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The Primes Are a »-Complete Sequen£e 

PaulS. Bruckman 

Following Erdos and Lewin (l ], we define ad-complete sequenc~ ~ as . 
an infinite increasing sequence of integers, such that no one. element of A ~~des - . 
any other, and such that every sufficiently large integer 1s the sum of distinct 
elements of A . The purpose of this paper is to demonstrate that the sequence of 
primes is a d-complete sequence. . 

Clearly, no prime divides any other . Therefore, tt suffices to prove that 
every sufficiently large integer is a sum of distinct primes. However, we shall 
prove a slightly stronger result than this 

We denote the n-th prime asp, (thus p 1 = 2, P2 = 3, etc.), and let 
S, = 2+3+ ... -fp,. A few preliminary lemmas are required for our proof. Lemma 
1 is actually a well-known theorem in number theory, commonly referred to 
(erroneously) as Bertrand's "Postulate". 

Lemma 1: For all n ~ 1 ,p,..1 < 2p,. 

Lemma 2: Ifn ~ 5, S,- p,..1 ~ 15 . 

Proof (by induction) : Let M denote the set of integers n ~ 5 such that the 
statement of the lemma is valid. Since S5 = 28 , P6 = 13, we see that SeM. 
Suppose that nEM. Then S,..1 - p,..2 = S,. + p,..t - Ptr+2 = S,- J!~~+t : 2p,..t - p,..2 
> 15, by the inductive hypothesis and Lemma 1. Thus, nEM 11Dplies (n+ 1 )EM, 

completing the proof. 
Thus, ifn ~ 5, S, > p,..1 ~ 13. 

Now consider the following generating functions: 
n s,. 

f.(x) = n (1 + xPk) = L (J(m,n) X m, 
n k=l m•O 

(l) 

n = 1, 2, ... , given lxl < l. 
00 

j{x) = n <• + xP) = E 8<m> xm. (2) 
p m=O 

769 
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Note that lim O(m,n) = 9(m ). Also, for all m ~ 0, n ~ 1 , 
,.. .. 

O(m) ~ O(m,n) ~ 0, 
and 

O(m,n+l) ~ O(m,n) . 

Theorem 1: O(m) ~ 1 for all m ~ 7. 

Proof : We first prove the auxiliary result : 

(3) 

(4) 

lfn ~ 4, 8(m,n) ~ 1 for all m with 7 ~m ~ S, -7. (5) 

Let N denote the set of integers n ~ 4 for which the statement of ( 5) is valid. 
NotethatS4 = 17; it is a trivial exercise to verify (by direct expansion) that (5) 
is valid for n = 4, and hence that 4eN. Note that/,..1(x) =(I +xP".') f,(x) . 
Comparison of coefficients yields the following relations, valid for all n ~ 4 : 

I O(m,n) if 0 ~ m < Pn+t; 

8(m, n + 1) = O(m,n) + O(m - Pn.+1,n) if Pn+l ~ m ~ Sn; (6) 

. O(m-Pn+l' .n) if Sn < m ~ Sn+t' 

By the inductive hypothesis, if n ~ 4 , O(m - p,+1,n) ~ 1 for all m with 
7 ~ m- Pn+l ~ S, .- 7, i.e., ifl8 ~ 7+p,..1 ~ m ~ S,..1 -7. Together with the 
other relations in(6), this implies that O(m,n+l) ~ I whenever n ~ 4 and 7 ~ m 
~ S,..1 -7. Thus, neN implies (n+1)eN, which completes the proof by induction 
of(5). Now letting n-. oo yields the desired result. 

We have shown that the sequence of primes is d-complete. However, a 
stronger result is actually true. If m ~ 8 is composite, it must be the sum of at 
least two distinct primes ; but can we make a similar claim if m is prime? The 
answer is found in the following : 

Coronary: Every m ~ 12 is the sum of at least two distinct primes. 

Proof: In light of Theorem 1, it is sufficient to prove that O(p) ~ 2 for all primes 
p ~ 13. Wemaysetm =p,..1 in (5), assuming that n ~ 5. Then it follows that 
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O(p,..., n) ~ 1 if n ~ 5. However, from ( 6), it also follows that O(p,..., n+ 1) = 
O(p,..., n) + 1 , which implies that O(p,.. h n+ 1) ~ 2 if n ~ 5. Equivalently, 
O(p, , n) ~ 2 for all n ~ 6. Then O(p, JV) ~ 2 for all N ~ n ~ 6 (treating n as 
fixed). Letting N-. oo and replacingpn by p (p ~ 13 ), it follows that O(p) ~ 2 for 
allp ~ 13. This establishes the Corollary. -

Conclusion : It might appear at first glance that the result of the Corollary 
could have some application towards a resolution of the famous Goldbach 
Conjecture, which asserts that every even integer greater than or equal to 6 is 
a sum of two (possibly identical) primes . However, we have merely shown 
that every integer n ~ 12 is a sum of two or more distinct primes ; what is 
required to prove the Goldbach Conjecture is a demonstration that every even 
integer n ~ 6 is a sum of exactly two primes , and this is not implied by the 
Corollary. Nevertheless, a foundation may have been laid for further research 
into this question. 

Reference 

1. P. Erdos & M. Lewin. "d-Complete Sequences oflntegers". Math. Comp., 
Vol. 65, No.214 (1996) : 837-840. 



The Case of the Missing Case: 
The Completion of a Proof by R.L. Graham 

Julie C. Jones (student) 
Bruce F. Torrence 

Randolph -Macon College 

1. Introduction: In his article On primitive graphs and optimal vertex 
assignments, Graham (3] defines the notions of primitive and completely 
decomposable graphs and proves several results regarding such graphs. We will 
focus on the proof of one of these results. To get started, a few definitions are 
in order. We assume throughout that G denotes a graph with vertex set V(G) 
and edge set E(G). Loops and multiple edges are prohibited. 

A subset C ~ E(G) is a cutset of G if the graph with vertex set V(G) and 
edge set E(G) - C is disconnected. Note that any disconnected graph has a 
cutset, namely the empty set. We say that Cis a simple cutset if no two edges 
of C have a common vertex. If G has a simple cutset, we say that G is 
decomposable; otherwise, G is indecomposable. We will call G completely 
decomposable if every subgraph of G (including G itself) is decomposable. 

The canonical example of a completely decomposable graph is theN-cube, 
the graph whose vertex set is the set of all binary N-tuples (or equivalently the 
set of integers {0, 1, ... , 2N - 1} expressed in base-two representation), and 
whose edge set consists of all unordered pairs of vertices that differ in exactly 
one coordinate position. If G is a connected subgraph of theN-cube with at least 
tow vertices, a simple cutset can be obtained as follows: If the edge ij appears 
in G, then the vertices i and j differ in exactly one coordinate position, say 
position n. The simple cutset C then consists of all edges joining vertices that 
differ in coordinate position n. 

Graham goes on to define a primitive graph to be an indecomposable graph 
for which every proper subgraph is completely decomposable. We will not need 
this notion in the present work. 

Another definition is required: Given a non-negative integer k, let w(k) 
denote the sum of the digits in the binary (base-two) representation of k. Put 
another way, w(k) is the number of ones in the binary representation of k. For 
k ~ I let 

772 
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W(k) = w(O) + w(1) + ... + w(k- 1). 
Since the numbers 0, 1, 2, 3, 4, and 5 have binary representations 0, 1, 10, 11, 
1100, and 101, respectively, we see for example that W(6) = 0 +I+ I+ 2 +I 
+ 2 = 7. The theorem we wish to consider ties together this function W with th~ : 
notion of complete decomposability1

• 

Theorem 1. (Graham) Let G be a completely decomposable graph with n 
vertices. Then IE (G) I $ W(n). This bound is the best possible in the sense that 
for every n > 0 there exists a completely decomposable graph with n vertices 
and exactly W(n) edges. 

