U(n) are all isomorphic to one another?

For example, the groups U(n) for n = 35, 39, 45, 52, 70, 78 and 90 are all
isomorphic to C2 ×C12. There are ten values of n less than 1000000 for which
U(n) ∼= U(n + 1), namely 3, 15, 104, 495, 975, 22935, 32864, 57584, 131144
and 491535. This is sequence A003276 in the On-Line Encyclopedia of Integer
Sequences [15], where further references appear.

Problem 2 (a) Are there infinitely many values of n for which U(n) ∼=U(n+1)?

(b) All the above examples except for n = 3 satisfy n ≡ 4 or 5 mod 10. Does this
hold in general?

5 Carmichael’s lambda-function
Euler’s function φ has the property that φ(n) is the order of the group U(n) of units
of Zn. R. D. Carmichael [6] introduced the function λ:
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Definition For a positive integer n, let λ(n) be the exponent of U(n) (the least m
such that am = 1 for all a ∈ U(n)).

From the structure theorem for U(n) (Theorem 4.1), we obtain the formula for
λ(n):

Proposition 5.1 (a) If n = pa1
1 pa2

2 · · · par
r , where p1, p2, . . . , pr are distinct primes

and a1,a2, . . . ,ar > 0, then

λ(n) = lcm(λ(pa1
1 ),λ(pa2

2 ), . . . ,λ(par
r )).

(b) If p is an odd prime and a > 0, then λ(pa) = φ(pa) = pa−1(p −1).

(c) λ(2) = 1, λ(4) = 2, and, for a ≥ 3, we have λ(2a) = 2a−2 = φ(2a)/2.

The values of λ(n) appear as sequence A002322 in the On-Line Encyclopedia
of Integer Sequences [15]. The computer system GAP [9] has the function λ

built-in, with the name Lambda.
Given m, what can be said about the values of n for which λ(n) = m? There

may be no such values: this occurs, for example, for any odd number m > 1. (If
n > 2, then the unit −1 ∈ U(n) has order 2, so λ(n) is even.) Also, there is no n
with λ(n) = 14, as we shall see.

To get around this problem, we proceed as follows.

Theorem 5.2 (a) If n1 divides n2, then λ(n1) divides λ(n2).

(b) For any positive integer m, there is a largest n such that λ(n) divides m.
Denoting this value by λ∗(m), we have that

(i) if n | λ∗(m), then λ(n) | m;

(ii) λ(n) = m if and only if n divides λ∗(m) but n does not divide λ∗(l) for
any proper divisor l of m.

(c) The number of n such that λ(n) = m is given by the formula

∑
l|m

µ
(m

l

)
d(λ∗(l)),

where d(n) is the number of divisors of n.
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Proof (a) Suppose that n1 divides n2. The natural map θ from Zn2 to Zn1 induces
a group homomorphism from U(n2) to U(n1). We claim that θ is onto. It is
enough to prove this in the case where n2/n1 is a prime p.

If p does not divide n1, then U(n2) ∼= U(n1) ×U(p), and the conclusion is
obvious. Suppose that p | n1. Then if 0 < a < n1, we have gcd(a,n1) = 1 if
and only if gcd(a,n2) = 1; so these elements of U(n2) are inverse images of the
corresponding elements of U(n1).

Now, if am = 1 for all a ∈ U(n2), then bm = 1 for all b ∈ U(n1) (since every
such b has the form θ(a) for some a ∈ U(n2)). So the exponent of U(n1) divides
that of U(n2), as required.

(b) Suppose that m is given. If λ(n) divides m, then λ(pa) divides m for each
prime power factor pa of n. In particular, if p is odd, then p − 1 must divide m,
so there are only finitely many possible prime divisors of n; and for each prime p,
the exponent a is also bounded, since pa−1 or pa−2 must divide m. Hence there
are only finitely many possible values of n, and so there is a largest value λ∗(m).

By part (a), if n | λ∗(m), then

λ(n) | λ(λ∗(m)) | m.

Conversely, the construction of λ∗(m) shows that it is divisible by every n for
which λ(n) divides m.

(c) This follows from (b) by Möbius inversion.

Remark If m > 2 and m is even, then the summation in part (c) can be restricted
to even values of l. For, if m is divisible by 4, then µ(m/l) = 0 for odd l; and if m
is divisible by 2 but not 4 and m > 2, then each odd value of l has d(λ∗(l)) = 2,
and the contributions from such values cancel out.

The calculation of λ∗(m) is implicit in the proof of the theorem. Explicitly,
the algorithm is as follows. If m is odd, then λ∗(m) = 2. If m is even, then λ∗(m)
is the product of the following numbers:

(a) 2a+2, where 2a || m;

(b) pa+1, for each odd prime p such that p −1 | m, where pa || m.

(Here the notation pa || m means that pa is the exact power of p dividing m.)
For example, when m = 12, the odd primes p such that p−1 | 12 are 3,5,7,13;

and so
λ

∗(12) = 24 ·32 ·5 ·7 ·13 = 65 520.
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For another example, let m = 2q, where q is a prime congruent to 1 mod 6.
Then 2q + 1 is not prime, so the only odd prime p for which p − 1 divides 2q is
p = 3, and we have

λ
∗(2q) = 23 ·3 = 24 = λ

∗(2).

Thus, there is no number n with λ(n) = 2q.
Other numbers which do not occur as values of the function λ include:

(a) m = 2q1q2 · · ·qr, where q1,q2, . . . ,qr are primes congruent to 1 mod 6 (they
may be equal or distinct); for example, 98, 182, 266, . . . ;

(b) m = 2q2, where q is any prime greater than 3; for example, 50, 98, 242, . . . .

We do not have a complete description of such numbers.
Another observation is that, if q is a Sophie Germain prime (a prime such that

2q + 1 is also prime, see [5]), and q is greater than 3, then there are just eight
values of n for which λ(n) = 2q, namely n = (2q+1) f , where f is a divisor of 24.
We do not know whether other numbers m also occur just eight times as values
of λ.

Sierpiński [14] remarks that the only numbers n < 100 which satisfy the equa-
tion λ(n) = λ(n+1) are n = 3, 15 and 90. But this is not a rare property: a short
GAP computation reveals that there are 143 numbers n < 1000000 for which the
equation holds.

The formulae show up a couple of errors on p. 236 of [6], giving values of n
for prescribed λ(n). The entry 136 for λ(n) = 6 should read 126, and the value
528 is missing for λ(n) = 20.

Note that, for a fixed even exponent m = λ(n), the maximum value λ∗(m) of
n also maximises the value of φ(n). For it is easily checked that, if n1 is a proper
divisor of n2, then φ(n1) ≤ φ(n2), with equality only if n1 is odd and n2 = 2n1; but
if m is even, then λ∗(m) is divisible by 8.

For example, the numbers n with λ(n) = 6, and the corresponding values
of φ(n), are given in the following table. (The function ξ(n) is defined to be
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φ(n)/λ(n).)
n φ(n) ξ(n)

7,9,14,18 6 1
21,28,36,42 12 2

56,72,84 24 4
63,126 36 6

168 48 8
252 72 12
504 144 24

Note that the values of φ(n) are not monotonic in n for fixed λ(n).

The order of magnitude of Carmichael’s lambda-function was investigated by
Erdős, Pomerance and Schmutz [8]. They showed, among other things, that for
x ≥ 16,

1
x ∑

n≤x
λ(n) =

x
logx

exp
(

B log logx
log loglogx

(1+o(1))
)

for some explicit constant B.
A composite positive integer m is called a Carmichael number if λ(m) divides

m−1. (For such numbers, a converse of the little Fermat theorem holds: xm−1 ≡ 1
(mod m) for all residues x coprime to m.) The smallest Carmichael number is 561,
with λ(561) = 80.

5.1 Denominators of Bernoulli numbers
The sequence (24,240,504,480,264, . . .) of values of λ∗(2m) agrees with se-
quence A006863 in the Encyclopedia of Integer Sequences [15]. It is is described
as “denominator of B2m/(−4m), where Bm are Bernoulli numbers”.

The Bernoulli numbers arise in many parts of mathematics, including modular
forms and topology as well as number theory. We won’t try to give an account
of all the connections here (but see the entry for “Eisenstein series” in Math-
World [16] for some of these); we simply prove that the formula given in the
Encyclopedia agrees with the definition of λ∗(2m).

