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On 0160nirel’man’s Constant

OLIVIER RAMARÉ(*)

1. - Introduction

In a letter to Euler in 1742, Goldbach raised the problem of whether every
even integer (other than 2) could be written as a sum of at most two primes.
Euler noticed that this problem is equivalent to the fact that every integer
larger than 5 can be expressed as a sum of three primes. Different approaches
have since been developed to attack this still unsolved problem. Let us briefly
mention here the sieve methods initiated by Brun in 1915, which were used by
Chen Jing-run (1965) in proving that every sufficiently large even integer can
be represented as a sum of a prime and an integer having at most two prime
factors. The circle method of Hardy-Littlewood and Ramanujan eventually led
Vinogradov to show in 1937 that every sufficiently large odd integer is a sum
of three primes; Chen Jing-run and Wang Tian-ze have shown in 1989 that this
is indeed the case for odd integers larger than exp( 100 000).

This work follows the approach initiated by Snirel’man in 1930. By using
an upper bound sieve to show that the set of sums of two primes has a positive
density together with general results concerning addition of sequences (which
he invented for that purpose), he proved that there exists an integer C such
that every integer larger than 1 is a sum of at most C prime numbers. Klimov
(1969) was the first to actually exhibit an explicit value for such an admissible
C, namely 6.109. This value has subsequently been reduced by different authors,
the latest being Riesel and Vaughan who showed in 1982 (cf. [11]) that 19 is
an admissible value. Here we prove the following result:

THEOREM 1. Every even integer is a sum of at most 6 primes.

This immediately leads to the following corollary.

COROLLARY. Every integer larger than 1 is a sum of at most 7 primes.

~~~ This work has been partially supported by NSF grant DMS-9100383.
Pervenuto alla Redazione il 5 Novembre 1993 e in forma definitiva 1’ 8 Febbraio 1995.
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The crucial step involved in Theorem 1 is an effective lower bound for
the density of the sums of two primes.

THEOREM 2. For X &#x3E; exp(67), we have

Let us recall that Montgomery and Vaughan have been able to show that
the above cardinal is asymptotically equal to X/2 + O(Xl-6) for some positive 8.

The deduction of Theorem 1 from this result is performed in the last
section. Thanks to an effective version of Ostman’s additive Theorem due to
Deshouillers one easily deduces that Theorem 1 holds true for all integers
larger than 1030. The remaining values are dealt with by an ascent process that
cOlubines known effective results on primes with a new one, which we proved
in [9], concerning small effective intervals containing primes.

We outline the proof of Theorem 2 in the next section. Let us briefly
mention here that it combines an enveloping sieve with effective results on
primes in arithmetic progressions that we deduced from Rumely’s computations
[10] on zeroes of Dirichlet L-functions associated with characters to small
moduli.

We present below the organisation of this article:
1. Introduction.

2. The principle of the proof.
1. An enveloping sieve.
2. An upper bound for the number of representations of an even integer

as the sum of two primes.
3. Structure of the proof of Theorem 2.

3. Effective evaluations of averages of arithmetical functions.

4. Study of Wd.
1. An explicit expression.
2. An asymptotic expression.
3. Three elementary estimates.
4. Upper bounds.
5. A computational result.
6. About the computation of Wd.

5. Proof of Proposition 1.

6. The main term. Proof of Proposition 2.
1. Preliminary lemmas.
2. An estimate for R i 1.
3. An estimate for R i2.
4. An estimate for R i3.
5. Conclusion.
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7. An upper bound for the dispersion. Proof of Proposition 3.
1. Preliminary.
2. Dispersion and multiplicative characters.
3. End of the proof of Proposition 3.

8. A weighted large sieve inequality. Proof of Proposition 4.
1. Lemmas concerning the polynomial T.
2. Other lemmas.

3. Proof of Theorem 8.1 and small improvements.
9. An additive Theorem in addition of sequences. Proof of Theorem 1.

Table 1.

References.

is the Euler’s totient function, it is the Mobius’ indicator,
v(n) is the number of prime factors of n, (n, m) denotes the gcd of n and m
and [n, m] their lcm. The arithmetical convolution of two functions f and g
is noted f * g and defined by ( f * g)(n) = Ldln f (d)g(n/d). If f and g are two
functions then f(x) = means g(x). We use the abbreviation
e(«) = exp(2i7ra), and if 5’(of) = Ln ane(na) is a trigonometric polynomial, we

To denote a sum over all invertible residue classes a modulo q, we shall
use the symbol

We further need some special functions and constants:
4&#x3E;2 is defined by §2(d) = jlpld(P - 2),
ç is defined by C(d) = 3)/(p - 1).
It will be numerically interesting to take a special care of the parity of our

variables. To this end, we define the function It(a,.) by x(a, d) = a if 2 ~ d and
1 otherwise. We denote the Euler constant (ï = 0.577 215 664 901532 ...),
$2 = 2 llpl3(l - 1/(p - 1)2) with 1.320322  $2  1.320323, and D = ~d &#x3E; 1,
d odd, squarefree and ~(d)  60}.

The notations concerning prime numbers are usual: the letter p always
stands for a prime, , I and 0(.

The knowledge which we will require about the distribution of primes
in arithmetic progressions with a small modulus is contained in the following
lemma (cf. [10]):

LEMMA 01. If X &#x3E; exp(50), then for any d in 0 and f prime to d, we

1 Since first writing this paper, the values of Ed have been improved. However we only use
the ones given here. 

°
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have

for Ed given in table 1 at the end of this paper.

Acknowledgement: Since my interest in this problem and specifically this
work derives from my Ph. D. thesis, I thank my advisor Jean-Marc Deshouillers;
I also thank him for allowing me to include one of his results, namely Theorem
9.1, which has been especially designed for this paper. My thanks are due
next to Robert Rumely who made his computations available and agreed to
extend them at my request. Further, I wish to thank Enrico Bombieri, Andrew
Granville, Henryk Iwaniec and Carl Pomerance for their interest in my work,
for helpful discussions on this subject and for their hospitality. Thanks are also
due to the referee for having pointed to me the enumerable list of mistakes.

Finally, I am thankful for hospitality to the Institute for Advanced Study, where
this work was completed.

2. - The principle of the proof

Here we present the proof of Theorem 2 (the key to Theorem 1) and at
the end of the paper we show how to deduce Theorem 1 from it.