The proof of this theorem that appears in [3] omits an important case, and 
so is incomplete. We note that this theorem also appears in at least one other 

. article [2] with the reader referred to the original paper for a proof. In this work 
we provide a complete proof of the above theorem. In so doing, we essentially 
duplicate many of the fine ideas that appear in Graham's proof, adding only a 
few of our own We feel that presenting the complete proof provides a coherent 
means for understanding the theorem, as well as offering readers new to 
Graham's work a glimpse into one of the great mathematical minds of the 
centm:y. With the exception of what we call Case 0 2, all of what follows can be 
attributed to Ronald L. Graham. 

l. A Few Facts Regarding The w Function. It is prudent to make a 
few simple observations now regarding Graham's w function. We first note that 
forp>O, ~ 

2P-l = L 2a. 
a=O 

in other words, the number 1! - 1 has only ones in its binary expansion. From 
this it follows that for 0 ~ k < 2P, the binary expansions of k and 2P - I - k do 
not agree in any digit. Hence we see that 

w(k) + w(2P - 1 - k) = w(2P - 1) = p, for 0 ~ k < 2P. 
All we will need is a slight generalization of this fact; we will restate it, 

1 Jn Graham's original paper [3], the function Wwas defined a little differently; it was 
given as the swn W(k) = w(O) + w(l) + ... + w(k). 

:. 
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replacing 2P by an arbitrary multiple of21 . Given a multiple of 21 , express it as 
2qu, where q ~ p and u is odd. Being a multiple of 21 , the last p digits in the 
binary expansion of 29u are all zeros, and hence the last p digits in the binary 
expansion of29u- I are all ones. It follows that for 0 ~ k < 21, the binary 
expansions of k and 21u - I - k do not agree in any of the last p digits. Hence 
we see that 

w(k) + w(2Pu- I - k) = w(2Pu- 1), for 0 s; k s; 2P. (I) 

This fact will be used at the end of the proof of the theorem. 

3. Proof of the Theorem. It is not difficult to see that the bowtd W(n) can 
be attained for all n. Given n > 0, consider the graph G, with 

V(G,) = {0, I, ... , n- I}, and 
E( G ,) = { ij I the base-two representations of vertices i andj differ in exactly 

one position}. 
Choose N with 2N > n. Then G, is easily seen to be a subgraph of theN

cube, so G, is completely decomposable. Now since G1 is a singleton, IE(G1) I 
= 0 = W(l). Noting that G1 is a subgraph ofGJ+1 for allj > 0, observe that GJ+1 

has exactly w{i) more edges than does Gr The additional edges are those 
incident with vertexj; there is an edge from vertexj to exactly those vertices 
whose base-two representations can be obtained :from that ofj' s by replacing a 
1 by a 0, and there are w(j) ones in the base-two representation ofj. Thus 
induction on n shows that 

JE(G,) I= w(O) + w(1) + ... + w( n- 1) = W(n). 
The remainder of the proof is devoted to establishing the inequality 

IE(G) Is; W(n). Theproofproceedsbyinductionofn. Ifn= 1 the result holds 
vacuously, and if n = 2 the result holds since G can have no more than one edge, 
and W(2) = 1. Now suppose n > 2 and the theorem holds for all completely 
decomposable graphs with fewer than n vertices. Let G be a completely 
decomposable graph with n vertices. Let C be a simple cutset of for G, and let 
G1 and G2 be two disjoint subgraphs ofG satisfying 

(i) V(G1) * 0, and V(G2) * 0, 

(ii) V(G1) u V(G2) = V(G), 
(iii) E(G1) u E(G2) = E(G) - C, and 
(iv) Every edge inC joins a vertex ofG1 with a vertex ofG2• 
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Essentially, G 1 and G2 are two graphs on "either end" of the simple cutset 
c. 

We write n1 = IV(G1) I and n2 = IV(G2)I, so that n = n1 + n2• Without loss of 
generality, assume that n1 ~ n2 > 0. We invoke our inductive hypothesis on the - -
graphs G1 and G2, and use the fact that Cis a simple cutset to obtain 

JE(G)I = IE(Gt)l + IE(G2)1 + 1q 
s; W(n1) + W(n2) + n2• 

The. theorem will follow if we can establish for n1 ~ n2 > 0 with n1 + n2 = n, that 
W(n1) + W(nJ + n2 s; W(n ), 

or equivalently 

or equivalently 
(w(O) + 1] + [w(1) + 1] + ... + [w(n2 - 1) + 1] s: w(n1) + w(n1 + 1) + ... + w(n- 1). 
-This follows immediately from part (ii) of the following lemma if one takes s = 
n1 and r = n2 - 1. 

4. The Offending Lemma. 

Lemma 1. Let rands be integers greater than or equal to 0. For a I - I 
function 

<p: {0, 1, ... ,r} ... {s,s+}, ... ,s+r} 
define 5(<p) by 5(<p) =min [w(<p(k))- w(k)], 0 ~ k ~ r. Then, 

(i) There exists a <p such that 5(<p) ~ 0, and 
(ii) If s > r, then there exists a <p such that 5( <p) ~ 1. 

Proof: The proof will be broken down into cases as follows: 
Case A: The case when s = 0. 
Case B: The case when s > 0 and r = 0. 
Case C: The case when 0 < s ~ r. 
CaseD: The case when s > r > 0. 

Case A 
If s = 0, then let <p: {0, l, ... ,r} ... {0, l, ... ,r} be the identity function. Then 

for all k with 0 ~ k ~r, w( cp(k)) - w(k) = w(k) - w(k) = 0. Thus, (i) holds and ·,. 
(ii) holds vacuously since s ':f r. 
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CaseD 
If r = 0 and s > 0, <p: {0} ... {s} is uniquely determined. Hence 8(<p) = 

w(cp(O))- w(O) = w(s)- w(O) = w(s) - 0 = w(s) > 0. Thus, 8(cp) ~ 1. So, (ii) 
holds and this implies (i). 

Thus, the lemma holds for r = 0 and all s :c!: 0. The remaining cases proceed 
by induction on r. Having established the initial case r = 0, we assume r > 0. 

CaseC 
IfO < s!,; r, then the two sets {O, ... ,r} and {s, ... ,s + r} overlap. We will 

partition these sets in the following manner: 
{O, ... ,r} = {0, ... , s- 1} u {s, ... ,r}, and 

{s, ... ,s + r} = {s, ... ,r} u {I+ r, ... ,s + r}. 
Let(l)1: {s, ... ,r} ... {s, ... ,r} betheidentitymap. Thus,8(<p1)=0. Bytheinductive 
hypothesis, there exists a map <p2: {O, ... ,s- l} ... { 1 + r, ... ,s + r} with 8(<p2) ~ 1. 
Define cp: {0, l, ... ,r} ... {s, s + 1, ... ,s + r} so that <P agrees with <p1 and <p2 on 
their respective domains. Then 8(<p) =min [8(cp1), 8(cp2)] = 0. Hence, (i) holds 
and (ii) holds vacuously since s :f r. 

CaseD 
If s > r > 0, then it suffices to establish (ii) since this implies (i). Let p 

satisfy 2~'"1 ~ r < 2P. This implies that 21 e {0, 1, ... ,2r}. Furthermore, there is 
at least one multiple of 2' in every set of 2r + 1 consecutive integers. In 
particular, there must be at least one multiple of2P in the set {s- r, ... ,s, ... s + r}. 
Choose the largest of these to be expressed as 29u where q ~ p and u is odd. 
Now, Case D can be broken down into two cases: 

Case D1: The case when 29u E {s + 1, ... , s + r}. 
Case Dz: The case when 29u E { s - r, ... ,s}, and no multiple of 2P lies in 

the set {s + 1, ... ,s + r}. 
Graham's mistake in [3] was in not acknowledging the possibility of Case 

D2• For example, if r = 5 and s = 9, then 2P = 8, and no multiple of 8 lies in the 
set {10, 11, 12, 13, 14}. 