The mth term am of the Encyclopedia sequence is the gcd of kL(k2m − 1),
where k ranges over all natural numbers and L is “as large as necessary”. To see
how this works, consider the case m = 3. Taking k = 2, we see that a3 divides
2L(26 − 1), so a3 is a power of 2 times a divisor of 63. Similarly, with k = 3,
we find that a3 is a power of 3 times divisor of 728. We conclude that a3 divides
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504. It is not yet clear, however, that 504 is the final answer, since in principle all
values of k must be checked.

We show that am (as defined by this formula) is equal to λ∗(2m). First, let
n = am, and choose any k with gcd(k,n) = 1. Then n divides kL(k2m −1). Since k
is coprime to n, we have k2m ≡ 1 (mod n). So the exponent of U(n) divides 2m,
and n divides λ∗(2m).

In the other direction, let n = λ∗(2m); we must show that n divides kL(k2m −1)
for all k (with large enough L). Since

(k1k2)L((k1k2)2m −1) = (k1k2)Lk2m
1 (k2m

2 −1)+(k1k2)L(k2m
1 −1),

it is enough to prove this when k = p is prime. Write n = pan1, where p does not
divide n1. Then n1 | λ∗(2m), so λ(n1) | 2m by Theorem 5.2; that is, n1 | p2m − 1.
So n | pa(p2m −1), as required.

5.2 p-rank and p-exponent
Definition Let p be a prime. The p-rank of an abelian group A is the number of
its elementary divisors which are powers of p, and the p-exponent is the largest of
these elementary divisors.

The 2-rank and 2-exponent of the group of units mod n can be calculated as
follows.

Suppose that n = 2a pa1
1 · · · par

r , where p1, . . . , pr are odd primes, a1, . . . ,ar > 0,
and a ≥ 0. Then the 2-rank of U(n) is equal to{r if a ≤ 1,

r +1 if a = 2,
r +2 if a ≥ 3.

The 2-exponent of U(n) is the 2-part of λ(n). It is the maximum of 2b and the
powers of 2 dividing pi −1 for i = 1, . . . ,r, where

b =

{0 if a ≤ 1,
1 if a = 2,
a −2 if a ≥ 3.

In particular, the 2-exponent of U(n) is 2 if and only if

(a) the power of 2 dividing n is at most 23;

(b) all odd primes dividing n are congruent to 3 mod 4.

We leave as an exercise the description of the p-rank and p-exponent of U(n)
for odd p.
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6 Primitive lambda-roots
Carmichael [6] defined primitive λ-roots as a generalisation of primitive roots, to
cover cases where the latter do not exist.

Definition A primitive λ-root of n is an element of largest possible order (namely,
λ(n)) in U(n).

We also put ξ(n) = φ(n)/λ(n), where (as noted) φ(n) is the order of U(n); thus
there is a primitive root of n if and only if ξ(n) = 1. (Carmichael calls a primitive
root a primitive φ-root.)

Since elements of a power class all have the same order, we see:

Proposition 6.1 Every element in the power class of a primitive λ-root is a prim-
itive λ-root.

Proposition 6.2 For any n, either ξ(n) = 1 or ξ(n) is even.

Proof Theorem 4.1 shows that ξ(n) = 1 if and only if n = pa or n = 2pa, where
p is an odd prime. Suppose that this is not the case. Then n is divisible by
either two odd primes or a multiple of 4. In the first case, let n = paqbm where p
and q are distinct odd primes not dividing m. Then φ(n) = φ(pa)φ(qb)φ(m) and
λ(n) = lcm{φ(pa),φ(qb),λ(m)}; since φ(pa) and φ(qb) are both even, φ(n)/λ(n)
is even. In the second case, if a ≥ 2 then φ(2a) = 2λ(2a), and so φ(2am)/λ(2am)
is even for any odd m.

For example, consider the case n = 15. We have φ(15) = φ(3)φ(5) = 8, while
λ(15) = lcm(φ(3),φ(5)) = 4, and ξ(15) = 2. The group U(15) consists of the
elements 1,2,4,7,8,11,13,14, and their powers are given in the following table:

element x powers of x
1 1
2 1,2,4,8
4 1,4
7 1,7,4,13
8 1,8,4,2
11 1,11
13 1,13,4,7
14 1,14

The primitive λ-roots are thus 2,7,8,13, falling into two power classes {2,8} and
{7,13}.
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Corollary 6.3 If λ(n) > 2, then the number of primitive λ-roots of n is even.

Proof The number of PLRs in a power class is φ(λ(n)); and φ(m) is even for
m > 2.

Proposition 6.4 The group U(n) of units mod n is generated by primitive lambda-
roots; the least number of PLRs required to generate the group is equal to the
number of invariant factors.

Proof We can write U(n) = A×B, where A is a cyclic group of order λ(n) gener-
ated by a primitive lambda-root a. Clearly every element of A lies in the subgroup
generated by the primitive lambda-roots. For any b ∈ B, the element ab is a prim-
itive lambda-root; for if m is a proper divisor of λ(n), then (ab)m = ambm and
am 6= 1. So b is the product of the primitive lambda-roots a−1 and ab.

The number of generators of U(n) is not less than the number of invariant
factors. Suppose that a1, . . . ,ar are generators of the invariant factors of U(n),
where a1 is a PLR. Then the elements a1,a1a2, . . . ,a1ar are all PLRs and clearly
generate U(n).

How many primitive λ-roots of n are there? The answer is obtained by putting
m = λ(n) in the following result:

Theorem 6.5 Let A = Cm1 ×Cm2 × ·· · ×Cmr be an abelian group. Then, for any
m, the number of elements of order m in A is

∑
l|m

µ
(m

l

) r

∏
i=1

gcd(l,mi).

Proof Let a = (a1,a2, . . . ,ar) ∈ A. Then am = 1 if and only if am
i = 1 for i =

1, . . . ,r. The number of elements x ∈ Cmi satisfying xm = 1 is gcd(m,mi), so the
number of elements a ∈ A satisfying am = 1 is g(m) = ∏

r
i=1 gcd(m,mi). Now

am = 1 if and only if the order of a divides m; so g(m) = ∑l|m f (l), where f (l)
is the number of elements of order l in A. Now the result follows by Möbius
inversion.

For example, U(65) ∼= U(5)×U(13) ∼= C4 ×C12, so that λ(65) = 12; and the
number of primitive λ-roots is

∑
l|12

µ(12/l)gcd(4, l)gcd(12, l).
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The only non-zero terms in the sum occur for l = 12,6,4,2, and the required
number is

4 ·12−2 ·6−4 ·4+2 ·2 = 24.

Since φ(12) = 4, there are 24/4 = 6 power classes of primitive λ-roots; these are
{2,32,33,63}, {3,22,42,48}, {6,11,41,46}, {7,28,37,58}, {17,23,43,62} and
{19,24,54,59}.

The following table gives the number of primitive λ-roots, and the smallest
primitive λ-root, for certain values of n.

n φ(n) λ(n) # PLRs Smallest PLR
15 8 4 4 2
24 8 2 7 5
30 8 4 4 7
35 24 12 8 2
63 36 6 24 2
65 48 12 24 2
91 72 12 32 2
105 48 12 16 2
117 72 12 32 2
143 120 60 32 2
168 48 6 20 5
189 108 18 54 2
275 200 20 96 2

We have U(15) ∼= U(30) ∼= C2 ×C4, and U(91) ∼= U(117) ∼= C6 ×C12, explaining
the equal numbers and orders of primitive λ-roots in these cases. On the other
hand, φ(65) = φ(105), but U(65) ∼= C4 ×C12, while U(105) ∼= C2 ×C4 ×C6; these
groups are not isomorphic (the Smith canonical form of U(105) is C2 ×C2 ×C12).
Note that, for n = 143, the proportion of units that are PLRs is less than 1/3. In
this connection, we have the following result and problem:

Proposition 6.6 The proportion of units which are primitive λ-roots can be arbi-
trarily close to 0.

Proof If n = p is prime, then the proportion of units which are PLRs is

φ(p −1)/(p −1) = ∏
r prime
r|p−1

(
1− 1

r

)
.