In the first part we detail Selberg upper sieve for the primes and consider
the usual weights (Ldly Àd)2 as a weighted sequence which is an upper bound
for the characteristic function of the primes. Such a process has already been
used by Hooley [5] and has been called "enveloping sieve" by Linnik ([6],
Chapter 1).

In the second part we use this enveloping sieve in order to build an upper
bound for the number of representations of an even integer as the sum of two
primes. We conjecture this upper bound to be twice larger than what we expect
for the primes, a fact that we will be able only to establish on average.

We then state Proposition 1, 2, 3 and 4 and deduce Theorem 2 from them.
Their proofs are given in the forthcoming sections.

2.1 - An enveloping sieve

Here we fix a real number X &#x3E; 1 and want to build an upper bound {3
for the characteristic function of the primes up to X with which we can work
in a very explicit way.

First let us recall that Selberg’s sieve provides such a function. We refer
the reader to Halberstam and Richert [3] for a full account on this subject.

We choose a real parameter z between 1 and X 1~2 and define for every
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integer d and every real number t larger than 1:

For fixed d and t going to infinity, we have (cf. Lemma 3.4)

Now we define Ad, for all positive integers d, by

so that it is, by (2.1 ), a weighted version of the usual Mobius it(d). We see
that À1 = 1 and Ad = 0 if d &#x3E; z. Finally we define ~3(y) for all integers y, by

The weights satisfy
(1) /3(~/) &#x3E; 0 for every integer y and

(2) 3(p) = 1 for every prime p larger than z
and therefore, the weighted sequence Q is a good candidate for solving our
problem, overlooking the anyway unimportant fact that we lose the primes less
than z.

What are the advantages and drawbacks of this upper bound?

(1) First of all, it can be easily checked that

Hence if we choose z such that as X goes to infinity, our

sequence will be on average twice as large as the sequence of primes.
(2) But now we find that for every positive integer d the weighted sequence

Q is well-distributed in the progressions {a + kd, k for all a coprime to d.
To see this, define
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We can check that for any a coprime to d we have

which shows the equi-distribution since Wd does not depend on a. We also have

In fact, we will see in the next section that only the wd’s and no error term
appear in our problem. For these wd’s, we can prove in a very explicit way
(see Lemma 4.3) that for all positive integers H:

which can be seen as proving a weak Brun-Titchmarsh inequality with the same
sieve for all moduli. This will enable us to avoid the Theorem of Siegel-Walfisz.

The idea of looking at the weights of the upper sieve as a weighted
sequence, which had seemed new to the author, was in fact already used by
Hooley (see [5], where he used Brun’s sieve instead of Selberg’s). In the Lemma
11 of Chapter 5 of [5], Hooley proved a formula corresponding to (2.5) for his

2.2 - An upper bound for the number of representations of an even integer as
the sum of two primes

Let N be an even integer.
We are looking for an upper bound of

This quantity is conjectured to be asymptotic, when N goes to infinity, to

ti2(N)N/Log2 N where ti2(N) is an arithmetical factor which takes care of
local obstructions. We have

In order to obtain an upper bound for p(N) we replace the characteristic function
of the prime pi by the weighted sequence {3. For technical reasons we add some
size conditions which will be helpful later and do not change the arithmetical
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nature of this quantity. Let us choose a real number X &#x3E; 1 and assume that N
lies in ]X,2X]. We consider

r2(N) is conjectured to be asymptotic to Then we consider

where ~3 is defined by (2.3) and depends on a parameter z which will be choosen
later. We have

and conjecture that R2(N) is asymptotic to as N goes to infinity.
We will not be able to prove such a statement for every N but we show in
the next section that this is true in a suitable average sense. It is worthwhile to
mention that the individual upper bound is out of reach at present since even

by using Bombieri-Vinogradov’s Theorem the best we are able to get as an
individual upper bound is

while the conjecture R2(N) equivalent to ((,2(N)X/G(z) for the given choice
of z would permit us to replace the 4 by a 2 in the above bound.

Let us study R2(N) some more. We introduce

and write (2.9) in a different way by expanding the square in ~3(y), reversing
the summations and using the identity:

We arrive at the expression
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which must be considered as one of the main steps in our proof. Now two
remarks have to be made:

(1) Our sieving process does not depend on N which is the most notable
feature of the "enveloping sieve".

(2) According to (2.5), wd is also related to the value of a trigonometric
polynomial at a point a/d. That only Wd appears is very convenient but
also shows that this method is not able to carry very precise information
about the distribution of primes. 

_

Conjectural behaviour of R2(N): Let us see how the summands in (2.12)
behave in the ideal case, that is to say, when we replace w by 03BC(d) and

, ,, 

when p d y 
0(d)G(z)

Then we get the expression

where cd(N) is Ramanujan’s sum. This expression is equivalent to N2(N)
X/G(z) if z is large enough, but our series does not converge uniformly in
N. Hence we cannot take only, say, the first 60 terms and claim it is a good
approximation to R2(N). However, it is easily seen that this convergence is
"almost everywhere" uniform (for instance,

We will retain from this discussion that on average over N the first terms of

(2.12) give a good approximation of R2(N).

2.3 - Structure of the proof of Theorem 2

Let us make a comment on the content of Theorem 2. The number of
even integers in ]X, 2X] is approximatively X/2, and according to Goldbach’s
conjecture, our cardinal should be X/2. By comparison, Riesel and Vaughan’s
result corresponds to the lower bound X/(2 x 9).

Now let us look at the principle of the proof. Following Shapiro and
Warga [17], we study

By using effective numerical results on the distribution of the primes in ari-
thmetic progression we easily get the following lower bound (cf. Section 5):
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PROPOSITION 1. For , we have

Note: We can prove that , ), and therefore our
result does not lose much.

Shapiro and Warga’s proof continues as follows:

and it should be noted that the above inequality is conjectured to be an asymp-
totic equality since r2(N) is expected to be asymptotic 
therefore all the summands in R should be equal. Their proof continues by
taking an individual sieve upper bound for r2(N).

The previous section provides us with an upper bound for r2(N), but we
are unable to compute it. However, we have seen that the first terms of (2.12)
must give, on average over N, the main contribution to R2(N). This is enough
for our purpose since in (2.15) we need only the maximum out of a set of
small measure, up to a neglegible error term.