Case D1. 

Let x = 29u - s. Thus, s = 29u - x, and 1 ~ x ~ r. Partition 
{O, ... ,r} = {O, ... ,r- x} u {r- (x- l), ... ,r} and 
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{s, ... ,s+r} = { 29u- x, ... ,29u- 1} u { 29u, ... ,29u+r- x}. 
Let <p1: {O, ... ,r- x} ... {29u, ... ,29u + r- x} be defined via k ... 29u + k for 

each k e {O, ... ,r- x}. Then since k ~ r- x < 2,, and since 29u is a multiple of 
2P, the binary expansions of k and cp1(k) = 29u + k agree in the last p digits. 
Hence w(cp1(k)) - w(k) = w(2Pu) ~ 1 for all k e {O, ... ,r - x}, and we see that 
8(cpl) ~ 1. 

We will show that there exists a function <p2: {r- (x - 1), ... ,r} ... 
{29u - x, ... ,'l'u - 1} with 8( cp:z) ~ 1. Then cp can be defined to agree with cp1 and 
cp 2 on their respective domains, and 8(cp) =min[ 8(cp1), li(<h)] ~ 1, and Case 0 1 

is proved. 
To establish the existence of <p2 with 8(<p2) ~ 1, note that since 

r < s = 29u - x, we have x - 1 < 29u - 1 - r, and so by the inductive hypothesis 
there exists a function 

cp3 : {0, 1, ... ,x- 1} ... {29u- 1 - r, ... ,29u- 1 - r + x- 1} with 8(<p3) ~ 1. 
Hence 

w(cp3{k))- w(k) ~ 1 for 0 ~ k!,; x- 1. (2) 
We now define cp2 as follows: Fork e {O, ... ,x- 1}, 

cp2: 2'u - 1 :.... <p3(k),... 29u - 1 - k. 
To check that~ satisfies 8( cp2> ~ 1, invoke equation ( 1) twice. For 0 !,; k < 

2', we have 
w(k) + w(29u- 1 - k) = w(29u- 1), 

and for 0 !,; 21u - I - cp3(k) < 2P, we have 
w(<p3(k)) + w(2'u- I - <p3(k)) = w(211u- 1). 

Since x- 1 < r < 2P, and 211u- I - <p3(k)!,; r < 2P, we can substitute each of 
these equations into inequality (2) to get for 0!,; k ~ x- I, 
1 !,; w(cp3(k))- w(k) 

= [w(2"u- 1)- w(211u- 1 - cp3(k))]- [w(211u- I)- w(211u- I - k)] 
= w(211u- I - k)- w(211u- I - <p3(k)). 

Hence for} E {r- (x- 1), ... ,r}, we have w(<p2(i))- w(j) ~ I, and thus 8(<p2) ~ 

1. 

Case D2 (The missing case). 
Let x = s - 2"u, so 0 ~ x !,; r. We will show the existence of <p1: { 0, ... , r} .... 

{x, ... ,x+ r} andconstruct~:{x, ... , x + r} ... {s, ... , s + r}. We will then define 
<p:{O, ... ,r} ... {s, ... ,s + r} as the composition <p = <p2 o <p1• :. 
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Since x ~ r, we may invoke the inductive hypothesis as in Case C to show 
there exists a 1- 1 function cp1: {O, ... ,r} ~ {x, ... ,x + r} with 8(cpt) ~ 0. 

Define ~via k .... 2'~u + k for all k e {x, ... , x + r}. Since there is no multiple 
of 2' in the set {2'~u + 1, ... , s, s + 1, ... , s + r}, and this set has cardinality 
s+r- 2'~u=x+r weseethatx+ r< 2'. Hence for eachk E {x, ... ,x + r}, the 
binary expansio~ of k and (j)2(k) = 29u + k agree in the last p digits. So 
w((j)2(k))- w(k)= w(2"u) ~ 1 for all k E{x, ... , x + r}; and we see that S(<Pl).~ ~· 

Therefore, S( <p) = S( (j)2 o (j)1) ~ S( cp2) ~ S( <p1) ~ 1 + 0 = 1. Hence, (u) 1s 
shown, and the lemma is proved. 

5. Remarks. The basic structure for the proof of this theorem was applied to 
prove a similar result in [1] in 1988. Here the authors, Gr~am among them, 
prove a somewhat weaker result in Lemma 4 .I, which essentially states: 

I 
IfG is a subgraph of theN-cube with n vertices, then IE(G)I ~ 2n lo~n. 

Their proof works for the more general class of completely decomposab~e 
graphs, but the botmd is not tight unless n is a power of 2. The advantage of ~s 
approach is that nothing along the lines of Lemma 1 is needed, so the proof 1s 
considerably shorter. 

An immediate consequence of this result together with the tightness of the 
bound in Theorem 1 is that for all integers n > 0, 

W(n) ~ .!n lo~n. 
2 
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Divisibility Tests - Making Order out of Chaos 

I. Introduction 

Clayton W. Dodge 
University of Maine 

If the last digit of a base ten numeral is even, then the number is divisible by 
2. If the sum of its digits is divisible by 3, then the number is divisible by 3. If 
the sum obtained by alternately adding and subtracting its digits is divisible by 
11, then the number is divisible by 11. A number is divisible by 7 if the number 
that results when you subtract twice its last digit from the number that reDJains 
is divisible by 7. It seems as if there is a distinctly different test to decide 
whether a given number is divisible by each different divisor. We shall make 
order from this chaos of tests by showing that all divisibility tests fall into just 
two categories and that one can readily find a test for any given divisor from at 
least one of these categories. 

The First Divisibility Test 

First, we introduce some helpful preliminary ideas, that is, theorems. We 
observe that, for a given divisor d, if two integers are divisible by d, then so also 
is their sum divisible by d. More generally, if integers a and b are both divisible 
by d and if m and n are any integers whatever, then ma + nb, that is, any linear 
combination of a and b, is divisible by d. Thus, since 26 and 39 are both 
divisible by 13, then we know that 26078 = 1000· 26 + 2· 39 is divisible by 13. 
Also, 25961 = 1000· 26 + (-3)· 13 is divisible by 13. Finally, we note as a 
corollary that if a+ b = c for any integers a, b, and c, and if any two of these 
integers are divisible by a divisor d, then so also is the third one divisible by d. 
Hence, either none of a, b, and c, exactly one of them, or all three of them are 
divisible by d, but never just two of them. 

An immediate result of these theorems is that a base ten numeral is divisible 
by 2 or by 5 if its units digit is so divisible. For example, 3517 = 3 510 + 7. Since 
3510 is divisible by 10, it is divisible by 2 and by 5. If the units digit 7 is 
divisible by either 2 or 5, then the number 3517 must be so divisible. More 
importantly, since the difference between 3517 and 7 is a multiple of 2 and of 5, 
then when either number 3517 or 7 is divided by one of these two numbers, the 

779 
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remainder will be the same. That is, when you divide either 3517 or 7 by 5, the 
remainder is 2. This idea leads us to a definition. 

The First Divisibility Test 

Definition. We write a= b (modn) and we say "a is congruent to b, modulo 
n" to denote that integers a and b have the same remainder when each is divided 
by the positive integer n, where n ~ 2. From the preceding paragraph we see that 
this congruence means that the difference between a and b is a multiple of n. 
That is, there is an integer k such that a - b = kn. 

Hence, 3517 = 7 (mod 10) since the difference 3517-7 = 3510 is divisible 
by 10. Of course, we also have 3517 = 7 (mod 5), 3517 = 7 (mod 2); and 3517 
= 7 (mod 351), too. It is convenient to note some elementary properties of 
modular arithmetic which we shall use to justify our divisibility tests. We state 
these properties as a pair of theorems. 