15



Choosing p to be congruent to 1 modulo the product of the first k primes (this is
possible, by Dirichlet’s Theorem) ensures that the product on the right is arbitrar-
ily small. In order to obtain proper PLRs, also choose p ≡ 1 (mod 4); then the
proportion for 4p is the same as for p.

Problem 3 Can the proportion of units which are primitive λ-roots be arbitrarily
close to 1? Numbers n which are of the form λ∗(m) seem to be particularly good
for this problem. For example, if

n = λ
∗(53130)

= 460765909369981425841156813418098240135472867831112,

then the proportion of PLRs in the group of units differs from 1 by less than one
part in two million.

Li [13] has considered the analogue for PLRs of Artin’s conjecture for primi-
tive roots, that is, the function Na(x) whose value is the number of positive integers
n ≤ x such that a is a PLR of n. This function is more erratic than the correspond-
ing function for primitive roots: the lim inf of

(
∑1≤a≤x Na(x)

)
/x2 is zero, while

the lim sup of this expression is positive.

6.1 Another formula
Here is another, completely different, method for calculating the number of primi-
tive lambda-roots of n. This depends on knowing the elementary divisors of U(n).

Theorem 6.7 Let n be a positive integer. For any prime p dividing φ(n), let pa(p)

be the largest p-power elementary divisor of U(n), and let m(p) be the number
of elementary divisors of U(n) which are equal to pa(p). Then the number of
primitive lambda-roots of n is

φ(n) ∏
p|φ(n)

(
1− 1

pm(p)

)
.

Proof Write U(n) = P1 × ·· · × Pr, where Pi is the pi-primary part of U(n) (the
product of all the cyclic factors of pi-power order in the primary decomposition of
U(n)). Now an element of U(n) is a primitive lambda-root if and only if, for each
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i with 1 ≤ i ≤ r, its projection into Pi is of maximum possible order pa(pi)
i . So we

have to work out the fraction of elements of P which are of maximum possible
order.

Dropping the subscripts, let P = Cpa ×·· ·×Cpa ×Q, where there are m factors
pa, and Q is a product of cyclic p-groups of orders smaller than pa. Then an
element of P has order pa if and only if its projection into (Cpa)m has order pa.
So the fraction of elements of maximal order in P is the same as in (Cpa)m. Now
the elements of the latter group of order less than pa are precisely those lying in
the subgroup (Cpa−1)m, a fraction 1/pm of the group. So a fraction 1−1/pm have
order equal to pa.

This result has a curious corollary. If n is such that primitive roots of n exist
(that is, if n is an odd prime power, or twice an odd prime power, or 4), then the
number of primitive roots of n is φ(φ(n)). Now for any n, compare the formula in
the theorem with the formula from page 5:

φ(φ(n)) = φ(n) ∏
p|φ(n)

(
1− 1

p

)
.

We see that the number of PLRs is at least φ(φ(n)), with equality if and only if
m(p) = 1 for all p dividing φ(n). In other words:

Corollary 6.8 For any n, the number of primitive lambda-roots of n is at least
φ(φ(n)). Equality holds if and only if, for each prime p which divides φ(m), the
largest p-power elementary divisor of U(n) is strictly greater than all the other p-
power elementary divisors of n. An equivalent condition is that the second largest
invariant factor of U(n) divides λ(n)/σ(λ(n)), where σ(m) is the product of the
distinct prime divisors of m.

Proof The first part follows from the prefatory remarks. The equivalence of the
last condition with the condition involving the elementary divisors is clear.

This raises a curious number-theoretic problem.

Problem 4 What proportion of numbers n have the property that the number of
PLRs of n is equal to φ(φ(n))?

A computer search shows that over half of all numbers below ten million have
this property (to be precise, 5309906 of them do).

17



The condition in this proposition comes up in a completely different context,
namely, a relationship between the number of power classes of PLRs and the
function ξ(n) = φ(n)/λ(n).

Proposition 6.9 For any positive integer n, the number of power classes of PLRs
of n is at least ξ(n). Equality holds if and only if, for any prime divisor p of φ(n),
the largest p-power elementary divisor is strictly greater than any other p-power
elementary divisor.

Proof We can write U(n) = A × B, where A is a cyclic group of order λ(n),
generated by a (which is a PLR). Now, for each element b ∈ B, the product ab is a
PLR. We claim that distinct elements of B give rise to distinct power classes. For
suppose that ab1 and ab2 lie in the same power class. Then ab2 = (ab1)m for some
m with gcd(λ(n),m) = 1. This implies that a = am, so that m ≡ 1 (mod λ(n)),
from which it follows that b2 = bm

1 = b1. So there are at least as many power
classes as elements of B. Since |B| = φ(n)/λ(n) = ξ(n), the inequality is proved.

Equality holds if and only if, whenever a ∈ A, b ∈ B, and ab is a PLR, it follows
that a is a PLR. Suppose that the condition on elementary divisors holds. For any
p dividing λ(n), the p-elementary divisors of B divide λ(n)/p, and so bλ(n)/p = 1.
Hence aλ(n)/p = (ab)λ(n)/p 6= 1. Since this holds for all p, the order of a is λ(n),
and so a is a PLR. Conversely, suppose that the condition on elementary divisors
fails, and suppose that the largest p-elementary divisor of B is pr and is the p-part
of λ(n). Choose an element b ∈ B of order pr. Then apr

b is a PLR, but apr
is not.

For another proof that the cases of equality in the two results coincide, note
that φ(n) and λ(n) have the same prime divisors, and so

φ(φ(n))
φ(n)

=
φ(λ(n))

λ(n)
,

so that ξ(n) = φ(φ(n))/φ(λ(n)), whereas the number of power classes is the num-
ber of PLRs divided by φ(λ(n)).

Example For n = 360 = 23 ·32 ·5, we have

U(n) ∼= C2 ×C2 ×C6 ×C4 ∼= C4 ×C3
2 ×C3,

so

#PLRs = φ(φ(n)) = 32,

#PCs = ξ(n) = 8.
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For n = 720 = 24 ·32 ·5, we have

U(n) ∼= C2 ×C4 ×C6 ×C4 ∼= C2
4 ×C2

2 ×C3,

so

#PLRs = 96, φ(φ(n)) = 64,

#PCs = 24 ξ(n) = 16.

6.2 Fraternities
Definition Two PLRs x and y of n are said to be fraternal if x2 ≡ y2 (mod n).
This is an equivalence relation on the set of PLRs; its equivalence classes are
called fraternities.

Recall the definition of 2-rank and 2-exponent from Subsection 5.2.

Proposition 6.10 Suppose that n ≥ 2. Let the 2-rank and 2-exponent of U(n) be
s and 2e respectively. Then the size of a fraternity of PLRs of n is equal to{

2s if e > 1,
2s −1 if e = 1.

Proof Let A = {u ∈ U(n) : u2 ≡ 1 (mod n)}. Clearly |A| = 2s. Since x2 ≡ y2 if
and only if x = yu for some u ∈ A, each fraternity is the intersection of the set of
PLRs with a coset of A.

Let a coset C of A contain an element of even order 2m. If m is even, then
every element of C has order 2m. Suppose that m is odd. Then, for u ∈ C, um ∈ A,
and u · um has order m; all other elements of C have order 2m.

In particular, the number of PLRs in a coset of A is 2r if e > 1, and is 2r −1 if
e = 1.

Remark We worked out in Subsection 5.2 the necesary and sufficient conditions
for e = 1.

Proposition 6.11 Suppose that n > 2, and let λ(n) = 2m. The intersection of the
power class and the fraternity containing a PLR x of n is equal to {x} if m is odd,
and is {x,xm+1} if m is even. The number of fraternities is divisible by φ(λ(n)) if
m is odd, and by φ(λ(n))/2 if m is even.
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Proof The elements of the power class of x have the form xd , where gcd(d,λ(n))=
1. Now x and xd are fraternal if and only if x2(d−1) ≡ 1, which holds if and only if
d = 1+λ(n)/2 = m+1. Now gcd(m+1,2m) = 1 if and only if m is even.

The last part follows from the fact that each power class has cardinality φ(λ(n)).

Corollary 6.12 The number of fraternities of PLRs is even, unless n divides 240,
in which case there are three fraternities if n = 80 or n = 240, and 1 otherwise.

