Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jul;27(1):75-83.
doi: 10.1016/0143-4179(94)90018-3.

Morphine reduces the release of met-enkephalin-like material from the rat spinal cord in vivo by acting at delta opioid receptors

Affiliations

Morphine reduces the release of met-enkephalin-like material from the rat spinal cord in vivo by acting at delta opioid receptors

E Collin et al. Neuropeptides. 1994 Jul.

Abstract

The modulation by morphine of the spinal release of met-enkephalin-like material (MELM) was investigated in anaesthetized rats whose intrathecal space was perfused with an artificial CSF (ACSF). Morphine (10 microM in the ACSF), as well as a mu- (DAGO, 10 microM) or delta opioid receptor agonist (DTLET, 10 microM), significantly decreased the outflow of MELM. The effects of morphine and DTLET were prevented by the delta antagonist, naltrindole (10 microM), but not by naloxone (10 microM). Conversely, naloxone, but not naltrindole, prevented the inhibitory effect of DAGO. Although neither the kappa 1 agonist, U 50488H (10 microM), nor the kappa 1 antagonist, norbinaltorphimine (10 microM), exerted on their own any significant effect, norbinaltorphimine enhanced the inhibitory action of morphine. In contrast to the inhibition induced by morphine (with or without naloxone) which was preventable by 10 microM naltrindole, the inhibition of MELM release by morphine plus norbinaltorphimine was only partly reduced by naltrindole. Thus, concomitant stimulation of mu, delta and kappa 1 receptors might account for the apparent delta opioid receptor-dependent inhibition of MELM release by morphine. Indeed, its potential inhibitory effect through the stimulation of mu receptors (normally prevented by the concomitant stimulation of kappa 1 receptors) becomes efficient only when kappa 1 receptors are blocked.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

  NODES
admin 1
Association 1
INTERN 1
twitter 2