Theorem. Congruence modulo n is an equivalence relation. That is, the 
following three statements hold, where a, b, c, and n are integers and n ~ 2: 

1)a = a(modn), 
2) If a= b (mod n), then b =a (mod n), and 
3) If a = b (mod n) and b = c (mod n), then a= c (mod n). 

Proof. We illustrate the method of proof by establishing part (3) of this 
theorem. To that end we note that there are integers p and q such that a - b = pn 
and b - c = qn from the definition of congruence modulo n. Then 

a- c =(a- b)+ (b- c)= pn + qn = (p + q)n, 

which shows that a - c is a multiple of n and hence a = c (mod n ). ® 

Theorem. If a = b (mod n) and c = d (mod n ), then 
l)a+c = b+d(modn), 
2) a- c = b - d (mod n), and 
3) ac = bd (mod n). 

Proof. By the definition we have a - b = pn and c - d = qn for some integers 
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p and q. Parts (1) and (2) are easily established by adding and subtracting these 
two equations. For part (3), we rewrite them in the form a = b + pn and c = d + 
qn and then multiply them side for side, obtaining 

de= (b + pn)(d + qn) = bd + bqn + pnd + pqn2 

= bd+ (bq + pd+ pqn)n, 

so ac = bd (mod n). ® 

Recall that place value in a base ten numeral indicates that powers of ten are 
multiplied by the digits of the numeral For example, 

63405 = 6· 104 + 3· 103 + 4· 102 + 0·10 + 5. 

These powers of ten weight the digits of the number Gust as one weights tests, 
so if a test t counts two quizzes q, then their average is (2t + 1q)/3 using the 
weights 2/3 and 1/3). Consider testing such a number for divisibility by a divisor 
n. If we replace each power of ten by a smaller number congruent to it modulo 
n, then the theorems stated above prove that the given number and the new 
weighted digit sum will have the same remainder when we divide them by n. 

Forexample,since 10 = 1 (mod3), 102 = 100 = 1 (mod3), and in general, 
ur = 1 (mod 3) for every positive integer k, then 

63405 = 6· 1 + 3· 1 + 4· 1 + 0· 1 + 5 = 6 + 3 + 4 + 0 + 5 = 18 (mod 3), 

the sum of its digits. Since 18 divided by 3 leaves a remainder of 0, then so also 
does 63405 leave a remainder of 0. As another example, 10 = -1 (mod 11 ), 1 oo· 
= 1 (mod 11), 1000 = -1 (mod 11), 10000 = 1 (mod 11), etc., so that 

63405 = 6· 1 + 3· (-1) + 4·1 + 0· (-1) + 5 = 6-3 + 4-0 + 5 = 12 (mod 11), 

so 63405 leaves the remainder 1 when divided by 11 because 12 leaves the 
remainder 1.. The weights 1, -1, 1, -1, ... by which we multiplied the digits are 
called digit weights. We make formal the ideas illustrated in this paragraph. 

Definition. Digit weights are an ordered set of integers {h0, bb ... , bk-b ... } 
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used to weight the digits of a base ten numeral q =:= a,a,_1a,_2 ... a0, whose digits 
are a,, a,_h a,_2, ••• , a0, in the following manner to form the weighted digit sum 
(wds) w given by 
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Table 1. Some Common Divisibility Sets 

Divisor Divisibility Set Divisor Divisibility Set 

2 1;;0 13 1,-3,-4,-1,3,4 

3 1 14 1 ;;-4,2,6,4,-2,-6 

4 1,10;;0 15 1;;-5 

5 1;;0 16 1,10,100,1000;;0 

6 1;;-2 17 1,-7,-2,-3,4,6,-8,5: 
-1,7 ,2,3,-4,-6,8,-5 

7 1,3,2,-1,-3,-2 18 1;;-8 

8 1,10,100;;0 19 1 '-9 ,5, -7 ,6,3, -8,-4' -2, 
-1,9 ,-5, 7 ,-6,-3,8,4,2 

9 I 20 1,10;;0 

10 1;;0 25 1,10;;0 

11 1,-1 1001 1,10,1 00,-1-10,-100 

12 1,-2;;4 

Another example of a better divisibility set formed by changing the digit 
weights we use is the set for 7. Since 6 = -1,4 = -3, and 5 = -2 (mod 7), we 
write the divisibility set for 7 as {1,3,2,-1,-3,-2}, which is much easier to 
remember than our earlier set. In fact, it is easy to see that if the digit weight -1 
ever occurs, then the rest of the divisibility set is just the negatives of the digits 
that have akeady occurred. Our method of calculating digit weights readily 
shows the truth of this statement. 

We list some common divisibility sets for small divisors in Table 1. For 
convenience, they are listed without braces. 

In this table we see many of the common tests for divisibility. For 2, 5, or 
lO,justlookatthelastdigit of the number. For 4, 20, or 25, look at the number 
formed by 1he last two digits of the number. For 8, look at the number formed by 
the last three digits of 1he number. For 16, look at the number formed by the last 
four digits of the number. This pattern continues for higher powers of 2 such as 
32 or 64. For 3 or for 9, look at the sum of the digits of the number. Since the 
divisibility set for 11 is either { 1,-1 } or { 1, I 0}, we can use either test described 
above. 

To check whether 65,221,806 is divisible by 7 and to find the remainder if 
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it is not, let us perform the calculations as in the display below. Write the 
number to be tested, leaving space between its digits. In the line above, write the 
numbers of the divisibility set, starting with the units digit and repeating as 
necessary. Multiply down each column, writing the products in the third row. 
Finally, add the products along the third line to find the desired weighted digit : _ 
sum. We have 

3 1 -2 -3 -1 2 3 1 
65 2 21806 

+18 +5-4 -6 -1+16+0 +6 = 34. 
The wds is 34, which leaves a remainder of 6 when divided by 7. Therefore, 
65,221,806 is not divisible by 7 and in fact leaves a remainder of 6. This tableau 
is an easy way to apply the more complicated divisibility sets. Be sure to write 
the+ and - signs in the product row so you are sure to add correctly, adding the 
16 rather than I + 6 = 7, in the displayed example. The tableau also provides a 
format in which it is easy to check the computations. 

The last, rather strange-looking, set of digit weights listed in Table 1 is most 
useful to us. Applying the 1001 test is easy: just separate the number into blocks 
of three digits each by the usual commas and attach alternating. signs to the 
groups, taking the units group positive, the thousands group negative, and so 
forth. For example, 

65,221,806 = +806- 221 + 65 = 650 (mod 1001). 

The great importance of this test is that 1001 = 7· 11· 13. Thus, the I 00 I test is 
actually a convenient test for divisibility by 7, by II, and by I3, all in one easy 
package. Thus, to find out whether 65,221,806 is divisible by 7, by 11, or by 13, 
one need only test the wds 650 for such divisibility. Since 650 is divisible by 13, 
but not by 7 or II, then 65,221,806 is divisible only by 13 and not 7 or 11. 
Again, of course, the given number and the wds will both have the same 
remainder when divided by the divisor. Since 650 leaves a remainder of 6 when 
divided by 7, then so also does 65,221,806leave a remainder of6. 

Thus we see that modular arithmetic, divisibility sets, and weighted digit 
sums are the basis for all these common divisibility tests. These ideas provide 
the unifying concept that ties all these seemingly distinct divisibility tests 
together in one neat mathematical package. 

We observe that the number of digits in the divisibility set for a prime p, 
different ftom 2 and 5, is a divisor of p - 1. If a number is divisible by neither 2 · .. 
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nor S,lben its divisibility set is all repetend. That is, its repetend starts with the 
first digit. For rumbers that are diVisible by 2 or 5, the divisibility set will have 

at least one digit before the repetend. 