Proof Suppose first that λ(n) ≡ 2 (mod 4). Then either λ(n) = 2, or φ(λ(n)) is
even. In the first case, n divides 24, and every PLR satisfies x2 ≡ 1, so there is just
one fraternity. In the second, the number of fraternities meeting each power class
is even.

Now suppose that λ(n) ≡ 0 (mod 4). Then either λ(n) = 4, or φ(λ(n)) is
also divisible by 4. In the first case, n divides 240, and a finite amount of checking
establishes the result. In the second, the number of fraternities meeting every
power class is even.

Examples For n = 40 we have s = 3 and e = 2, so the size of a fraternity is
23 = 8; all PLRs belong to a single fraternity

For n = 56, we have s = 3 and e = 1, so the size of a fraternity is 23 − 1 = 7;
the 14 PLRs fall into two fraternities. Since λ(n) = 6, one fraternity contains the
inverses of the elements of the other.

For n = 75, we have s = 2 and e = 2, so the size of a fraternity is 4; the 16
PLRs fall into four fraternities.

7 Some special structures for the units
Theorem 7.1 Suppose that the Smith canonical form of U(n) is

U(n) ∼= Cλ(n) ×·· ·×Cλ(n) (r factors),

with r > 1. Then either

(a) n = 8, 12 or 24; or

(b) n = pa(pa − pa−1 +1) or 2pa(pa − pa−1 +1), where p and pa − pa−1 +1 are
odd primes.

In particular, r ≤ 3, and r = 3 only in the case n = 24.
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Proof Suppose first that φ(n) is a power of 2. Then n = 2a p1 · · · ps, where
p1, . . . , ps are distinct Fermat primes, and U(n) ∼= U(2a) ×Cp1−1 × ·· · ×Cps−1.
Since all the cyclic factors have the same order, either s = 0, or s = 1, p1 = 3; the
cases where there are more than one cyclic factor are n = 8, 12 and 24.

Now suppose that φ(n) is not a power of 2; let n have s odd prime factors. The
number of 2-power cyclic factors of U(n) is s, plus one or two if the power of 2
dividing n is 4 or at least 8, respectively; the number of cyclic factors of odd prime
power order is at most s. So n must be odd or twice odd; we may assume that n is
odd. We have s = r.

Let n = pa1
1 · · · par

r . The decomposition

U(n) ∼= U(pa1
1 )×·· ·×U(par

r )

must coincide with the Smith normal form of U(n), so we must have

pa1−1
1 (p1 −1) = · · · = par−1

r (pr −1).

Clearly ai = 1 can hold for at most one value of i. But, if ai > 1, then pi is the
largest prime divisor of pai−1

i (pi −1). We conclude that r = 2 and that (assuming
p = p1 < p2 and a = a1) we have p2 = pa−1(p −1)+1 and a2 = 1.

The odd numbers n < 1000000 occurring in case (b) of the theorem are

63 = 9 ·7,

513 = 27 ·19,

2107 = 49 ·43,

12625 = 125 ·101,

26533 = 169 ·157,

39609 = 243 ·163, and
355023 = 729 ·487.

There are various possibilities for the structure U(n) ∼= Ca ×Cλ(n) ×Cλ(n) with
a | λ(n); for example, for odd n, we have

n = 3 ·72 ·43, U(n) ∼= C2 ×C42 ×C42;
n = 32 ·72 ·43, U(n) ∼= C6 ×C42 ×C42;
n = 3 ·53 ·101, U(n) ∼= C2 ×C100 ×C100;

n = 11 ·53 ·101, U(n) ∼= C10 ×C100 ×C100.

For even n, the values n = 4 · p j · (p j−1(p −1)+1), where p and p j−1(p −1)+1
are odd primes, give examples.
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Problem 5 Can the multiplicity of λ(n) as the order of an invariant factor of U(n)
be arbitrarily large? Again, numbers of the form n = λ∗(m) are particularly fruitful
here: for n = λ∗(157080), a number with 122 digits, the multiplicity of C157080 in
the Smith normal form of U(n) is 16.

This problem is related to Problem 3 as follows:

Proposition 7.2 Suppose that the multiplicity of λ(n) as an invariant factor of
U(n) is d > 1. Then the number F(n) of primitive lambda-roots of n saatisfies

F(n)/φ(n) ≥ ζ(d)−1 ≥ 1−1/2d−1,

where ζ is the Riemann zeta-function.

Proof We use the formula of Theorem 6.7. The number m(p) is at least d for
each prime dividing φ(n), so we have:

F(n)/φ(n) = ∏
p|φ(n)

(1−1/pm(p))

≥ ∏
p|φ(n)

(1−1/pd)

≥ ∏
p

(1−1/pd)

= ζ(d)−1

≥
(

1+
1
2d +

1
2d +

1
4d +

1
4d +

1
4d +

1
4d +

1
8d + · · ·

)−1

=
(

1
1−1/2d−1

)−1

= 1−1/2d−1.

(In the third line we have the product over all prime numbers p. In the fourth line
we have used the Euler product formula for the Riemann zeta function.)

8 Negating and non-negating PLRs
Suppose that x is a primitive λ-root. We can ask:

(a) Is −x also a primitive λ-root?
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(b) If so, is −x in the same power class as x?

In an abelian group, the order of the product of two elements divides the lcm
of the orders of the factors. Since x = (−1)(−x), we see that, if x is a PLR, then
the order of −x must be either λ(n) or λ(n)/2, and the latter holds only if λ(n)/2
is odd. Thus, we have:

Proposition 8.1 Let x be a primitive λ-root of n, where n > 2. Then −x is also
a primitive λ-root if either n has a prime factor congruent to 1 (mod 4), or n is
divisible by 16.

Note that, if −x has order λ(n)/2, then we have

〈x〉 = 〈−1〉×〈−x〉,

so that −1 and −x are both powers of x in this case. Conversely, if λ(n)/2 is odd
and −1 is a power of x, then −x is an even power of x and so has order λ(n)/2.
Thus, in the cases excluded in the above Proposition, we see that −x is a primitive
λ-root if and only if −1 is not a power of x. Necessary and sufficient conditions
for this are given in Subsection 8.3 below.

Definition The PLR x of n is negating if −1 is a power of x, and non-negating
otherwise.

Now clearly −x is a power of x if and only if x is negating.

Corollary 8.2 Suppose that λ(n) is twice an odd number (so that n is not divisible
by 16 or by any prime congruent to 1 (mod 4)).

(a) If n = 4 or n = 2pa for some prime p ≡ 3 (mod 4), then for every primitive
λ-root x, we have that −x is not a primitive λ-root.

(b) Otherwise, some primitive λ-roots x have the property that −x is a primitive
λ-root, and some have the property that it is not.

The PLR x is negating if and only if −1 belongs to the cyclic group generated
by x; so we see:

Proposition 8.3 If a primitive λ-root is negating, then so is every element of its
power class.
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In the next two sections, after a technical result, we will determine for which n
there exist negating PLRs, and count them. We conclude this section with some
open problems.

Problem 6 Is it possible for −1 to be the only unit which is not a power of a
PLR? More generally, which units can fail to be powers of PLRs?

Problem 7 For which values of n is it true that the product of two PLRs is never
a PLR? (This holds for n = 105, for example.) For other values of n, can we
characterise (or count) the number of pairs (x1,x2) of PLRs whose product is a
PLR?

8.1 A refined canonical form
While the invariant factors and the elementary divisors of a finite abelian group
are uniquely determined, the actual cyclic factors are not in general. This freedom
is used in the following result, which is useful in the construction of terraces. This
result lies at the opposite extreme from the negating PLRs we have considered; it
shows that there is a unit generating a cyclic factor of U(n) of smallest possible
2-power order which has −1 as a power.

Theorem 8.4 Let 2m be the smallest elementary divisor of U(n) for the prime 2.
Then U(n) = A × B, where A ∼= C2m and −1 ∈ A. In particular,

(a) U(n) can be written in Smith canonical form so that the smallest cyclic factor
contains −1;

(b) U(n) can be written in primary canonical form so that the smallest cyclic
factor of 2-power order contains −1.

