Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar;7(3):536-43.
doi: 10.1039/c4mt00323c.

Small angle X-ray scattering analysis of Cu(2+)-induced oligomers of the Alzheimer's amyloid β peptide

Affiliations

Small angle X-ray scattering analysis of Cu(2+)-induced oligomers of the Alzheimer's amyloid β peptide

Timothy M Ryan et al. Metallomics. 2015 Mar.

Abstract

Research into causes of Alzheimer's disease and its treatment has produced a tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloid-β peptide (Aβ). Here, we have used small angle X-ray scattering (SAXS) to study the effect of the molar ratio, Cu(2+)/Aβ, on the early three-dimensional structures of the Aβ1-40 and Cu(2+)/Aβ1-42 peptides in solution. We found that at molar ratios of 0.5 copper to peptide Aβ1-40 aggregated, while Aβ1-42 adopted a relatively monodisperse cylindrical shape, and at a ratio of 1.5 copper to peptide Aβ1-40 adopted a monodisperse cylindrical shape, while Aβ1-42 adopted the shape of an ellipsoid of rotation. We also found, via in-line rapid mixing SAXS analysis, that both peptides in the absence of copper were monodisperse at very short timeframes (<2 s). Kratky plots of these scattering profiles indicated that immediately after mixing both were intrinsically disordered. Ensemble optimisation modelling reflected this, indicating a wide range of structural conformers. These data reflect the ensembles from which the Cu(2+)-promoted oligomers were derived. Our results are discussed in the light of other studies that have shown that the Cu(2+)/Aβ has a marked effect on fibril and oligomer formation by this peptide, with a higher ratio favouring the formation of cytotoxic non-amyloid oligomers. Our results are relatively consistent with previous two-dimensional studies of the conformations of these Cu(2+)-induced entities, made on a much longer time-scale than SAXS, by transmission electron microscopy and atomic force microscopy, which showed that a range of oligomeric species are formed. We propose that SAXS carried out on a modern synchrotron beamline enables studies on initial events in disordered protein folding on physiologically-relevant time-scales, and will likely provide great insight into the initiating processes of the Aβ misfolding, oligomerisation and amyloid formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2