The Second Divisibility Test 

There is another type~ divisibility test we have not yet studied here, but did 
allude to in the opening paragraph. To test a number for divisibility by 7, cut the 
units digit off the number and subtract twice that digit from the number that 
remains. Repeat the process until the result is a twa-digit number and then test 

it. For our 63405, we would find 

6340- 2· 5 = 6330, 633- 2· 0 = 633, and 63- 2· 3 =57. 

Since 57 is not divisible by 7, lben neither is 63405. Observe that when 57 and 
63405 are divided by 7, their remainders are difti:renl This test does show 
whether a number is divisible by 7, but does not give a true remainder if the 

number is not divisible by 7. 

Definition. Let n = 1 Ok + d be a positive integer, where dis the last digit of 
n and k is the number that remains when dis cut off from n. That is, k = (n -
d)/10. For a given divisor p, if there is an integer m such that n and k + md both 
are divisible by p or both are not divisible by p for all choices of k and d, then 
we say that "m is a multiplier for the units digit multiplier divisibility test for the 

divisor p." 

We have stated that m = -2 is a multiplier for the divisor 7. We shall show 
that evaypositive integer greater than 1 and not divisible by 2 or 5 will have a 
multiplier. That is, any divisor greater than 1 that ends in 1, 3, 7, or 9 will have 
a multiplier fur the units digit multiplier divisibility test. We first prove this fact 
for the divisor 7. If we wish to test a number n for divisibility by 7, and if mn is 
any multiple ~ n such that m is not divisible by 7, then n and mn are both 
divisible by 7 or are both not divisible by 7. Notice that 3· 7 = 21 = 20 + 1; that 
is, 3· 7 dift'ers from a multiple ~ 10 by 1. Therefore, let us examine 
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2n = 20k + 2d = 2lk- (k- 2d). 

Since 7 divides 21 then 7 di 'd 2 b ' VI es 1k No if 7 di · 
num ers n and k - 2d, then it must also cfividewth Vldes either one ~ the 

So we search for a multi I fth . . e other number. -by 1 P e 0 e diVIsor that difti .,. · · · 
exact Y l. Any number that ds . 1 . ers uom a multiple of 10 

o~lO by l.lfa number ends in ~r: or m 9 ~differs from a multiple 
With 7). Since 3· 7 = 21 which. 1 7, then multiply It by 3 (as we did above 
= 39 th ' IS more than 2 tens th · , e test for the divisor 13 is fo d r.. , . en m = -2. Smce 13· 3 un uom the equation 

4n = 40k + 4d = 39k + (k + 4d). 

~ince 39 is a multiple of 13, then 4n will be . . . IS so divisible. Thus m = +4 fi tb di . diVtstble by 13 if and only if k + 4d 
eq l t the or e VIsor 13 In gene I . . ~ o multiplier of ten to which th .di . ra ' m IS m absolute value 
whichever applies is closest Th . e . VISor or three times the divisor 
is less than its~ multip~ ~ 1~ Slgll ~ m IS +if the divisor or three times i; 
the sign is -when the divisor ends .' tbal t ts, wh~n the divisor ends in 3 or 9 and 
by .ting. th m or 7. It IS easy to s hi b . ' wn . e equation corresponding to th I . ee w c szgn applies 

. . ~o. Illustrate the Ullits di •t mul . . e ast ~ displayed equations. 
diVISibility by 13. Since m = f4 htipber test agam, let us check 63405 for ,we ave · 

6340 +4· 5 = 6360,636 +4· 0 = 636 63 + 4· 6-87 . • - • and 8 + 4· 7 = 36. 

Smce 36 is not divisible by 13 1hen 63405 . . . . the remainders may differ. ' IS not diVISible by 13. Remember that 

Table 2 lists the values of m fi 
that the original number n = 1 ot+ -;e common small divisors. Remember 
divisible by the stated divisor Th .and k + md both are or both are not 
!00 units digit multiplier divisib~~· however, may not be the same. 
m I, 3, 7, or 9 and is larger than I. t can be used for any divisor that ends 
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Table 1. Values ofm, the Units Digit Multip6er 

Divisor m Divisor m 

3 +1 23 +7 

7 -2 2'7 -8 

9 +1 29 +3 

II -I 31 -3 

13 +4 33 +9 

17 -5 37 -11 

19 +2 39 +4 

21 -2 41 -4 

Notice the patterns in the table. The divisors 9 and II have m values of+ I 
and -1 19 and 21 have +2 and -2, and so forth. The values ofm for numbers ' . ending in 3 increase by 3 each time, those ending in 7 decrease by 3. Hence, 1t 
is quite easy to extend the table as far as one might wish. 

It is clear that the first divisibility test is based on arithmetic modulo the 
divisor. The second divisibility test also leans heavily on that arithmetic. For 
instance, n = 0 (mod 7) if and only if 2n = 0 (mod 7). Since 

2n = 20k + 2d = 21k- (k- 2d), then 2n = -(k- 2d) (mod 7). 

Of course, -(k- 2d) = 0 (mod 7) if and only if k- 2d = 0 (mod 7). We have 
shown that 

n = 0 (mod 7) if and only if k- 2d = 0 (mod 7). 

That is, 7 divides n if and only if 7 divides k - 2n. Similarly, our work above 
shows that, when n = I Ok + d, then 

n = 0 (mod 13) if and only if k + 4d = 0 (mod 13). 

Thus, modular arithmetic is the unifying concept behind both divisibility tests. 
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Conclusion 

Certainly, for divisors such as 2, 3, 4, and 5, it is easy to use the tests based 
on digit weights. For 7, it is easier to use the units digit multiplier test than to 
remember the digit weights for 7. Testing for divisibility by 11 is easy either 
way. The 1001 test is an easy way to test for 7 or 11 or 13. Definitely, the units 
digit multiplier test is best for 19. Thus, to test 65,221,806 for divisibility by 19, 
we calculate 

6522180 + 2· 6 = 6522192,652219 + 2· 2 = 652223,65222 + 2· 3 = 65.228, 

6522 + 2· 8 = 6538,653 + 2· 8 = 669,66 + 2· 9 = 84, and 8 + 2· 4 = 16, 

which is not divisible by 19. The process is a bit tedious when the number being 
tested is large, but it does not require remembering a long divisibility set. Of 
course, if we need to know the remainder, we can use digit weights, provided a 
divisibility set is readily available, as it is here in Table 1. We have 

-4 -8 3 6 -7 5 -9 1 
65 2 21806 

-24-40 +6+12 -7+40 +0 +6 = -7. 
To calculate the remainder when -7 is divided by 19, find the smallest positive 
integer congruent to -7 modulo 19 by adding 19 or a multiple of 19 to the -7. 
Thus we get -7 + 19 = 12. One can check that 65,221,806 does indeed leave a 
remainder of 12 when divided by 19. 

So both tests are useful, depending upon the divisor and the number being 
tested. Any divisibility test I have seen falls into one or both of the two 
categories listed here. For instance, one modification of the I 00 I test is to cut off 
the last three digits of the given munber and subtract the number formed by these 
three digits from the remaining number. The process can be repeated as desired. 
The resulting difference and the given number will both be or will both not be 
divisible by 7, by II, or by 13. Remainders, however, are not preserved in such 
a test modification. 

Perhaps divisibility tests are not very important now that calculators are so 
readily available to do the actual division. On the other hand, it is vital to 
understand the structure of the number system in our technical world and it is a 
waste of time to dig out a calculator to decide whether a number is divisible by · .. 
2 or by 5. In any given situation, if one understands divisibility tests, then he or 
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she can apply whichever test seems appropriate for the situation. 
Here we have seen that divisibility tests are not just a conglomeration of 

unrelated special devices, but are interconnected by a mathematical structure. 
Hence the reader is now able to construct tests for divisibility by any divisor 
whatever. 
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A New Insight Into The Goldbach Conjecture 

PaulS. Bruckman 

In 1742, Goldbach wrote a letter to Leonhard Euler, in which he 
conjectured that evezy integer n > 5 is the sum of three primes. Euler replied . . 
that this is easily seen to be equivalent to the conjecture that evezy even integer 
n ~ 4 is the sum of two primes. In tum, since 4 = 2+2 , it is easily seen that we 
may state the conjecture in the following form : 

Goldbach Conjecture (GCj : Every even integer 2n ~ 6 is the sum of two 
(necessarily odd) primes . 