Proof The case where n is divisible by 4 can be dealt with by a simple construc-
tive argument. In this case, we have 2m = 2; all units are odd, and those congruent
to 1 mod 4 form the subgroup B, while A is generated by −1.

Next, suppose that n is odd. In the decomposition of U(n) into cyclic groups
given by Theorem 4.1, the element −1 has order 2 in every factor. So, if we refine
this decomposition to the primary canonical form, the element −1 has order 2 in
every 2-power factor.
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Let C2m1 × ·· · × C2mr be the 2-part of U(n), where m = m1. Let xi be the
generator of the ith factor. Then

−1 = x2m1−1

1 · · ·x2mr−1

r .

Now replace x1 by
y1 = x1x2m2−m1

2 · · ·x2mr−m1
r .

Then y1,x2, · · ·xr generate cyclic groups also forming the 2-part of the primary
decomposition of U(n); and we have

−1 = y2m1−1

1 ,

as required.
Finally, if n is odd, then U(2n) ∼= U(n), and the natural isomorphism maps −1

to −1. So the case where n is twice an odd number follows from the case where n
is odd.

8.2 Generators differing by 1

As an example of the preceding result, consider n = 275 = 52 · 11. The Smith
canonical form of U(n) is C10 ×C20. If we take 139 and 138 as generators of
the respective cyclic factors, then 1395 = −1. Is it just coincidence that the two
generators differ by 1 in this case?

We cannot answer this question completely, but in some cases where U(n)
has just two cyclic factors, we can show that generators differing by 1 must exist,
keeping the property that −1 lies in the smaller cyclic group.

We consider the case where n = pq, with p and q distinct odd primes. Then
U(n) ∼= Cξ(n) ×Cλ(n), where λ(n) and ξ(n) are the least common multiple and
greatest common divisor, respectively, of p − 1 and q − 1. We have seen that it
is possible to choose a generator x of the first factor such that −1 is a power of
x (necessarily −1 = xξ(n)/2). Under suitable hypotheses, we can assume also that
x+1 generates the second factor.

We consider first the case where ξ(n) = 4. In this case, both p and q must be
congruent to 1 mod 4, and at least one must be congruent to 5 mod 8. Moreover,
we have x2 ≡ −1 (mod pq).

Theorem 8.5 Let p and q be primes congruent to 5 (mod 8), such that gcd(p −
1,q −1) = 4. Suppose that 2 is a primitive root of both p and q. Then there exists
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a number x such that

U(pq) = 〈x〉×〈x+1〉 = 〈x〉×〈x −1〉,

where the cyclic factors have orders ξ(pq) = 4 and λ(pq) = (p − 1)(q − 1)/4,
and the first factor contains −1. There are two such values, one the negative of
the other modulo pq.

Proof We have

2(p−1)(q−1)/8 =
(

2(p−1)/2
)(q−1)/4

≡ (−1)odd = −1 (mod p),

and similarly mod q; so

2(p−1)(q−1)/8 ≡ −1 (mod pq).

Now there are four solutions of x2 ≡ −1 (mod pq), namely ±x1 and ±x2, where

x1 ≡ a (mod p), x1 ≡ b (mod q),
x2 ≡ a (mod p), x2 ≡ −b (mod q),

a2 ≡ −1 (mod p), b2 ≡ −1 (mod q).

So we can choose x such that x2 ≡ −1 and x 6≡ ±y (mod pq), where y = 2(p−1)(q−1)/16.
Certainly x has order 4. Also we have

(x+1)2 = x2 +2x+1 ≡ 2x (mod pq),

and
(2x)(p−1)(q−1)/16 ≡ (±y)(±x) (mod pq),

whence (2x)(p−1)(q−1)/8 ≡ 1 (mod pq). Clearly every odd divisor of p − 1 or
q−1 divides the order of 2x, so 2x has order (p−1)(q−1)/8, and x+1 has order
(p − 1)(q − 1)/16. Moreover, the subgroup generated by x + 1 does not contain
−1 (since its unique element of order 2 is ±xy), so it is disjoint from the subgroup
generated by x. Thus, these two subgroups generate their direct product, which
(by considering order) is the whole of U(pq).

The argument for x − 1 is the same. Alternatively, note that we can replace x
by −x in the argument, giving

U(pq) = 〈−x〉×〈−x+1〉 = 〈x〉×〈x −1〉.

The final statement in the theorem holds because if we chose x = ±y, then
(2x)(p−1)(q−1)/16 ≡ ±1, so that either the order of x + 1 is too small, or −1 ∈
〈x〉∩ 〈x+1〉.
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For example, 2 is a primitive root modulo 5, 13, 29, 37 and 53, so we can
use any two of these primes in the Theorem. The table gives all instances with
pq < 300.

n x
65 = 5 ·13 ±18
145 = 5 ·29 ±12
185 = 5 ·37 ±68
265 = 5 ·53 ±83

A similar argument works in other cases, with some modification. If q ≡ 1
(mod 8), then 2 is a quadratic residue mod q, and cannot be a primitive root: its
order is at most (q−1)/2. For q = 17,41, . . ., it happens that the order of 2 mod q
is (q −1)/2.

Consider, for example, the case p = 5, q = 17. Now 2 has order 4 mod 5 and
8 mod 17, so 28 ≡ 1 (mod 85) but 24 ≡ 16 (mod 85). So 2x has order 8, and
(x+1) has order 16, if x is any solution of x2 ≡ −1 (mod 85). Thus all four such
solutions x = ±13,±38 have the required property.

On the other hand, 2 has order 20 mod 41, and so 210 ≡ −1 (mod 205). Thus
(2x)10 ≡ 1 (mod 205), so in this case x +1 has order 20, rather than 40, and the
construction fails.

In general, we have the following result, whose proof follows the same lines
as the case pq = 85.

Theorem 8.6 Let p and q be primes with p ≡ 5 (mod 8) and q ≡ 1 (mod 16),
such that gcd(p − 1,q − 1) = 4. Suppose that 2 is a primitive root of p and has
order (q −1)/2 modulo q. Then there exists a number x such that

U(pq) = 〈x〉×〈x+1〉 = 〈x〉×〈x −1〉,

where the cyclic factors have orders 4 and λ(pq) = (p−1)(q−1)/4, and the first
factor contains −1. There are four such values of x modulo pq, falling into two
pairs ±x.

Examples with pq < 300 are given in the next table.

n x
85 = 5 ·17 ±13,±38

221 = 13 ·17 ±21,±47

Similar results hold in the case where ξ(pq) = 6. In this case our condition
is x3 ≡ −1. This condition permits the possibility that x ≡ −1 modulo one of the
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primes; we exclude this, since then x + 1 would not be a unit. Since x3 + 1 =
(x +1)(x2 − x +1), this means that we require x2 − x +1 ≡ 0 modulo both p and
q, so that this congruence holds modulo pq. Conversely, if x2 ≡ x − 1 (mod pq),
then x has order 6 and −1 ∈ 〈x〉. The following theorem is a corrected version of
a theorem stated in the previous draft.

Theorem 8.7 Let p and q be primes congruent to 7 (mod 12). Assume that 3 is
a negating PLR of pq. (This holds, in particular, if 3 is a primitive root of both p
and q.) Assume further that there is a number x satisfying x2 = x −1 such that

1. x is not a power of 3;

2. x+1 has even order;

3. −1 /∈ 〈x+1〉.

Then U(pq) = 〈x〉 × 〈x +1〉, where the cyclic factors have orders ξ(pq) = 6 and
λ(pq) = (p −1)(q −1)/6, and the first factor contains −1.

Proof The proof is similar to the proof of the preceding two results. To begin, we
note that the equation x2 = x − 1 has four solutions in Zpq. (For, in Zp, it asserts
that x2 − x + 1 = 0, or x has order 6; there are two such elements, and similarly
two in Zq, whence the conclusion follows from the Chinese Remainder Theorem.)
The four elements fall into two inverse pairs.

Let λ = λ(pq) = (p − 1)(q − 1)/6, so λ ≡ 6 (mod 12). We note that our
assumptions on 3 imply that 3λ/6 is an element of order 6 whose cube is −1, and
is not x or x−1. (Note that at least two solutions of x2 = x − 1 will satisfy the first
condition.)

