Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Nov;24(6):1177-87.
doi: 10.1088/0031-9155/24/6/008.

Dielectric properties of brain tissue between 0.01 and 10 GHz

Dielectric properties of brain tissue between 0.01 and 10 GHz

K R Foster et al. Phys Med Biol. 1979 Nov.

Abstract

Dielectric permittivity and conductivity are reported for grey and white matter from dog brain tissue between 0.01 and 10 GHz. Between 0.01 and approximately 1 GHz, the permittivity decreases and conductivity increases as a power law of frequency. Above 1 GHz, the conductivity increases quadratically with frequency due to dipolar reorientation of free water molecules in tissue; the apparent rotational relaxation frequency at 37 degrees C is 21--25 GHz, slightly below the 25 GHz characteristic frequency of pure water at that temperature. The microwave data are analysed using the Maxwell mixture theory applicable for a suspension of nonconducting, low permittivity spheres in bulk water. From the increase in conductivity above 1 GHz, and the tissue permittivity at 2--4 GHz, the apparent volume fraction of water is approximately 0.70 and 0.55 for grey and white matter, respectively, about 10--15% lower than respective values from the literature. This discrepancy is apparently due to a small fraction of water which does not contribute to the tissue permittivity above 1 GHz. Empirical equations are given to summarise the dielectric properties of 'average' brain tissue at 37 degrees C for future theoretical studies of microwave absorption in the head.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2