More precisely and following the previous section, we have

where R * is expected to be

Putting

we get by using (2.12)

From this expression we see that we are dealing more with a ternary problem
than with a binary one, but we do not know much about U(a). For d not in Ð,
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we shall control U(a/d) by using the large sieve inequality. A way of evaluating
is given at the end of Section 3.
Let us recall the notation

which is asymptotic to X (even numerically, we can replace this function by X).
We split the summation over d into two parts, according to whether d is

larger or smaller than A = and we evaluate the main term via a computation
of dispersion.

with

We now study each of these three terms. From now on we have

We also define

Study of R i : By using an asymptotic expansion (with respect to z) of the
wd’s we get the following proposition (cf. Section 6):

PROPOSITION 2. Under (Hyp.), we have

Study of RZ: We apply Cauchy’s inequality to separate 0(a/d) and
, For the summation corresponding to the U’s we
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use the large sieve inequality, and for the other one which is a dispersion, we
express T(a/d) in terms of multiplicative characters; this part of the proof is
similar to the proof of Barban-Davenport-Halberstam’s Theorem except that the
weights wd enable us to avoid any appeal to Siegel-Walfisz’s Theorem. We will
get (cf. Section 7):

PROPOSITION 3. Under (Hyp.), we have

Study of R3: We apply Cauchy’s inequality to separate U(a/d) and T(a/d)
and use a weighted version of the large sieve inequality for both summations.
This weighted version (our Theorem 8.1) requires some careful treatment of the
wd’s (cf. Section 8).

PROPOSITION 4. Under (Hyp.), we have

REMARK. At this stage, we choose both z and A.

PROOF OF THEOREM 2. We collect Propositions 1, 2, 3, 4, (2.14), (2.16)
and (2.20) to obtain

Now, we have 0.4683 Log X  G(z) and 31.37  G(z) (cf. Lemma 3.4), thus

This function of 6 is increasing as a sum of increasing functions and is negative
for 6 = 1 /(2 x 2.48), hence the result. 0

About the numerical orders of magnitude: We will work with LogX &#x3E; 67
and if possible with a smaller lower bound. For z, (Hyp.) ensures that

Log z &#x3E; 30 but we will try as long as it is possible and not too cumbersome to
work with Log z &#x3E; 18. In fact the bounds 67 and 30 could be lowered a little
and we would get an analog of Theorem 2 with a lower bound of the shape

which would be enough for our purpose.
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3. - Effective evaluations of average of arithmetical functions

This part is divided in two: first we state and prove a general useful
lemma which is a generalisation of a lemma of Riesel and Vaughan [11] and
which provide us with good asymptotic expressions for average of arithmetical
functions. This lemma is followed by several applications we will require
afterwards. Secondly, we will see how to obtain an upper bound for

where .~ is a set of positive density, without losing the information that .~ has

positive density (i.e. without extending these summations to all integers). There
we will follow Ruzsa [16].

We will often use the following elementary lemma:

LEMMA 3.1. Let , f be a non-negative multiplicative real-valued function
and let d be a positive integer. For 0, we have

PROOF. We have

and we conclude by using the non-negativity of f. 0

Next, we prove the aforementionned useful lemma.

LEMMA 3.2. Let and be three complex sequences.
Let H(s) = En hnn-S, and H(s) = E Ihnln-s. We assume that g = h * k, that
_ 

n

H(s) is convergent for ~(s) &#x3E; -1~3 and further that there exist four constants
A, B, C and D such that

Then we have for all t &#x3E; 0:
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We have also

with

PROOF. Write kn, and all the regularity of

our expressions comes from the fact that it is not necessary to impose n  t in
En kn. We then complete the proof without any trouble.

In order to estimate for t &#x3E; 0, we write

and we conclude by using the asymptotic expansion of gi.

In order to apply the preceeding lemma, we will require:

LEMMA 3.3. For all t &#x3E; 0, we have

Denote by r(n) the number of divisors of n. For all t &#x3E; 0, we have

with

PROOF. A proof of the second part of this lemma can be found in Riesel
and Vaughan ([11], Lemma 1).

For the first part, we recall the classical
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For 0  t  1, we choose a &#x3E; 0 such that Log t + -1 + at-’/’ &#x3E; 0. This function
decreases from 0 to (a/3)3 then increases. This gives us the minimal value
a = 3 exp(-1 /3 - 1)  0.9105. D

We will apply Lemma 3.2 with multiplicative sequences (g,,) satisfying
gp blp + 0 (1 /p) with b = 1 or 2. In such a situation we choose 

= ~(s + l)b and (hn) is multiplicative and determined by E hnn-s gnn -8
~+1)-~.

Except in (3.24), the sequence will be 0 over non-squarefree integers,
giving 

- ..

thus enabling us to compute hn and to show that the condition
is met. The computations leading to (3.24) are similar.

Since in any case (hn) is multiplicative, we will have

and

and also

We now apply Lemma 3.2.

LEMMA 3.4. For all X &#x3E; 0 and all positive integers d, we have

with

REMARK. The sum on the left is Gd(X). The case d = 1 will be of special
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interest. The associated Dirichlet series is

and hence, we can see that the error term 0(X-1/2) is admissible (in fact,
our method could give and that we can not expect anything
better than 0(X-3/4).

Rosser and Schoenfeld ([13], (2.11 )) give us

PROOF. Let us define the multiplicative function hd by

if p is a prime which is not a prime factor of d, and by for
all m &#x3E; 1 it p is a prime factor of d. ’

Then we have

we now apply Lemma 3.2 and verify that

which concludes the proof. D

LEMMA 3.5.

PROOF. The first part follows from our asymptotic expression for z &#x3E;

146050. We could finish the proof by a hard computation but it would be very
heavy. Instead, remark that we can modify Lemma 3.2 and take the exponent
0.45 instead of 1/3. Then we will have G(z) - Log z  1.4708 as soon as

It is now a little difficult to compute H(-o.45), and we have to controle the
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error of computation. We have

and with and we get

since 0(t)  1.001 093t if t &#x3E; 0 (cf. [18]). Hence our first point is proved for
z 1_ 42 300. A direct verification shows that

The second assertion is to be found in Montgomery and Vaughan ([7], Lemma
7) with a constant 1.07 instead of 1.06. We use only the slightly weakened form
which is stated in the Lemma. It is one of the numerous places throughout this
paper where results weaker than what is available are used. This looseness is
introduced so that should a slight numerical mistake occur the results would
still hold. The third assertion of our Lemma is an easy consequence of the two

previous ones. D

LEMMA 3.6. For y &#x3E; 1, we have

The following lower bound also holds:

Finally we have for and

PROOF. For the first part, we consider the multiplicative function h defined
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as h I of Lemma 3.4 on pm if p ~ 2, and by

and apply Lemma 3.2. 
_ _

For the second part, let us denote the sum by G(y). Then G(y) -
G(y) - G2(y/2)/2 and, with Lemma 3.1, G2(y/2)  G(y)/2, hence, for y &#x3E; 6,

we get G &#x3E; 3 Logy. For 6 &#x3E; &#x3E; 1, a direct computation gives the result.
The third estimate follows by using first Lemma 3.1 and then the first

estimate. D

We will also use the following weighted version of the previous lemma:

LEMMA 3.7. Let A be a positive real number and y &#x3E; A2. We have for
.~  y and y &#x3E; exp(18)

PROOF. Let us put

We first prove that Log A. We have

hence by Lemma 3.6

which proves our estimate. Now, by a reasoning similar to that in Lemma 3.1,
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we get

and an appeal to the previous result concludes the proof.

LEMMA 3.8. For y &#x3E; 0 and a in {1/2,2/3}, we have

w/i, The constants kii(a) and E(a)
satisfy the inequalities

Also

with

PROOF. Let us define the multiplicative function ha for p prime not equal
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to 2 by (3.17)

and

Then

and now we apply Lemma 3.2.

LEMMA 3.9. Let f5 be the function defined by

Then we have for y &#x3E; exp(18)

PROOF. We first prove that for all y &#x3E; 1, we have

with
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Let us define the multiplicative function h by, for p prime not equal to 2,

and

Then

and Lemma 3.2 applies. From this we get

which is now equal to

The following points are easily checked:
, ,. ,

By using these, we get an upper bound which is a non-decreasing function of
z and a simple computation concludes the proof. D
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PROOF. The identity

implies that the sum we want to estimate is less than

and this is now less than 4/Z. The proof of the second inequality is similar
with the condition (n, 2) = 1 which we keep for the variable in (3.21) and
drop for the variable m. D

Average of a multiplicative function over a set of positive density: We
study this general problem only in a special case we will need later on. We
refer the reader to Ruzsa [16] for a more detailled study.

We are looking at (cf. (2.7))

where a is 1 or 2 and A is the set of integers which are sums of two primes.
We put B = A n]X, 2X] and apply Hölder’s inequality with an exponent u &#x3E; 1:

For any real number b &#x3E; 1, we put , Following Lemma

3.2, we define the multiplicative function hb by:

We denote by Hb its Dirichlet series and by H6 the Dirichlet series associated
with lhb(n)l. Lemma 3.2 gives us
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and it remains to choose the best value of o,. We want to minimize

And we want to do this minimisation with [B[ I = X/6. We then work for
X &#x3E; exp(60), and compute several values. For each a, this function of a varies
very slowly. We obtain the following lemma:

LEMMA 3.11. For we have

and

4. - Study of the wd

As is clear in (2.18), we are in need of information about the Wd’S. We will
first get a more explicit formula for these wd’s by introducing the definition of
the Ad’s in (2.4). This expression has the defect of introducing localized divisors
of d. Our guess is that

which we are not able to prove.
For d small, we give an asymptotic expression as z goes to infinity which

supports (4.0).
For d prime, or twice a prime or 6 times a prime &#x3E; 7, we prove (4.0) by

using elementary means.
For the medium d’s, we have upper bounds essentially of the shape

I « 3v~‘~, but the introduction of this divisor function will prove to
be numerically costly.

For the large d’s (i.e. close to z2), we use the fact that d has few decom-
positions of the form d = [dl, d2] ] with d 1, d2  z to avoid use of 3 v«.

The last part of this section is devoted to the study of a function built
from the wd’s and which will be of use in Section 7.
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4.1 - An explicit expression

By (2.2) and (2.4) and then substituting the definitions of 

(i = 1, 2), we obtain at once

where

We now evaluate the function L.

LEMMA 4.1. For any positive squarefree integers d, k and f, we have

PROOF. We obviously have L(d, .~, k) = 0 if d Y [f, k], hence from now on,
we suppose dl [t, k]. We first prove that L is multiplicative in the following
sense: if and 1~ are squarefree integers, then

To do so, we introduce the function x(a, b) which takes the value 1 if and
0 otherwise and its local version: for every prime p, we define Xp(a, b) to be
equal to x((a, p), (b, p)). Let M be an integer divisible by k and f. For squarefree
integers a and b dividing M, we have
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Assuming and k squarefree, we thus get

out of which (4.2) follows readily. We define Lp(d, .~, k) = L((d, p), (f,p), (k, p)),
and find

We now have to find a global expression out of the local ones. Let us write

Then, if the point (2.ii) above gives us s = t, that is to say

and this last quantity is equal to The proof follows

readily.

Using the notations = dl d3 s, etc. from the proof of Lemma 4.1, we
readily get

LEMMA 4.2. If wd is given by (2.4) then
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4.2 - An asymptotic expression

LEMMA 4.3. For all z &#x3E; 1 and all integers d, we have

where

and

f 1 having been defined in Lemma 3.4.

PROOF. We use Section 3. First, (4.3) gives us

We now use Lemma 3.4 to write

We collect all the error terms to get the claimed one. For the main term, we
use: 

I I _

so that the expression

is equal, by introducing n = d 1 d3, to
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which is

and we check that the sum of the last three summands is zero, which ends the

study of the main term. D

Although I have not been able to prove that ud is small and often  0,
that is what I expect, which would support (4.0). We can check that U5005 &#x3E; 0,
and that 5005 and 17017 are the first two counter-examples. It is also worth

mentioning that numerical investigations seem to indicate that there are many
cancellations in the expression defining ud.

4.3 - Three elementary estimates

By applying elementary means, we can prove the following lemma:

LEMMA 4.4. If d is a prime, or 2 times a prime, or 6 times a prime
different from 5, then, for all z &#x3E; 1, we have

PROOF.

o When v(d) = 1, that is, d is prime, we check easily that, in Lemma 4.2,
s  z/d and that the inner sum equals Hence, by (2.2),

Now it is well known that 0  1 (see for instance Halberstam and
Richert [3]), whence the result in this case.

o Next, suppose d = 2p, p &#x3E; 2. In (4.3), D  z/p always. If s  z/(2p),
the inner sum is 2p/~(2p); and if z/(2p)  s  z/p, the inner sum is 2. Hence

But
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hence

We conclude by noticing that

o If d = 6p with p &#x3E; 7, then the ordered chain of divisors of d is 1, 2, 3,
6, p, 2p, 3p, 6p (Note that the hypothesis p &#x3E; 7 is required here). We get

On the other hand, we check that

and the miracle is that

One could ask whether such an elementary approach could go any further,
and for instance take care of the case d = pq with 2  p  q where one can
check that ud  0. However for d = 15 (which is the first integer not covered by
Lemma 4.4) and z = 10, we have computed that 1.09 and for
d = 35 and z = 42, we have found that the above quantity (say p(d)) is greater
than 1.05. This last example shows that even the stronger condition d  z does
not ensure p(d)  1. As to more positive answers, no counter-example to the
guess 0 has been found.

We finally give two identities easily derived from (2.4) that throw some
light on this question

4.4 - Upper bounds

We derive from (4.3) two kinds of upper bounds.
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LEMMA 4.5. For z &#x3E; 1 and any positive integer d, we have

PROOF. We start with (4.3) and omit the size conditions on d1, d2 and

d3 - We then use Lemma 3.1 to write To prove thea
second assertion, we remark that the function p t-&#x3E; (3p - 4)/(p - l)p1.3 is less
than 1 if p &#x3E; 41. D

LEMMA 4.6. 1 and any positive integer d, less than

with

PROOF. We start with (4.3), put A = d1 d3, insert absolute values inside,
and ignore the size conditions on d1. A simple computation gives the upper
bound 

_ -. r-:.... _. _

To obtain the first inequality we use

and to obtain the second one, we omit the size condition on 1~ and use Lemma
3.1. 

~ 

p

4.5 - A computational result

In this section, the following assumptions and notations are used:

z is a real number &#x3E; exp(30),

A is a real number such that Log A  39 Log z&#x3E;- 50 
g ’

q always denotes a positive odd squarefree integer,
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First, let us note the following computational lemma which tells us that
the "conjecture"  1 is not far from being true for small integers.

Define the deficiency by

LEMMA 4.7. We have

Explanations of the computations may be found in the Section 4.6.
We now introduce the following auxiliary notations:

LEMMA 4.8. We have

and

PROOF. By using Lemma 4.5 and Lemma 3.5, we get
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Now for the t(q), we have

where A is a parameter to be chosen later. With our notations, we get

To prove (4.13), we take A  1 in the above expression. To prove (4.14), we
use our previous expression with A = 50 000 and

together with Lemma 4.7. We then note that

and that

LEMMA 4.9. then

PROOF. If q  3 000, then
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and a direct computation using (4.14) yields the result for q &#x3E; 285. If q  285,
we can replace 0.089 55 by 0.003 41 and a computation gives the result for the
remaining q’s. 0

LEMMA 4.10.

we have t(q)  0.000 3.
we have t(q)  0.001.

PROOF. We break up the proof into several steps according to the size of q.
o By using (4.14) and since is less than 1 if p &#x3E; 23, we get

This yields immediately

and we easily check that

This upper bound combined with (4.13) ensures us that t(q)  0.000 3 as soon
as q &#x3E; 14 000 thus concluding the proof of the first part.

o If q  14 000 then v(q)  4 and we get with (4.14) and (4.18)

o Lemma 4.9 concludes the proof of the first and second part of Lemma
4.10. The proof of the third part of Lemma 4.10 follows the same line as the
proof of Lemma 4.8. We call 7 the set {d odd, d  2000}U{2d, d odd, d  2000}.
Then
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which is checked to be  0.000 000 9 as required. We did this computation by
generating the d’s: first the primes, then the product of two primes, up to the
product of 6 primes, which is a bit annoying to program but very efficient since
it avoids the factorization of d. 0

4.6 - About the computation of Wd

Computing a "small" finite number of wd with a decent accuracy is no

problem, let us say if "small" is about 1000, and this by using the asymptotic
expression. But we have to verify that 1 for a very large number
of d’s. In order to achieve this, we have worked with v(d) fixed and generated
the integers d instead of analysing their arithmetical structure. In practice, v(d)
is between 1 and 6. Now Lemma 4.4 tells us that we do not have to deal with
some special cases. For the other ones, we have to compute ~d. The following

enables us to implement a very fast way of computing Wd for v(d) = 2,
3, or 4. There will be few d’s with v(d) = 5 or 6 in our range of interest so
that they can be computed directly.

Put

The introduction of this quantity simplifies the expression of ud. We verify that

Let us prove the last of these.

PROOF. The problem is to find the divisor m of d such that

(1) 
m

(2) there are at least 8 divisors of d which are less than m.

If s &#x3E; pqr, m = pqr is a convenient choice.
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If s  pqr and qr  ps then qr is larger than 1, p, q r, pq, pr and qr.

If s &#x3E; qr, m = s is an admissible choice.

If s  qr, m = qr is an admissible choice.

If s  pqr and ps  qr then m = ps is larger than 1, p, q, r, s, pq, pr and

ps, and therefore is an admissible choice. D

5. - Proof of Proposition 1

Recall that

thus

We want to obtain a lower bound for this quantity. By expanding the arithmetical
factor as a convolution product, we get, from (2.7),
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where

and

We will study Bd(X) according to the size of d.
For the small d’s, that is to say, those which are in D (see Notations), we

have, by Lemma 0,

and

For the lower medium range of d’s, we use the Brun-Titschmarch inequality
of Montgomery and Vaughan:

x2
which is less than 0.01288 Log X Note that since we are only looking 

for a

lower bound of J~, we could have discarded the d’s for which U(d) = 1; this

process would enable us to replace 0.01288 by 0.00651, but it is not required
for our final result.
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For the upper medium range of d’s, we put Q = 4000 Log X and we have

For the large d’s, we have

by Lemma 3.10 and Lemma 0.
Putting all these estimates together, we obtain

6. - The main term. Proof of Proposition 2

Let us recall

Following the "Conjectural behaviour of R2(N)" at the end of 2.2, we will
see that the first d’s lead to the main contribution. The other ones will be dis-
carded in a simple way. A little problem arises because G(Z)Wd is not ti(d)lo(d)
but has an asymptotic expression of the shape 0(d) (1 + v d/ G ( z )) where Vd is(d)
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numerically comparable to -1. But G(z) is about 30 and, hence, we can not
look at vd just as an error term. We will also see how to take advantage of the
sign of cd(N) to deal with vd.

We define

and 7 = 9 U 2~C. Then we split Ri in three parts:

with

and

6.1 - Preliminary lemmas

The following lemma will be useful for dealing in an explicit way with
incomplete sums of multiplicative functions. The error terms which arise here
will be in practice very small.

A complex-valued function h is said to be strongly multiplicative if

(1) h(mn) = h(m) h(n) whenever m and n are coprime integers;
(2) h(pk) = h(p) for every prime p and every positive integer k.

LEMMA 6.l. Let X and Y be positive real numbers with X  Y. Let f
and g be complex-valued functions with compact support. Let h be a strongly
multiplicative function with the following property: if hi is defined by hi = 
then we have

(i) &#x3E; -p for all primes p,

(ii) there exists a real number c such that ’
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The double sum

PROOF. Let us note first that hl(E) = 0 if = 0 because of the strong
multiplicativity of h and also that the hypothesis (ii) ensures the convergence
of Ilpl2 (1 + 

Let us call S our sum. We have

Let H(d, r) be the innermost sum. Then we put n = rrm with (m, r) = 1

and [pif ~ p~r]. We have h(n) = h(rf)h(m) = h(r)h(m) since h is strongly
multiplicative. We then use h(m) = Lilm h 1 (.~) and write the condition flm as
fin and (~r) = 1. We thus get

We see that even (~ d) = 1. Hence
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We then remark that

and from this the stated result follows in a straightforward manner.

We will also require the following computational lemma:

LEMMA 6.2. We have

and

6.2 - An estimate for Rii

Define
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Then, by using c2d(N) = cd(N) for odd d and even N, and I
we get (cf. (6.3))

Now p+ p* is easily evaluated and an estimation of p* is given by Lemmas 6.1,
3.10 and 6.2. In this way, we get an upper bound for p.

Thus

On the other hand, Lemma 6.1 gives us

From this and Lemma 6.2, we deduce that
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6.3 - An estimate for R i2

Define

and

With this, we have

Let us comment on these definitions: vd depends also on z and, according to
Lemma 4.3, it has a limit as z goes to infinity. We have conjectured that vd
is "very often" negative and we have checked that this is true for small d’s,
provided z is greater than exp(30). Let us also recall that v, = 0.

In order to obtain an upper bound for Ri2’ we want to find the maximum
of H(N). If we use 0((d, N)), we will lose the fact that cd(N) and
vd vary in sign. Let us write H(N) in another way:

Now we define

so we can simply write H(N) = ¿DIN aD. What can we say about the sign of
aD ? Because the series which defined aD is convergent and the terms vd and
v2d are conjectured to vary very slowly, we may think that aD is of the sign of
its first term, that is to say "probably negative", except for a1 because v, = 0.
If such a thing happens, it will be easy to get maXN even H(N). But verifying
this requires only a finite (reasonnably small) number of computations.
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We have made the required computations and found that

From this, we get

and, hence with (6.8) and Lemma 3.11,

REMARK. In fact, here we have choosen the set 7 and it happens that, if
we do not impose that [d E 7 and d odd] implies that 2d is also in 1’, then we
no longer control the sign of the aD’s if D is too large.

6.4 - An estimate for R i3
Let us recall that

We apply Cauchy’s inequality and the large sieve inequality to get

Now

by Lemma 4.10. By using Lemma 3.11, we get

hence
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6.5 - Conclusion

We have

and, by using (6.6), (6.11 ), and (6.12), we obtain

which concludes the proof of Proposition 2.

7. - An upper bound for the dispersion. Proof of Proposition 3

Here we deal with R2 which is given by

7.1 - Preliminary

First, it is nicer, as will be clear in a moment, to work with

This gives rise to a neglegible error term:

with . We treat (7.2) by using Cauchy’s inequality

We apply the large sieve inequality to treat the first factor. As for the second,
we use 60.62d -7/10 proved by combining Lemma 4.6 and Lemma
3.5. Then we integrate by parts the resulting expression and apply the large
sieve inequality. Thus
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which is now not more than

Collecting these estimates together with Lemma 3.11 and 0(t)  1.002t for t &#x3E; 0

(cf. [21]), we obtain

7.2 - Dispersion and multiplicative characters

Now we study the main part of R 2 which we call R 22 :

Let us remark first that d(X) = ’1’(0) and prove the following lemma which uses
well-known ideas:

LEMMA 7.1. Let d be a positive integer. If S(a) = Ln ane(na) is such that
an = 0 as soon as n and d have a common prime factor, then

where Xo is the principal character modulo d, and

We also have, if 1,

PROOF. Let us recall that, if d is squarefree, Ir(x)12 is equal to the conductor
of x. We have, for all b modulo d,
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hence, for all a coprime with d:

Now we have r(Xo) = and the orthogonality of characters concludes the
proof of the first part.

For the second statement, we first note that Parseval’s identity gives us

The latter sum is equal to

and Moebius’ inversion formula establishes our result.

We apply Cauchy’s inequality to R22 to obtain

where

Because of the factor the terms with d small in (7.6) give a good
approximation to B(A,X). But we can do better by using multiplicative
characters and see that the distribution modulo small d’s has an even greater
influence. It is convenient to introduce the notation

By using Lemma 7.1, we get

where
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which has already been studied. In (7.7), we have included a ~u~(q) to remind
the reader that t(q) vanishes when q is not squarefree, and we have added the
condition (q, 2) = 1 because otherwise, there are no primitive characters modulo
q (q is squarefree).