Now if x is a solution of this equation, then x + x−1 = xx−1 = 1, so that (1+
x)(1+x−1) = 1+1+1 = 3. Thus, (1+x)(1+x−1) has even order, so at least one
of 1+ x and 1+ x−1 has even order. So at least one element satisfies the first and
second conditions.

As before, 3λ/2 = −1 = xλ/2, so (3x)λ/2 = 1. By assumption, (3x)λ/6 6= 1, so
3x has order λ/2. Since (x + 1)2 = 3x, it follows that x + 1 has order λ or λ/2.
Our choice of x ensures that the order is λ. Also, we cannot have a non-identity
power of 1+ x in the subgroup 〈x〉, by assumption.

So we have the required decomposition.
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Examples of the Theorem include

U(133) = 〈103〉×〈104〉 = 〈31〉×〈32〉
U(217) = 〈68〉×〈69〉 = 〈150〉×〈151〉
U(301) = 〈136〉×〈137〉 = 〈166〉×〈167〉

Remark We saw in the above proof that, with the given assumptions on p, q
and 3, there is at least one element x satisfying x2 = x −1 and the first and second
conditions of the theorem. However, there may be no element satisfying all three.

For example, let n = 973 = 7×139. Then 3 is a primitive root of both primes.
The four solutions of x2 = x − 1 are 236, 738, 460, and 514; the orders of the
elements x + 1 are λ, λ/2, λ/3 and λ respectively, but each of the elements of
order λ has the property that xλ/2 = −1.

Problem 8 Is there a more direct way of identifying numbers pq for which the
conditions of the Theorem hold?

Problem 9 Find an analogous result in the case where q ≡ 1 (mod 12). We note
that the conclusions of the theorem hold in several further cases, as in the next
table.

n x
91 = 7 ·13 17,75

247 = 13 ·19 69,88,160,179

There are also cases where the second factor is generated by x − 1 rather than
x+1:

n x
91 = 7 ·13 12,38
259 = 7 ·37 73,110

Problem 10 (a) What happens for larger values of ξ(pq)?

(b) What happens for larger numbers of prime factors of n?

8.3 Existence of negating PLRs
The existence and number of negating PLRs of n depend on the structure of the
Sylow 2-subgroup S of U(n), the group of all units of 2-power order.

29



Definition An abelian group is homocyclic if it is the direct product of cyclic
groups of the same order. The rank of a homocyclic abelian group is the number
of cyclic factors in such a decomposition.

Theorem 8.8 Let n > 1. There exists a negating PLR of n if and only if the Sylow
2-subgroup S of U(n) is homocyclic. In this case, the proportion of PLRs which
are negating is 1/(2s −1), where s is the rank of S.

Proof Suppose first that S is not homocyclic. By Theorem 8.4, U(n) = A × B,
where A is cyclic and −1 ∈ A; and λ(n)/|A| is even, so aλ(n)/2 = 1 for all a ∈ A.
Thus no element of U(n) has the property that its λ(n)/2 power is −1.

In the other direction, suppose that S is homocyclic. Then U(n) = S×T , where
T consists of the elements of odd order in U(n); and a PLR of n is a product of
elements of maximal order in S and T . In this case, the automorphism group of S
acts transitively on the set of 2s − 1 elements of order 2 in S, so that each of them
(and in particular, −1) occurs equally often as a power of an element of maximal
order.

As a result, we see that every PLR is negating if and only if S is cyclic; this
occurs if and only if n = pa, 2pa (for some odd prime p) or 4.

The next result, which follows immediately from the structure theorem for
U(n) (Theorem 4.1), thus describes when negating PLRs exist.

Theorem 8.9 Let n = 2am where m is odd, and let r be the number of distinct
prime divisors of m. Then the Sylow 2-subgroup S of U(n) is homocyclic if and
only if one of the following holds:

(a) a ≤ 1 and, for any two primes p and q dividing m, the powers of 2 dividing
p −1 and q −1 are equal. In this case the rank of S is r.

(b) a = 2 or a = 3, and every prime divisor of m is congruent to 3 (mod 4). In
this case the rank of S is r +a −1.

9 Inward and outward PLRs
Definition The PLR x of n is inward if x −1 is a unit, and outward otherwise.

Like the previous property, this one is a property of power classes. This fol-
lows from a more general observation.
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Proposition 9.1 Let x,y ∈ U(n), and suppose that x and y belong to the same
power class. Then x −1 ∈ U(n) if and only if y −1 ∈ U(n).

Proof Let y = xd . Since gcd(d,φ(n)) = 1, there exists e such that x = ye. Now

y −1 = xd −1 = (x −1)(xd−1 + · · ·+1) = (x −1)a

for some a ∈ Zn. Similarly, x−1 = (y−1)b for some b ∈ Zn. Thus (x−1)ab = x−
1. If x−1 is a unit, this implies that ab = 1, so that a is a unit and y−1 = (x−1)a
is a unit; and conversely.

Corollary 9.2 If a primitive λ-root is inward, then so is every element of its power
class.

Proposition 9.3 (a) Every primitive λ-root of n is outward if and only if n is
even.

(b) If a primitive λ-root x is outward and negating, then n is even, and if n is
divisible by 4 then x ≡ 3 (mod 4).

Proof (a) If n is even, then every unit is odd, and so x ∈ U(n) implies x − 1 /∈
U(n).

Conversely, suppose that n is odd. Suppose first that n is a prime power, say
n = pa. If x ≡ 1 (mod p), then the order of x mod n is a power of p, and x is not
a PLR. Thus, every PLR is inward in this case.

In general, choose x congruent to a primitive root modulo every prime power
divisor of n. Then x is a PLR, and by the preceding argument, x − 1 is coprime
to n. Thus, x −1 ∈ U(n), and x is inward.

(b) If x is outward and negating, then xd = −1 for some d, and x − 1 divides
xd − 1 = −2. If n is odd, then −2 is a unit, and hence x is inward; so n is even. If
n is divisible by 4, then x cannot be congruent to 1 (mod 4), since then 4 divides
x −1 but 4 does not divide xd −1.

We remark that whether a PLR is inward or outward does not depend only on
the group-theoretic structure of U(n). For example,

U(21) ∼= U(28) ∼= U(42) ∼= C2 ×C6;

each of these groups has six PLRs, falling into three power classes of size 2, as in
the following table.
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n Power class Type
21 2, 11 inward non-negating

19, 10 outward non-negating
5, 17 inward negating

28 11, 23 outward non-negating
5, 17 outward non-negating
3, 19 outward negating

42 11, 23 outward non-negating
19, 31 outward non-negating
5, 17 outward negating

A PLR x of n is outward if and only if x is congruent to 1 modulo some
prime divisor of n. In principle, the number of inward PLRs can be calculated
by inclusion-exclusion over the prime divisors of n. However, we do not have a



Definition If n = pa1
1 pa2

2 · · · par
r , then the PLR x of n is said to be

• perfect if x is a PLR of pai
i for all i = 1, . . . ,r;

• imperfect if x is a PLR of pai
i for at least one but not all i = 1, . . . ,r;

• aberrant if x is not a PLR of pai
i for any of the values i = 1, . . . ,r.

Trivially, if r = 1, then any PLR of n is perfect. From now on we assume that
r ≥ 2. Also, of course, if pi is odd then a PLR of pai

i is simply a primitive root of
pai

i .
If n is odd, every unit mod 2n is congruent to 1 mod 2 and to a unit mod n, so

there is a bijection between the units modulo n and 2n. This bijection clearly pre-
serves the properties of being a PLR and of being perfect, imperfect or aberrant.
So the numbers of PLRs in each of these three categories are the same for 2n as
for n.

The property of being a perfect PLR is equivalent to the apparently stronger
property (b) in the following result.

Theorem 10.1 Let x be a unit modulo n. Then the following are equivalent:

(a) x is a perfect PLR of n;

(b) x is a PLR of m, for every divisor m of n;

(c) x is a perfect PLR of m, for every divisor m of n.

Proof Clearly (c) implies (b) and (b) implies (a). So suppose that (a) holds, with
n = pa1

1 · · · par
r . Then x is a PLR of pai

i , for each i.
We claim that x is a PLR of pb

i , for all i and all b with 0 < b ≤ ai. This is
because the natural homomorphism from U(pc) to U(pc−1) has kernel of order p
if c > 1, so the order of x mod pc−1 is at least a fraction 1/p of its order mod pc.
(Compare the proof of Theorem 5.2(a).) Now “downward induction” establishes
the claim.