Despite the best efforts of mathematicians for the past 250 years, this 
famous conjecture has resisted all attempts at a proof, although various results 
very nearly proving it have been obtained. The numerical evidence supporting 
GC is overwhelming, yet it continues to be a source of :frustration that such a 
simple statement, so easily understood by the average layperson, has not been 
proved. 

Perhaps the closest result that approaches a proof of GC is a result due to 
J.R. Chen [1], which states that evezy sufficiently large even integer may be 
written as 2n = p+m , where p is prime and m is a product of two (not 
necessarily distinct) primes. 

In a classic paper [2], Hardy and Littlewood made the following now
famous coqjecture regarding r2(2n) , the number of partitions of the even integer 
2n into a sum of two primes : 

r2(2n)-2C2 n /(log 2n)2 n (p-1)/(p-2) (as n ... oo), (1) 
pln.p>2 

where c2 = llp(p-2)/(p-1}2 
• (2) 

p>2 

Throughout the remainder of this paper, the letters ''p" (or "q") and "n" 
stand for odd primes and for natural numbers, respectively. 

The constant C2 also occurs in the literature in connection with another 
famous conjecture, namely the "twin primes" conjecture, and is consequently 

791 
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known as the "twin primes, constant. Its value is approximately 0.66016. 
The aim of this paper is to furnish some apparently new insights into this 

problem . Although these insights do not yield a proof of GC, the author 
attributes this to his own shortcomings. It is hoped that some enterprising 
researcher, using the tools presented here (or some suitable technique involving 
them), may reach the desired goal of proving GC. 

We first introduce some notation . Let P denote the set of odd primes, and 
let S denote any subset of P. Given any such S , let 

(3) 

where lxl<1 . 

Consider Gs(x) = {Fs(x)}2 =I 98(2n) x'br . (4) 
n=3 

Note that 98(2n) is the number of ways to write 2n as a sum of two (not 
necessarily distinct) primes taken from the setS, taking order into consideration. 
For example, 9p(28) = 4, since 28 = 5+23 = 11+17 = 17+11 = 23+5. We 
observe that 9p(2n) is odd iff n is prime (in which case, 9p(2n) counts the single 
representation 2n = n + n ). We also note that 9p(2n) = 2r2(2n)- Op(n) (using 
Hardy and Littlewood's notation), where Op(n) is the characteristic fimction of 
the odd primes. 

Next, givenS, we say that S has the Goldbach Property (GP) if98{2n) ~ 1 
for all n ~ 3. Let '9/ denote the set of sets Shaving the GP. Then we may restate 
GC in the following form: 

p E '9/. (5) 

If ( 5) is true, we would expect that there exists some proper subset S of P such 
that S E '9Y. This, in tum, would lead us to po~tulate the existence of a minimal 

S (say S0) satisfying GP and with the following additional properties: 

with S0 E ~ S € ~then pi~ qi, i = 1,2, ... for all such S ; 
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(b) { {S0}-pi} rl '9/, i = 1,2,3, .... 

Property (a) states that if S0 is the minimal set, it must consist of prime 
exponents that are at least as large as those of any other set with the Goldbach
Property. Property (b) states that we cannot eliminate any element of S0; all its 
elements are needed to satisfy the Goldbach Property. 

It should be reemphasized that we have not proven the existence of ~ and 
therefore of any minimal set. This will be established only after GC is proven. 
If we assume that GC is true, we may at least obtain the first few terms of the 
postulated minimal set S0• We indicate below how we might proceed in the 
construction of such set. 

Note that 6 = 3+3 is the only possible partition of 6; hence 3 E S0 • 

Likewise, 8 = 3+5 is the only possible partition of 8; hence 5e S0 • Since 
10 = 3+ 7 = 5+5 are the only possible partitions of 10, this does not preclude the 
elimination of7 from S0• However, 12 = 5+7 is the only possible partition of 12, 
which shows that we must have 7e S0 • Now 14 = 3+11 = 7+7 are the only 
possible partitions of 14, which does not preclude the elimination of 11 from S0• 

Also, 16 = 3+13 = 5+11 only, which shows that either 11 or 13 must be in S0• 

Since 18 = 5+13 = 7+11 only, this leads to the same conclusion. Next, 20 = 

3+17 = 7+13 , which shows that either 13 or 17 must be in S0• Also, 22 = 3+ 19 
= 5+ 17 = 11 + 11 only, which requires 17 or 19 to be in S0, if we eliminate 11 
from S0, but leads to no conclusion if 11 E S0 • At this point, we make the 
decision that 11 ri S0 , keeping in~ Property (a) . It appears that we may wait 
until we reach 2n = 2p before we can decide whether we should eliminate p 
from S0, if we have not already been able to do so previously. 

Returning to our analysis of 16 (or 18), we see that 13 E S0; thus the 
analyses for 29 and 22 are inconclusive regarding the inclusion of 17 and/or 19. 
Continuing, 24 = 5+19 = 7+17 only (11+13 is not allowed, since we have 
already determined that 11 ri S0 ); this also is inconclusive regarding the 
inclusion of 17 and/or 19. Next, 26 = 3+23 = 7+19 = 13+13 only, yielding no 
new information. However, 28 = 5+23 only (excluding 11+17), which shows 
that23 E S0• Since 30 = 7+23 only, this leads to no new information. Next, 32 
= 3+29 = 13+19 only, which shows that either 19 E S0 or 29E S0• Also, 34 = 

3+31 = 5+29 = 17+17 only, which shows that either 29 E S0 or 31 E S0 , if 17 fi 
S0 . At this point, we decide that 17 f S0• 

· ... 
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We may continue in this fashion. If 2n = p + q, where p and q have 
previously been determined to be elements of S0, we reach no conclusion about 
any other summands Qf 2n. If 2n = p + q, where we have already determined 
that p ri So, we cannot consider this as a possible representation of2n. If p may 
be excluded as a summand of 2n for n = 3,4, ... ,p, we deem thatp may be 
excluded from S0• In this fashion, we arrive at the following first few elements 
of the hypothetical set S0: 

. S0 = {3, 5, 7, 13, 19, 23, 31, 37, 43, 47, 53, 61, 79, 83, 89, 97, 101, ... } .. 
It ts left for the reader to verify that 
G s., (x) = {xl + x' + x1 + r 1 + r' +xU + xl1 + ,xl7 + :Jt!tl + x41 + XSJ + x6l + x" + x;'l + x" + x'7 + ... }2 

= x6 + 2xs + 3x•o + 2x12 + x•4 + ... 

.. 
= E e

30
(2n)x7n, 

n=3 

where it appears that if sufficient terms are taken in the expansion, then e (2n) 
~ I. To be more precise, let 

30 

F80(x,N) = L xP, 
pfS0,p~N 

N 

= E as (2n,N)x 2". 
n=3 ° 

for any givenN, we will find that 93 (2n,N) =Ofor some (relatively few) values 
of n ~ N. We interpret this to mem that N must be increased to eliminate the 
zero values. Stating this in another way, we hypothesize that 0 ~ 93 (2nP) ~ 
9 ~ 9 82 ~2n.)V+ I) ~ 9 80 (2n ), and moreover that 9 s. (2n) ~ I, for all n: N with 3 
~ n ~ N. The latter condition is simply the requir~ent for S0 e ~ 

In conclusion, nothing has been proved, but it is hoped that a new 
perspective has been offered by which to attack this thorny old chestnut of a 
problem. The functions Fp(x)and Gp(x), in particular, seem to be the natural 
generating functions to use in any analytical approach . 

References 
1. J .R. Chen. "On the representation of a large even integer as the sum of a 

prime and the product of at most two primes". I and II Sci. Sinica, I6, 1973: 

GOLDBACH CONJECTURE, BRUCKMAN 795 

157-176, and 2I, 1978: 421-430. 
2. G.H. Hardy & J.E. Littlewood. Some problems of"Partitio Numerorum", 

III: "On the expression of a number as a sum of primes". Reprinted in 
Collected Papers of G.H Hardy, Vol. I :561-630. Clarendon Press; 
Oxford, 1966 . 

· .. 



Determinants of~ -Matrices Using The Method of 
Generating Functions 

1. Introduction 

Anthony Shaheen (student) 
Loyola Marymount University 

Many discrete stochastic processes encountered in applications (queues, 
inventories, and dams) have transition matrices which are special cases of a 
quasi-triangular matrix (" 6m-matrix"). These matrices were first introduced 
and investigated by AboJnikov [1 ], where a class of Markov stochastic processes 
with a 6m·transition matrix was analyzed. In this paper we will find the 
determinants of some special cases of 6m·matrices using the method of 
generating functions. 

l. t1.m-Matrices 

Stochastic systems described by Markov chains with a 6m -transition matrix 
are quite common in queueing theory problems and problems on the control of 
resources. Because these matrices come up so commonly in these topics, it 
seems important to study the properties of these transition matrices. In this paper 
we find the determinants of some special forms of 6m·matrices using generating 
functions. For further analysis of 6m· and more general6m. 0 -matrices, the reader 
is directed to the original research of Abolnikov [I], Abolnikov and Dukhovny 
[2][3]. 

We now give the formal definition of a 6m·matrix. 

Definition 2.1 We shall refer to a finite matrix M = {a,, 1} as a quasi
triangular matrix, or simply a 6m·matrix, if a,,1 = 0 fori- j > m form= 0, I, 2, 
... , n - 1. This matrix has the following form: 

796 

GENERATING FUNCTIONS, SHAHEEN 797 

r a~· Oo,t ao.2 ... 
Oo,lc-1 ao,lc ao. 1c+t ... 

ao,n-1 

1 a,,o al,l a1.2 ... 
at,k-1 a1.1c at,lc+l al,n-1 

a2.o 02,1 02,2 ... 
a2,k-t a2,1c 02, /c+l ... 

a2,n-1 l 
! ... I 

M= i am o am, I am,2 ... 
am,lc-1 am,lc am,lc+l ... 

am,n-1 (I) I . 
: 0 am+l,l am+1,2 ... 

am+l,k-1 am,k am+1,k+1 
. .. 

am+l,n-1 I 
! 0 0 am+2, 2 ! ... 

am+2,k-1 am+2,k am+2,k+1 
... 

am+2,n-J i 
I : : I . ; t 

0 0 0 0 i 
am+k,k am+k, k+l ... 

a,_,, n-1 J L. 

3. Determinants of Am-Matrices 

In many applications one deals with the determinant of a 6m -matrix. 
Unfortunately, for a general 6m·matrix it is difficult to find a closed form for its 
detenninant. Because of this we focus our attention on some special forms of 
6m -matrices. A closed fonn for the determinants of these matrices can be found 
by using the method of generating functions. 

Definition 3.1 JIM is ann x n matrix such that a1•1 =a"·'' when i- j = k -I, 
thenM is called a Toeplitz matrix [4]. In other words, in Topelitz matrices all 
entries belonging to the same diagonal are equal to each other. 

3.1 Determinants of Am-Toeplitz Matrices 

We now consider the determinants of two different fonns of 6m· Toeplitz 
matrices. 

I. LetMbe ann x n 61-Toeplitz matrix of the following form: 

· ... 
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ra· a2 0 0 0 0 0 0 l 
. Do a, a2 0 0 0 0 0 1 

I o 
I 

Do a, a2 0 0 0 0 ! 

l 0 0 Do a, a2 0 0 0 
M= ! 0 0 0 Do a, a2 0 0 (2) 

I 

l 0 0 0 i 0 Do a, 0 0 
i 
! 0 0 0 0 0 0 a, a2 ! I 

L 0 0 0 0 0 0 ao a,J 

To find the determinant of M, first we will find a recurrence relation for the 
determinant ofMby expanding the determinant along the first column of M. We 
will then solve this recurrence relation using generating functions. 

Let D, be the detenninant of M . When we delete the first row and first 
column then the remaining (n - 1) x (n - I) matrix is of the same fonn as the 
original. We denote this as D,_,. There is a similar result if we delete the first 
row and second column. At first we are left with a matrix that is not at all like 
the original, but the only choice we have left is to delete its first row and first 
colwnn. This last deletion leaves us with an (n - 2) x (n - 2) matrix of the same 
form as the original, which we denote as D,_2• This process can be expressed 
in the following recurrence relation, 

(3) 
where 

The solution to this recurrence relation ~an be found using the method of 
generating fimctions. Once this solution is found, we will have a closed formula 

CIO 

for the determinant of M. If D(x) = .E D/, where D(x) converges in some 
mterval ( -r, r), then: n=O 

CIO CIO 00 

~ Dx" =~aD x"- ~aan .-r" LJ n LJ l n-l LJ 0 2'"""' n-r 
n=2 , .. z n=Z 
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Do + Dlx + t Dnx" = a1t Dn-1x" - aOa2t Dn-~n +Do + Dlx 
n=2 n=2 n=2 

CIO C10 

D(x) = alx L Dn-1xn-l - aoa~2I: Dn-~n-2 + Do + n.x 
n~ n~ 

D(x) = a1x t Dn_1xn-l +a1xD0 -a0a~ 2 t Dn-~"-2 +D0 +D
1
x - a

1
xD

0 
n=2 n=Z 

Replacing D0 and D1 with their values from (3), we have: 

D(x) = ___ I __ _ 

1 - ax + a a~r 2 
1 o r-

(4) 

00 

Since D(x) = .E D x " = 
1 · , all that is needed now is to 

n=O n } - Q X + a a.-r 2 
1 o r-

find the coefficient of x!' in D(x). This coefficient is D,, the determinant of the 
n x n matrixM. 

Factoring 1 - a1x + ao0#, we have: 

where 

(5) 
· ... 
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Replacing D0, D1, and D2 with their values from (8), we have: 

D(x) = 
1 

1 2 2 3 -a-r+a1a3x -a0a3 x 

We now have a generating function for finding the determinant of M. The 
determinant of M can be found in a way similar to ( 4). 

This paper is the result of my independent studies at Loyola Mmymount 
University, under the guidance ofDr. Lev Abolnikov. I would like to extend my 
thanks to Dr. Abolnikov for his time and patience. 
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A Proof of the Pythagorean Theorem Using A Circle 

Melisa Hicks and Beverly Collins (students) 
University of North Florida 

In book [1], Dr. Elisha Loomis has collected 370 proofs of the Pythagorean 
Theorem. They are mainly divided into two categories: algebraic proofs using 
ratio and geometric proofs using area. Among algebraic proofs, there are about 
3 5 using circles. Here a new proof using a circle is provided. It is interesting 
because it is really algebraic. 

Assume that ABC is a right triangle with angle ABC = 90 °, BC =a. AB = 

b andAC =c. From vertex B draw altitude BD. If BD = r, then rc = ab = 2 
(area of triangle ABC). Hence r =able. Using Bas center and r as radius, draw 
a circle O(B, r) to intersect AB and BC atE and F respectively. Then AD is a 
tangent line to circle O(B, r). Let CD = x, AD = y. Then c = x + y. By the 
Tangent and Secant Segment Theorem [I, pl57], the following equalities are 
immediate. 

r = (a-r)(a+r) = cl- (able/. 
y = (b-r)(b+r) = b1

- (ablcjl. 

