Light-matter interaction in a microcavity-controlled graphene transistor
- PMID: 22713748
- PMCID: PMC3621428
- DOI: 10.1038/ncomms1911
Light-matter interaction in a microcavity-controlled graphene transistor
Abstract
Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness.
Figures
Similar articles
-
Synthesis of monolithic graphene-graphite integrated electronics.Nat Mater. 2011 Nov 20;11(2):120-5. doi: 10.1038/nmat3169. Nat Mater. 2011. PMID: 22101813 Free PMC article.
-
Plasmon resonance enhanced multicolour photodetection by graphene.Nat Commun. 2011 Dec 6;2:579. doi: 10.1038/ncomms1589. Nat Commun. 2011. PMID: 22146398 Free PMC article.
-
Gate-tunable frequency combs in graphene-nitride microresonators.Nature. 2018 Jun;558(7710):410-414. doi: 10.1038/s41586-018-0216-x. Epub 2018 Jun 11. Nature. 2018. PMID: 29892031
-
Photosensitive graphene transistors.Adv Mater. 2014 Aug 20;26(31):5239-73. doi: 10.1002/adma.201400349. Epub 2014 Apr 8. Adv Mater. 2014. PMID: 24715703 Review.
-
Graphene: an emerging electronic material.Adv Mater. 2012 Nov 14;24(43):5782-825. doi: 10.1002/adma.201201482. Epub 2012 Aug 29. Adv Mater. 2012. PMID: 22930422 Free PMC article. Review.
Cited by
-
On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain.Nano Lett. 2016 May 11;16(5):3005-13. doi: 10.1021/acs.nanolett.5b05216. Epub 2016 Apr 22. Nano Lett. 2016. PMID: 27053042 Free PMC article.
-
Dual-gated bilayer graphene hot-electron bolometer.Nat Nanotechnol. 2012 Jun 3;7(7):472-8. doi: 10.1038/nnano.2012.88. Nat Nanotechnol. 2012. PMID: 22659611
-
Probing electrical signals in the retina via graphene-integrated microfluidic platforms.Nanoscale. 2016 Dec 7;8(45):19043-19049. doi: 10.1039/c6nr07290a. Epub 2016 Nov 4. Nanoscale. 2016. PMID: 27812594 Free PMC article.
-
As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance.Sci Rep. 2016 Nov 22;6:37190. doi: 10.1038/srep37190. Sci Rep. 2016. PMID: 27872494 Free PMC article.
-
Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors.Nat Commun. 2015 Oct 8;6:8589. doi: 10.1038/ncomms9589. Nat Commun. 2015. PMID: 26446884 Free PMC article.
References
-
- Geim A. K. & Novoselov K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007). - PubMed
-
- Geim A. K. Graphene: Status and prospects. Science 324, 1530–1534 (2009). - PubMed
-
- Avouris P. H. Graphene: Electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010). - PubMed
-
- Bonaccorso F., Sun Z., Hasan T. & Ferrari A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).
-
- Xia F. et al.. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources