No-reference quality assessment of natural stereopairs
- PMID: 23771336
- DOI: 10.1109/TIP.2013.2267393
No-reference quality assessment of natural stereopairs
Abstract
We develop a no-reference binocular image quality assessment model that operates on static stereoscopic images. The model deploys 2D and 3D features extracted from stereopairs to assess the perceptual quality they present when viewed stereoscopically. Both symmetric- and asymmetric-distorted stereopairs are handled by accounting for binocular rivalry using a classic linear rivalry model. The NSS features are used to train a support vector machine model to predict the quality of a tested stereopair. The model is tested on the LIVE 3D Image Quality Database, which includes both symmetric- and asymmetric-distorted stereoscopic 3D images. The experimental results show that our proposed model significantly outperforms the conventional 2D full-reference QA algorithms applied to stereopairs, as well as the 3D full-reference IQA algorithms on asymmetrically distorted stereopairs.
Similar articles
-
Oriented correlation models of distorted natural images with application to natural stereopair quality evaluation.IEEE Trans Image Process. 2015 May;24(5):1685-99. doi: 10.1109/TIP.2015.2409558. IEEE Trans Image Process. 2015. PMID: 25751864
-
3D-MAD: A Full Reference Stereoscopic Image Quality Estimator Based on Binocular Lightness and Contrast Perception.IEEE Trans Image Process. 2015 Nov;24(11):3810-25. doi: 10.1109/TIP.2015.2456414. Epub 2015 Jul 14. IEEE Trans Image Process. 2015. PMID: 26186775
-
Quality Prediction of Asymmetrically Distorted Stereoscopic 3D Images.IEEE Trans Image Process. 2015 Nov;24(11):3400-14. doi: 10.1109/TIP.2015.2446942. Epub 2015 Jun 17. IEEE Trans Image Process. 2015. PMID: 26087491
-
Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics.IEEE Trans Image Process. 2013 May;22(5):1940-53. doi: 10.1109/TIP.2013.2240003. Epub 2013 Jan 14. IEEE Trans Image Process. 2013. PMID: 23335667
-
How does binocular rivalry emerge from cortical mechanisms of 3-D vision?Vision Res. 2008 Sep;48(21):2232-50. doi: 10.1016/j.visres.2008.06.024. Epub 2008 Aug 13. Vision Res. 2008. PMID: 18640145 Review.
Cited by
-
A full reference quality assessment method with fused monocular and binocular features for stereo images.PeerJ Comput Sci. 2024 Jun 14;10:e2083. doi: 10.7717/peerj-cs.2083. eCollection 2024. PeerJ Comput Sci. 2024. PMID: 38983190 Free PMC article.
-
A simple quality assessment index for stereoscopic images based on 3D gradient magnitude.ScientificWorldJournal. 2014;2014:890562. doi: 10.1155/2014/890562. Epub 2014 Jul 15. ScientificWorldJournal. 2014. PMID: 25133265 Free PMC article.
-
Medical Image Quality Assessment Using CSO Based Deep Neural Network.J Med Syst. 2018 Oct 5;42(11):224. doi: 10.1007/s10916-018-1089-0. J Med Syst. 2018. PMID: 30288616
-
Rich Structural Index for Stereoscopic Image Quality Assessment.Sensors (Basel). 2022 Jan 10;22(2):499. doi: 10.3390/s22020499. Sensors (Basel). 2022. PMID: 35062460 Free PMC article.
-
A Novel No-Reference Quality Assessment Metric for Stereoscopic Images with Consideration of Comprehensive 3D Quality Information.Sensors (Basel). 2023 Jul 7;23(13):6230. doi: 10.3390/s23136230. Sensors (Basel). 2023. PMID: 37448078 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources