HOW MANY ORDERS ARE THERE?

MARTIN KOCHANSKI

ABSTRACT. The number of preferential arrangements of n labelled elements
(also known as the ordered Bell numbers, and listed as sequence A000670 in
Sloane) is investigated. A generating function and a recurrence relation are
obtained and the asymptotic behaviour of the sequence is described.

Let us count two assignments of values to n items {z;}}_; as being distinct
if different order-relations result. For instance, we might be looking at assigning
scores to people who have sat an exam, or (the case that originally drew me to
this problem) assigning priorities to operators in a parser for a computer language.
We’re not interested in the particular value that is assigned to each item, only to
its position relative to other items: first, second, or whatever.

If we don’t allow two items to have equal values then there are exactly n! distinct
assignments, because we have n choices for the first item, n—1 choices for the second
item, and so on until there is only one item left.

What if we do allow some items to be the same, so that items can be “first equal”
as well as “first” or “second”? Let’s denote the number of distinct assignments in
this case by C},. So the question is: how big is C,,7

Obviously C,, > n!, since we get n! choices even if we don’t allow items to be
equal, so anything beyond that is a bonus. Let’s look at Cs. First of all let’s assume
that all the x; are distinct: that gives us 3! choices. Then let’s assume that two of
the z; are the same and one is different: we have 3 choices for the different one, and
2 choices as to its position (it can either be greater than the other two or less than
the other two): so that gives us 3 x 2 choices. Finally, let’s assume that all the x;
are identical: that gives us one further choice. The total is 3! +3 x 24+ 1 =13, so
Cs =13.

What can we say about C), in general?

0.1. Some results.
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or, symbolically,

(3) 20, = (C +1)"

Date: 10 May 2007.
Cpis sequence no. A000670 in N.J.A. Sloane’s On-Line Encyclopedia of Integer Sequences:
http://www.research.att.com/~njas/sequences/A000670.
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which is similar to the B,, = (B + 1)" that defines the Bernoulli numbers.

Denoting In 2 by o and defining f(2) = =,
(@) = L3 (g
nl " 2a — k! @
whence
(5) fM(=In2)=2(Cpln 2 —nCp_1)
As n — oo,
©) > 0028 091z 1
k=0
so that
n!
(M Cn ™~ S 2y

1. THE GENERATING FUNCTION

We can classify order assignments by the number of equal items that they contain
and how those equal items are distributed.

For instance, if we have a = b >c>d >e = f =g > h =i > j, we can
encode this as <2,1,1,1,3,1,2,1>. Every order assignment belongs to exactly one
such “equality class”. Note, too, that the order of numbers in the encoding of the
equality class is significant: <1,2,1,1,3,2,1,1> contains different order assignments.
It should be clear by now that if you’re talking about order assignments for n items,
the relevant equality classes are exactly those lists of positive integers that add up
to n: all the way from <n> on its own to <1,1,1...>.

How many order assignments belong to each individual equality class? Taking
the example given earlier, we can write the letters a to j in any order we like: this
gives us 10! possibilities. But the number 2 occurs in the encoding of the equality
class, which means that the first two items are equal and can be swapped: b = a
means the same as a = b. So we divide the number of possibilities by 2. Later
on, the number 3 occurs, meaning that there are three equal items, which can be
rearranged in any way you like: there are 3! ways, so the number of possibilities
gets divided by 3!.

In general, given an encoding of an equality class as {a;}]*, that equality class
represents a set of order assignments of " a; items. This gives (}_]" a;)! possibil-
ities if equality is ignored. In order to take account of equality we have to divide
the total by a;! for each a;. Thus the total contribution of that equality class is

(27" ai)!
®) [1(ai)

and C), is the sum of the contributions of all equality classes for which >"}" a; = n.
Now consider the expansion

z 2’2 23

9) (-1 =S+ 5+
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n! times the coefficient of 2" is 1, which is the contribution to C,, of the equality
class that has just one number in its encoding: <n>.

Next, consider the expansion of (e* — 1)2. The coefficient of 2" in this is the
sum of %A%, taken over all pairs of positive integers which satisfy i + 7 = n. This
means that n! times the coefficient of z™is the contribution to C), of the equality
classes that have just two numbers in their encoding: <i, j>.

So in general, n! times the coefficient of z"in the expansion of (e* — 1)¥ is the
contribution to C), of the equality classes that have exactly & numbers in their
encoding. Taking the sum over all values of k, we find that C, is n! times the
coefficient of z"in

o0
(10) > (e = 1)

0
(the coefficient of z" is finite for any finite n because it is zero for all terms with
k> mn).
Summing the series, we get the result

(1) L _ya
0

2 — e? n!

2. THE RECURRENCE RELATION

Let us look at a set of n + 1 items, which can be ordered in C),;ways, and let’s
see how to relate that to smaller sets.

Suppose that the first item is unique. If we remove it from the set then we get
a set of n items, which can be ordered in C, ways. However, we should be aware
that this first item could have been any of the n 4 1 items in the list. So we count
(n+1)C,.

Suppose that the first item is one of a pair. If we remove them both from the
set then we get a set of n — 1 items, which can be ordered in C,,_1 ways. However,
we should be aware that the first two items could have been any two items from
the list: there are n(n + 1) such ordered pairs, but the order of the items in the
pair doesn’t matter, so we count n(n+ 1)Cp_1.

Continuing this reasoning, we get

1 1 1
1 2 3

or

- 1
(13) Cny1 = Z <n;€|— )Ck

k=0

which can be written symbolically as
(14) C,=(C+1)"-0C"
or even
(15) 2C, =(C+1)"

which is interestingly similar to the B,, = (B + 1)"of the Bernoulli numbers.



HOW MANY ORDERS ARE THERE? 4

3. THE BERNOULLI NUMBERS

In this section we shall denote In 2 by aand z/(e* — 1) by f(z). One of the
definitions of Bernoulli numbers is that

z > B,
16 = = — 2"
(16) fe= mop =2
We have already established that
= z" 1
17 Chn— =
(17) ; nl  2—e?
Now
1 z-a 1/2a
2—e* e o—1"1-2z/a
1 1 B 0 L :
=50 =7 Z F(z —a) (definition of Bernoulli numbers)
= 5.1 C z/a m:O m inomia. eorem

1 - = mnm 1
T 2" l—z/ozZ Z m!(n —m)!

Define n’ = n — m and reverse the order of summation:

1 1 1
2-¢* 2a 1—z/aZ ZBern/

Expand ﬁ into an infinite series:

m 0 X n+]

1 & ) _;
e T 2 e 32 B

=0 Y n/=04=0

Redefine n = n’ + j:

1 o0 n
X S B

=0 TLO_]O

Define k =n — j:

1 I & (—a)™ X 2" = B,
2—€Z:%Z m! ZJZ krkak

m=0 n=0 k=0
Ly (Z )" z": o! i _a)mB (change order of summation)
~ 2a a &l | Omtk
20 ol =~ k! = m!
(18) Ly (z)nz": o FP(=a) (Taylor’s theorem)
~ 5. - FX) —Q ylor rem
1
2c = o = k!

(for experts in series and Bernoulli numbers there is probably a two-line way of
deriving all this!).
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Equating coefficients of z", this gives us

a™ 1 < ok

= - = k) _
(19) O =50 2 V()

It follows that
1 a” a™ anfl

2 Lo gy = Yo, - Y,
(20) Qan!f (=) n!C (n—l)!c !
whence

1 «

— ) _ =20 —
(21) 27’Lf ( Oé) nCn Cn—l
and
(22) f™ (=) = 2(aCp —nCh_1)

4. ASYMPTOTIC BEHAVIOUR
oo %—Tf(k)(—a) is a Taylor series for f(aw — @) = f(0) = 1. Therefore as

n— 00, Y 1, ak_Tf(k)(—a) — 1. So as n — o0,
n!
2(In 2)"+1
And here we end, because the asymptotic behaviour of C), is what got me inter-

ested in this question in the first place.
E-mail address: http://www.nugae.com/mathematics/

(23) C,, ~