The large sieve inequality provides us with the following estimate (very
good for Q2 near to X), valid for any positive real number Q,

We take Q = ýX/I0 in the previous inequality and substract from each side
the term corresponding to q = 1. By Lemma 3.4, whence

Then, our upper bound for B(A, X) will follow from the two following facts:
If q is sufficiently large, t(q) is small, and hence the corresponding contribution
is small; if q is small, Lemma 0 ensures that (f, x) is small, and hence the
corresponding contribution is small.

If q is in Ð, we have, for every b coprime with q,

By using Lemma 4.6, (7.6) and (7.8), we get

and, for q in Ð, we use the second part of Lemma 7.7 together with

which is written with the notations of Lemma 4.8 and which follows from (4.14)
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by noticing that 50 000/q &#x3E; 50 000/ 105. We give now some partial computations

The fact that by using Lemma 7.1, E d 2 appears instead of Ed is a remarkable
feature of this proof.

We finally get

REMARK. In order to see the strength of (7.10), it is worth saying that
the involved idea may be used for proving an effective Barban-Davenport-Hal-
berstam Theorem with a saving of a small constant over the trivial estimate
(instead of saving any power of Log X). This has been pointed to me by
professor Iwaniec during some valuable discussions.

7.3 - End of the proof of Proposition 3

By using i and Lemma 3.11, we get

which concludes the proof of Proposition 3.

8. - A weighted large sieve inequality. Proof of Proposition 4

The main result of this section lies in the following theorem:

THEOREM 8.1. Let T(a) = ane(na) be a trigonometric polynomial
with complex coefficients and such that

Then, for z &#x3E; exp(18) satisfying and
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any real number A in I we have

Principle of the proof. If for an E &#x3E; 0 where C, is a
constant which depends on e, then an integration by parts and the usual large
sieve inequality yield the bound

The preceeding theorem is a more precise version of this, by using better upper
bounds for lwdl, , one of the difficulties being to get z2 without any power of
Log z and with a small constant.

Before proving this theorem, we show how to deduce Proposition 4 from
it. We are working under (Hyp.). We apply Cauchy’s inequality to

in order to separate T and U and apply Theorem 8.1 to each of the resulting
sums; a numerical application concludes the argument. We limit ourselves to
the main term: 

I1

which, by using Lemma 3.11, is less than

i.e. 0.0074X2b9~19~G(z).
Throughout the next two sections, the following notations are used:

where T is any trigonometric polynomial ane(na) such that 
is included either in 2N or in 2~T + 1, not identically zero and normalised by
JITI 12 = 1.
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8.1 - Lemmas concerning the polynomial T

We prove here the inequalities which will contain our knowledge about the
polynomial T. Our main tools are the large sieve inequality and its weighted
version of Montgomery and Vaughan, the latter with the refinement du to

Preismann [8]. We recall his result:

LEMMA 8.1 (Preismann). If S(a) - E,,,,x ane(na) is any trigonometric
polynomial, and Q is any positive real number, then we have

with

Our second tool when dealing with T is a control of parity of the integers
n such that an f0. To achieve this, let us recall the definition of the function

A) which depends on a parameter a : It(a, A) = 1 if (0, 2) - 1 and = a
otherwise.

LEMMA 8.2. Let A be an integer not divisible by 4 and t a positive real
number. We have 

TX7 f A J,

and

with p as in Lemma 8.1.

REMARK. If we have no parity control, the factor r,,(1/2, A) disappears.
PROOF. We shall suppose A to be even, otherwise both our inequalities

are simple if we remark that the set of points.

is At’ -well- spaced.

o First step:

We first show that, if 21A then W(Ad) = W(Ad/2) if A/2 is odd and d any
integer. By the Chinese remainder Theorem, we have
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But with our parity control,

hence our result.

o Second step:

Let us write A = 2A!. Then

Now, let d and d’ be two integers prime to A and  t, and and a and a’ be
two integers respectively prime to Ad and Ad’; then

The conclusion follows from the large sieve inequality (weighted or not).
0

LEMMA 8.3. Let A et B be two real positive constants such that A  B.

Then, for any integer A not divisible by 4, the following inequalities hold:

for AB  z2.

REMARK. If we use the large sieve inequality instead of its weighted
version, we have on the right of the first inequality the factor X/ i1A + 2B.
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PROOF. Let us put

which can be rewritten as

and thus

The last summation can be handled in two different ways.

( 1 ) Define the decreasing function by

By summation by parts, we get:

and another appeal to Lemma 8.2 yields the bound

We finally get

(2) We could have handled our sum in a different way:
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which gives us

(3) The last inequality follows from the latter one by writing:

and the result follows.

8.2 - Other lemmas

We introduce some further notations:

We consider four parameters A  Qo  Q  z2 and assume Q/z &#x3E; 500,
z &#x3E; exp(18) and X &#x3E; ez2.

cl is an upper bound for G(zIQ-O)IG(z), C2 is an upper bound for

Finally p is the constant

LEMMA 8.4.

PROOF. We use Lemma 4.5 to write

and get Lemma 8.4 by a simple integration by parts.
LEMMA 8.5.

PROOF. We use Lemma 4.6 to write

where



696

One has

hence, by using Lemma 8.3, first part,

Now the result follows from Lemma 3.8 with a = 1/2.

Now comes the more difficult

LEMMA 8.6.

PROOF. It is convenient to put ki = 0.5 and k2 = 1.4709. We have by
Lemma 3.5(1): G(y)  kl Log(y2) + k2 for all y &#x3E; 1. We use Lemma 4.6 to write

which gives us

For the innermost sum, we apply Lemma 8.3, part (3) to the part multiplied by
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ki, and part (2) to the sum multiplied by k2 and get the upper bound:

We also notice that l/2+Log(~/Q)  1/2 + Log(z2/Q). We are thus left with
the question of finding upper bounds for

Now we have only to compute all these averages, which will be rather long
(we have to be precise) but without any major difficulty.