But now, by definition, x is a perfect PLR of m for every divisor m of n, and
we are done.

Perfect PLRs always exist: if xi is a PLR of pai
i for i = 1, . . . ,r, then the Chinese

Remainder Theorem guarantees us a solution of the simultaneous congruences
x ≡ xi (mod pai

i ), and clearly x is a PLR of n. This argument allows us to count
the number of perfect PLRs of n: this number is simply the product of the numbers
of PLRs of pai

i for i = 1, . . . ,r.
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Theorem 10.2 Let n be odd. Then any perfect PLR of n is an inward PLR.

Proof A number congruent to 1 mod pi cannot be a PLR of pai
i for odd pi, since

its order is a power of pi. Hence, if x is a PLR of n with n odd, then x 6≡ 1 (mod pi)
for i = 1, . . . ,r. This shows that x − 1 is not divisible by any of p1, . . . , pr, so that
x −1 is a unit mod n. (This is the same as the proof of Proposition 9.3(a).)

Theorem 10.3 If a PLR x of n is perfect, then so is every member of its power
class. The same holds with “imperfect” or “aberrant” replacing “perfect”.

Proof Suppose that x is a perfect PLR of n, and let y belong to the power class of
x. Then each of x and y is congruent to a power of the other mod n. It follows that
each is a power of the other mod pa1

i , so that x and y have the same order mod pai
i ;

thus, if one is a PLR of pai
i , then so is the other.

Let n = pa1
1 pa2

2 · · · par
r . We say that the prime power pai

i is essential in n if the
following holds: for every prime power qb such that qb exactly divides λ(pai

i ), and
for all j 6= i, it holds that qb does not divide λ(pa j

j ). If n is twice an odd number,
then 2 is (vacuously) essential in n. Apart from this, there can be at most one
essential prime power, since, if pai

i > 2 is essential, then the power of 2 dividing
λ(pai

i ) is higher than that dividing λ(pa j
j ) for j 6= i.

If pai
i is essential in n, then any PLR of n is obviously a PLR of pai

i , and
conversely. Thus, we have the following result:

Theorem 10.4 Every PLR of n is perfect if and only if n is a prime power or twice
a prime power.

In the following table, PLRs from different power classes are separated by
semi-colons, and negating PLRs are asterisked.

n perfect PLRs imperfect PLRs aberrant PLRs
15 2, 8 7, 13
21 5∗, 17∗ 2, 11; 10, 19
35 3, 12, 17, 33 2, 18, 23, 32
63 5∗, 38∗; 47∗, 59∗ 2, 32; 10, 19; 11, 23; 13, 34; 44, 53

17∗, 26∗; 20∗, 41∗;
29, 50; 31, 61; 40, 52

We turn now to the existence question for aberrant PLRs. The answer is some-
what elaborate and depends on the structure of an auxiliary coloured hypergraph,
which we now construct.
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Let n = pa1
1 pa2

2 · · · par
r . The vertices of the hypergraph H(n) are indexed by the

primes p1, . . . , pn. The edges (to be defined in a moment) are indexed by the prime
divisors of λ(n).

We say that a prime divisor q of λ(n) occurs maximally in λ(pai
i ) if the largest

power of q dividing λ(pai
i ) is the same as the largest power of q dividing λ(n).

Now we colour the vertices pi with three colours as follows:

• pi is red if every prime divisor of λ(pai
i ) occurs maximally there;

• pi is green if some but not all prime divisors of λ(pai
i ) occurs maximally

there;

• pi is blue if no prime divisor of λ(pai
i ) occurs maximally there.

The edge indexed by the prime q is incident with all vertices pi for which q
occurs maximally in λ(pai

i ). Thus, the blue vertices are isolated. Note that an edge
of the hypergraph may be incident with just one vertex.

For example, let n = 63 = 9 · 7. We have λ(63) = λ(9) = λ(7) = 6; the graph
H(63) has two vertices labelled 3 and 7, both red, and two edges labelled 2 and
3, each incident with both the vertices. Since this graph is a cycle, the following
theorem guarantees that aberrant PLRs exist for n = 63.

Theorem 10.5 Let n be a positive integer. Then an aberrant PLR of n exists if
and only if every connected component of the hypergraph H(n) contains either a
non-red vertex or a cycle.

Proof Let x be a PLR of n. Then, for every prime q dividing λ(n), there exists
some pi such that q occurs maximally in λ(pai

i ) and the order of x modulo pai
i is

divisible by this maximal power of q. Thus, each edge q of the hypergraph must
contain at least one representative vertex pi for which this holds.

Suppose that the vertex pi is blue. Choosing x to be congruent to a PLR mod
n/pai

i and to 1 mod pai
i , we see that x is aberrant mod n if and only if it is aberrant

mod n/pai
i . So we can ignore the blue primes.

Now suppose that a connected component contains either a green prime p j,
or a cycle (pi1,q1, pi2, . . . , pim,qm, pi1). In the case of the cycle, let pik be the
representative of qk for i = 1, . . . ,m. Then choose a representative for all other
cycles which is at least distance to the green prime or the cycle in the hypergraph.
Now choose x so that its order mod pai

i is the product of the appropriate powers of
q for all edges q represented by pi. Then the order of x is divisible by the correct
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power of each prime q indexing an edge of the component, but x is not a PLR of
pai

i for any prime pi in the component.
Now suppose that a component is acyclic and has only red vertices. We claim

that, if a representative vertex is chosen for each edge, then some vertex must rep-
resent every edge containing it. For suppose we have a minimal counterexample.
Choose a vertex lying on a single edge, and remove this vertex (by assumption, it
is not the representative of its edge). By minimality, the hypergraph obtained by
deleting this edge has a vertex which is the representative of every edge containing
it, contrary to assumption.

Thus, if there is a component with this property, then every PLR of n must be
a PLR of pai

i for some vertex pi in this component, and x is not aberrant.
This completes the proof.

Corollary 10.6 If n = p j(p j−1(p−1)+1), where j > 1 and p and p j−1(p−1)+
1 are odd primes, then n has aberrant PLRs.

For another example, let n = 741 = 3 · 13 · 19. In the graph G(n), the prime
3 is blue while 13 and 19 are green; and the edges labelled 2 and 3 are incident
with single vertices 13 and 19 respectively. Choosing x congruent to 1 mod 3, to
an element of order 4 mod 13, and to an element of order 13 mod 19, we obtain
an aberrant PLR of n.

Problem 12 Find families of integers n for which aberrant PLRs exist.

Problem 13 Count the aberrant PLRs of n. (This problem will not have a simple
answer unless our characterisation of the values of n for which aberrant PLRs
exist can be substantially improved!)

10.1 Deeply aberrant and nearly perfect PLRs
We can strengthen the concept of an aberrant PLR as follows.

Definition If n = pa1
1 pa2

2 · · · par
r , then the PLR x of n is said to be deeply aberrant

if x is not a PLR of pi for any of the values i = 1, . . . ,r.

Thus, a deeply aberrant PLR is aberrant. Note that deeply aberrant PLRs
cannot exist for even n.

Problem 14 Count the deeply aberrant PLRs of n.
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We can also refine the notion of an imperfect PLR as follows.

Definition Let n = pa1
1 · · · par

r , and let x be a PLR of n which is not perfect. We
say that x is nearly perfect if it is a PLR of pi for all i = 1, . . . ,r.

Problem 15 Count the nearly perfect PLRs of n.

We note that, if n is even, then any unit is congruent to 1 mod 2, so the condi-
tion for the prime 2 is vacuous. Moreover, if n is squarefree, there are no nearly
perfect PLRs of n. The proportion of units mod n which are congruent to primi-
tive roots modulo each prime divisor of n is the product, over all prime divisors p
of n, of the proportion of units mod p which are primitive roots. However, these
elements may not all be PLRs.

For example, the number of perfect or nearly perfect PLRs of 63 is

φ(63)× 1
2

× 2
6

= 6;

as we have seen, there are four perfect PLRs, and hence two nearly perfect PLRs.
(In this case all such elements are PLRs, since λ(63) = λ(7) = 6.)