The summation over m: Using Lemma 3.7 and 3.8, the identity
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and 500  Q/z, we get the upper bounds

with

The summation over f: By using Lemma 3.8, we get

but we have , whence

Lemma 3.8 also gives us

Lemma 3.9 gives us
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Gathering these results, we get that V(Q, z2)G(z) is less than

Last Reduction: Keeping in mind that G(z) &#x3E; Log z+1.332 582-7.284z-1/3,
we have

and

and obtain Lemma 8.6.

8.3 - Proof of Theorem 8.1 and small improvements

We are seeking for an upper bound for V(A, z2). We write

and apply Lemmas 8.4, 8.5 and 8.6. We now have to choose the parameters
Qo and Q. The term 0.3795X(1/2 + Log(z2/Q))/Z is an error term and is not
taken into account in our choice.

We take

and verify that the sum of the two quantities which depend on Q is less than

We have 1.843Logz, hence we take C2 = 1.843 by Lemma 3.5. We
then choose 

I I A /1)11
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We have Qo  (0.00583Xz Log z)10/23, thus

hence, by Lemma 3.5, we take c = 1.749. We then verify that the sum of the
two quantities which depend on Qo is less than

This concludes the proof of Theorem 8.1.

Small improvements: Using z &#x3E; exp(30) instead of z &#x3E; exp( 18) yields of
course an improvement of our constants. Also, we could have discussed in (8.7)
whether is odd or even and used in the latter case

instead of the cruder

9. - An additive theorem in addition of sequences. Proof of Theorem 1

Our main tool is the following effective version of a theorem due to
Ostmann. This version has been obtained by J.-M. Deshouillers and we are
happy to thank him for this helpful result.

As a matter of notations, if ,~ is a sequence of natural numbers, and x is
any real number, then A(x) is the number of elements of A which lie in [1, x]
(usual notation used in [4]). We also define A(n, m) to be A(m) - A(n - 1).

One key of the proof of Theorem 9.1 is the following lemma which
permits one to "transfer" elements from one summand to the other.

LEMMA 9.1 (Dyson’s transform). {01  a2  ...} and B = 10 =
bi  b2  ...} be two sequences of natural integers. For any e in A, we define
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We have

PROOF. See [4], Chap. l. 
’ 

0

THEOREM 9.1. Let A be a sequence of natural numbers containing 0. We
assume that there exist a real number (J, integers H, K and no such that

Then, every integer &#x3E; Hno is a sum of at most H elements of A.

REMARK. The hypothesis and conclusion are similar to the usual Theorem
of Mann with the two differences that only asymptotic results on A are available
and that the lower density a is &#x3E; H-1 (It is no restriction if j is not the inverse
of an integer). The assumption (a) is not enough to ensure the result, for we
have to avoid the case of an arithmetic progression. It is striking that only
the weak assumption (b) is enough to get rid of this case, just as in Mann’s
Theorem, 0 and 1 in ,~ are enough.

PROOF. By induction, one defines ,
We start with

We assume that has been defined for some l  K(H - 1),
. We assume-that (Al 

write and define

By the properties of Dyson’s transform, we have
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From (iii), we deduce

We finally define We have

For 1 , one has

If the second inequality in (9.3) always holds, we define n 1 to be 1;
otherwise, we define n 1 to be the smallest n for which the second inequality
in (9.3) holds. Because of (9.2), n1 E B1. For n &#x3E; nl, we have

For h = 2,..., H, we let nh denote the smallest integer in Bh which
is at least equal to nl. With no loss of generality, we may assume that

~2  "’  nH. and because of (9.4), that nH 5 no. We then define

We have

and the counting function Ah (n) satisfies

since nh is the only We thus have

We want to prove that 11

distinguish three cases.
each n &#x3E; 1, and we
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Because of (9.2), n2, n2 + 1,..., nl + n are in Bt, and so

C. n2+K+ 1  nl +n.

We have { n 1, n 1 + 1, ... , n 1 + K } c Bi, so that S(n) &#x3E; K, which is all right
if n  K. Otherwise, we have n &#x3E; K + 1, and (9.7) and (9.5) lead to

For all n, we have ,S(n) &#x3E; n, so that Dyson’s Theorem implies that
N = E~l I Ah, which implies that every integer &#x3E; 1 nh is in 1 Bh, and
so every integer &#x3E; Hn° is in HA. 0

Let us deduce our Theorem 1 from Theorem 2 and Theorem 9.1. First of

all, .~ is the sequence of all numbers (g - 6)/2 where g is a sum of two odd

primes. We choose H = 3, K = 39, Q = 7 and 2no = 1.002.1030.20 
°

We have 2no &#x3E; 8 exp(67) and, for Y &#x3E; no,
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hence

because , by a result of Granville, te Riele and
van de Lune [2].

Hence, by Theorem 2, we get

Now a direct computation shows that the assumption (b) holds and we
conclude that every integer larger than 6no is a sum of at most 6 odd primes.

A greedy algorithm will complete the proof easily: Let N be an even
integer less than 6no. Then by using [9], we find a function f7 such that the
interval [(N - 3) - f7(N - 3), N - 3] contains at least one prime pl. A slight
difficulty arises because f7 is not necessarily non-decreasing; hence we build
the non-decreasing function f8 which is the largest non-decreasing function less
than f~. Then is less than fg(N - 3)  fg(6no). By repeating this process
at most four times, we get an integer M which is less than 2.1010. Hence, either
M is even and the sum of at most 2 primes by [2], or M is odd, which implies
that we have only used three primes, and M is a sum of at most 3 primes.

Limit of the method: We assume here that we are able to check the
Riemann Hypothesis for any modulus less than a given bound and up to an
height arbitrarily large but also less than a given bound (for instance, for all
moduli less than 10000 up to an height of 10~). Then following the method
used in this paper, we can show that the lower asymptotic density of the sums
of two primes is not less than 1/(4+6) for any fixed positive E. Using the fact
that the sequence of primes is an essential component (since it is an asymptotic
basis), we can show that the asymptotic lower density of the sums of three
primes is not less than 1/(4 - 4/25 + E’) where E’ is a function of e going to
0 with E (cf. Theorem 5 (Chapter 1, Section 3) of [4]). We can then conclude
that every large enough odd integer is a sum of at most 5 primes. The fact is
that the argument using essential components requires a very small c to work
which can not be reached by today’s computers.
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