Proposition 10.7 A nearly perfect PLR of n cannot be aberrant.

Proof Suppose that n is a nearly perfect but aberrant PLR of n. Then each prime
divisor of n must occur to a power higher than the first, since the requirements
“not a PLR of pai

i ” and “a primitive root of pi” conflict if ai = 1. Let p be the
largest prime divisor of n, and suppose that pa exactly divides n. Suppose first
that p is odd. Then pa−1 exactly divides λ(n), so a PLR of n has order divisible by
pa−1 mod pa. But, if it is nearly perfect, then its order mod pa is also divisible by
p−1, and hence it is a primitive root mod pa, and so is not aberrant. On the other
hand, if p = 2, then n is a power of 2, and any PLR of n is perfect by definition.

Note also that, if n is odd, then any nearly perfect PLR of n is inward; in other
words, Theorem 10.2 extends to nearly perfect PLRs, with the same proof.

The following table gives the nearly perfect PLRs of n = 9p where p is prime
and ξ(n) = 6 (that is, p ≡ 1 (mod 6)). They are negating if p ≡ 3 (mod 4) and
non-negating if p ≡ 1 (mod 4).

n nearly perfect PLRs
63 = 32 ·7 {17,26}

117 = 32 ·13 {80,71,89,98}
171 = 32 ·19 {53,116,89,98,143,71}
279 = 32 ·31 {17,260,53,251,269,179,88,197}
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11 Further properties of PLRs
If x is an inward PLR of n, then the 2λ(n) differences

±(xi − xi−1), (i = 1,2, . . . ,λ(n)),

are all units, and consist of 2λ(n) different elements if x is non-negating, or λ(n)
elements each repeated twice if x is negating.

This property shows the importance (for constructions such as the motivating
terrace in Section 1) of PLRs that are both inward and non-negating.

Definition The PLR x of n is strong if it is inward and non-negating. (Clearly
this requires n to be odd, and not a prime power.)

It follows from Proposition 8.3 and Corollary 9.2 that, if a PLR is strong, then
so is every PLR in the same power class.

Problem 16 Is it true that strong PLRs exist for all odd n with ξ(n) > 1, in other
words, all odd numbers which are not prime powers?

This question has an affirmative answer for n ≤ 20000.

Problem 17 Count the strong PLRs of n.

Problem 18 For which odd n such that U(n) ∼= Cλ(n) ×Cλ(n), can U(n) be gener-
ated by two strong PLRs?

Note that the values of n for which U(n) ∼= Cλ(n) ×Cλ(n) are those given by
Theorem 7.1(b), namely n = pa(pa − pa−1 + 1), where p and pa − pa−1 + 1 are
odd primes and a > 1.

We give some examples. For n = 63 = 9 · 7, Un ∼= C6 ×C6, and this group
can be generated by the two PLRs 2 (which is strong) and 13 (which is outward
and non-negating). However, it is not possible to choose two strong PLRs which
generate the group.

For the next value of n, namely n = 513 = 27 ·19, it is also not possible to find
two strong PLRs generating U(n), However, for n = 2107 = 49 · 43, both 2 and 6
are strong PLRs, and they do generate U(n).
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Definition Let x be a strong PLR of n. Then x is called self-seeking if x−1 = ±xd

for some integer d. Note that x is self-seeking if and only if the set X = {xi : i =
0,1, . . . ,λ(n) − 1} of powers of x is equal to one of the two sets A = {xi − xi−1 :
i = 1,2, . . . ,λ(n)} or its negative B = {xi−1 − xi : i = 1,2, . . . ,λ(n)}. We say that
x is self-avoiding otherwise.

Proposition 11.1 If a self-avoiding strong PLR exists then ξ(n) > 2.

Proof If x is strong then each of the sets X ,A,B consists of units; X is the sub-
group generated by x, and A and B are cosets of X . Clearly, if ξ(n) = 1, there
are only λ(n) units, so all three sets must be equal. Since x is strong, −1 is not
a power of x, so the sets A and B are disjoint (for xi − xi−1 = x j−1 − x j implies
xi− j = −1); so one of them must be equal to X if ξ(n) = 2.

Unlike what we have seen for other properties of PLRs, it is possible for all,
some, or none of the elements of a power class of PLRs to be self-seeking. For
n = 65, the powers of the PLRs ±3 are:

3 1 3 9 27 16 48 14 42 61 53 29 22
−3 1 62 9 38 16 17 14 23 61 12 29 43

Thus the power class {3,48,42,22} consists of self-avoiding elements, while the
power class {62,17,23,43} consists of self-seeking elements. (For example, 61 =
628.)

For n = 91, the strong PLRs 2 and 32 come from the same power-class; suc-
cessive powers are:

2 1 2 4 8 16 32 64 37 74 57 23 46
32 1 32 23 8 74 2 64 46 16 57 4 37

The power class is {2,32,37,46}; 2 and 46 are self-seeking but the other two are
self-avoiding.

Problem 19 What conditions must hold for the product of two strong PLRs of n
to be a PLR of n? If ξ(n) > 2, is it possible for both, one or neither of the PLRs
to be self-seeking?

Problem 20 Under what circumstances can the product of two strong PLRs of n
be itself a strong PLR of n? Is it possible for both, one or neither of the PLRs to
be self-seeking?
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The smallest value of n for which this can occur is n = 455, where 18, 19 and
18 ·19 = 342 are all strong PLRs. None of these three is self-seeking.

For the value n = 1771, the numbers 39, 1768 and 39 · 1768 = 1654 are all
self-seeking PLRs. This is the smallest value of n for which this can occur.

12 Tables of PLRs
We conclude with tables giving information about the smallest PLRs.
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12.1 PLRs for composite odd multiples of 3

n φ(n) λ(n) 2 = PLR? −2 = PLR? minPLR > 3
15 8 4

√ √
7

21 12 6
√ √

5
33 20 10

√
5

39 24 12
√ √

7
45 24 12

√ √
7

51 32 16 5
57 36 18

√
5

63 36 6
√ √

5
69 44 22

√ √
5

75 40 20
√ √

8
87 56 28

√ √
8

93 60 30 11
99 60 30

√
5

105 48 12
√ √

17
111 72 36

√ √
5

117 72 12
√ √

5
123 80 40 7
129 84 42 5
135 72 36

√ √
7

141 92 46
√ √

5
147 84 42

√ √
5

153 96 48 5
159 104 52

√ √
5

165 80 20
√ √

7
171 108 18

√
5

177 116 58
√

5
183 120 60

√ √
7

189 108 18
√ √

5
195 96 12

√ √
7

201 132 66
√

7
207 132 66

√ √
5

213 140 70
√ √

7
219 144 72 5
225 120 60

√ √
13

231 120 30
√ √

5
237 156 78

√ √
5

249 164 82
√

5
255 128 16 7
261 168 84

√ √
11

267 176 88 7
273 144 12

√ √
5

279 180 30
√ √

11
285 144 36

√ √
13

291 192 96 5
297 180 90

√
5



12.2 PLRs for composite odd non-multiples of 3
n φ(n) λ(n) PLR? minPLR

2 −2 3 −3 > 3
35 24 12

√ √ √ √
12

55 40 22
√ √ √ √

7
65 48 12

√ √ √ √
6

77 60 30
√ √ √ √

5
85 64 16

√ √
6

91 72 12
√ √

5
95 72 36

√ √ √ √
13

115 88 44
√ √ √ √

7
119 96 48

√ √
5

133 108 18
√ √ √

5
143 120 60

√ √
6

145 112 28
√ √ √ √

7
155 120 60

√ √
7

161 132 66
√ √ √

5
175 120 60

√ √ √ √
12

185 144 36
√ √ √ √

7
187 160 80

√ √
5

203 168 84
√ √ √ √

10
205 160 40 6
209 180 90

√ √ √
6

215 168 84
√ √

12
217 180 30

√ √
10

221 192 48
√ √

6
235 184 92

√ √ √ √
7

245 168 84
√ √ √ √

12
247 216 36

√ √
5

253 220 110
√ √ √

5
259 216 36

√ √
5

265 208 52
√ √ √ √

7
275 200 20

√ √ √ √
7

287 240 120 11
295 232 116

√ √ √ √
7

299 264 132
√ √

6
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