Figure 1 
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Therefore 

or 

c 2 = aJc 2 -b 2 + bJc 2 -a2. 

Now we simplify the above identity, 

(aJ c 2 - b 2)2 = ( c 2 - b{ c 2 -a 2)2' 

a2c2-a2b2 = c4-2bc2Jc2-a2+b2c2-a2b2, 

2bJc 2 -a 2 = c 2 +b 2 -a2, 
4b 2c 2 -4a 2b 2 = c4 +b 4+a4 +2b 2c2 -2a2c 2 -2a2b 2, 

c4 +b 4 +a4 -2b 2c 2 +2a 2b 2 -2a2c 2 = 0, 
(c2 -b2-a2)2 = 0, 

c2 = a2+b2. 

The proof is completed. 

From the discussion above, we have a pure algebraic problem as follows: 

Problem. Let a, b, c be three positive real numbers with c>a, c>b. Then 
t? = cl + b2 if and only if 

c 2 = aJc 2 -b 2 +b{c 2 -a 2• 

Reference 

1. Elisha Loomis, The Pythagorean Proposition, NCTM, 1968. 

2. Edward C. Wallace and Stephen F. West, Roads to Geometry, second 
edition, Prentice Hall, Upper Saddle River, 1998. 

Pythagorean Theorem 

Tammy Muhs (student) 
University of North Florida 

Two new proofs of the Pythagorean theorem are given in this article. They 
belong to the category of geometric proof in book [I], where 3 70 proofs are 
collected. My proofs are simpler than most of the geometric proofs in that book. 

Proof l 

Consider the following drawing, where BDC and BAG are two congruent 
right triangles with BD perpendicular to AB. Let BD = BA = a, DC = AG = b 
and BC = BG = c. Then CF = a+b, FG = b-a._ Obviously the following identity 
is true: 

area (ABDF) + area (BDC) + area (GFC) = area (GBC) + area (BAG). 

Therefore 
2 ab (b-a)(b+a) _ c 2 ab 

a+-+ - -+-
2 2 2 2, 

G 

Figure 1 
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Proof2 

Assume that ABC is a right triangle such that A B = a, BC = b and A C = c. 
Draw the squares outwardly on the sides of AB, BC and A C. For convenience, 
call themHa,Hb and He. Draw the altitude BD to A C. Let BD =d. It is easily 
seen that triangles ABC, BDC and ADB are similar. Therefore 

Hb 

Ha 

Figure 2 

a d b CD 
- =-;- = -. 
c b c b 
a AD b d 
-=- ~ -=-

c a c a 

Now we have 

ab _ (d)(CD) . 
-- ' cz bz 
ab _ (AD)(d) 

cz az 

The above equalities can be written as 

2area(ABC) 2area(DBC) 2area(DAB) 
area(Hc) area(Hb) area(Ha) 
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As shown below, there is a nonzero constant k such that 

Since 

we have 

area(ABC) = area(DBC) area( DAB) = k. 

area (ABC) = area (DBC) + area (DAB}, 

kc1 = kb2 + kal, 
c2 = b2 + al. 

The second proof of the Pythagorean theorem is completed. The readers 
could ask the question what this nonzero constant k is. It is easily seen that 

k = ab = sinC sinA = cosA sinA = sin(2A) . 
2c 2 2 2 4 

The constant k is completely determined by the shape of the triangle ABC. 

Reference 

1. Elisha Loomis, The Pythagorean Proposition, NCTM, 1968. 

· .. 



The Cantor Shadow Problem: 
Using Geometry to Compute Sums of Cantor Sets 

Alan Koch and James Panariello 
St. Edward's University 

State University of New York at Albany 

Given two sets of real numbers A and B, their sum is 
A + B = {a + b I a e A, b e B }. Sets of the form A + B play a 
significant. role in mathematics. For example, Fermat's Last Theorem says that, 
for Ak = { nk I n=1, 2, 3, ... }, k > 2 wehave (Ak + Ak) nAk = 0. As 
another example, if P is the set of prime numbers, then the Goldbach 
Conjecture claims that P + P contains all of the even integers greater than two. 

Let C denote the Cantor ternary set (or simply the Cantor set). To fix 
notation, we shall quickly outline its construction. C is a subset of the real 
nmnbers. Start with the interval C0 = [0,1]. Remove the open middle third of 
theinterval,i.e. (1/3,2/3) toobtain C1 = [0,1/3] U [2/3,1]. ConstructC2by 
removing the middle third of each subinterval, giving 
c2 = [0,1/9] u [2/9,1/3] u [2/3,7/9] u [8/9,1]. Ingeneral, en is obtained 
from cn-1 byremovingthemiddlethirdfromeachinterval in cn-1' en consists 
of 2n intervals, each of length 1/3n. The Cantor set is defined as 

00 

c = n en. 
n=O 

Alternatively, notice that the creation of C n has the effect of removing all 
interior points from cn-1 whose ternary (base 3) expansion has a 1 in 
the nth place; hence we could also define C to be the set of all real numbers 
in the unit interval whose ternary expansions contain no l's. (If a number has 
two ternary expansions, then the number is at an endpoint of a C n' and one of 
the expansions will contain no 1 's. For example, 1/3 has a ternary 
expansion 0.1 as well as 0.0222 .... ) 

It has been lmown since early this century (see (6], for example) that 
C + C = [0,2] : if y e [0,2] we take x = (1/2) y, which has a ternary 
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expansion x = x1 x2 x3 ••• • Each xn canbewrittenasthesum an + bn ~ 
where an = 0 if xn = 0 and an = !otherwise, bn = 0 if xn = 0 and 
b n = 1 otherwise. Let a = a1 a2 a3 ..• and b = b1 b2 b3 ••• (ternary 
expansions). Then a + b = x, hence 2a + 2b = y. As 2a , 2b e C we 
get c + C = [0,2]. 

The objective here is to calculate, for any fixed real numbers a 
and b, the set aC + bC={ ac1 + bc2 I cl' c2 E C } Sums of Cantor sets, 
some more general than the one described above, have been studied in great 
detail recently (for example [1], (3], [4], [5]); in fact the answer to our problem 
can be found using some very technical tools. This paper will provide a much 
simpler argument: the only tools needed are basic geomeby and induction. The 
geometric version of this problem is called the Cantor Shadow Problem. First 
posed by Edward Thomas in 1993, it involves looking at linear projections of the 
Cartesian product C x C ont the x - axis; or in other words to look at the 
"shadow" cast when exposed to a light source emitting parallel rays at a given 
angle 0. Linear projections of this Cartesian product were also used in [5]; 
however in that paper the angle was always the same, and only the results for 
C + C could be recovered, By allowing the angle to vary, the shadow we 
compute will give us information about aC + bC. It turns out that aC + bC 
is either a single interval or a union of disjoint intervals (for nonzero a and b) 
which resembles one of the partial Cantor sets en. 

l. The Cantor Shadow 

The Cartesian product C x C can be viewed as ordered pairs 
(c1,c2), c1 e C, c2 E C. It is often helpful to view the Cartesian 
product C x C as the intersection of the product of the partial Cantor sets 
C n x C n· Consider an imaginary light source in the plane such that all of the 
rays of light are parallel, as shown in Figure 1. 

· .. 
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Figure 1 

Let 0 < 9 < 7t be the angle these rays make, measured from the 
negative x - axis. For a given 9 we shall denote the shadow of C x C on 
the x - axis by 19, which we call the Cantor shadow for the angle 9. 

Given any point (x,y) e (0,1] x [0,1] its shadow on the x - axis is 
x + ycot 9,as can be seen in Figure 2. In the case 9 = 7d4 the image 
of (c1,c2) is c1 + c2 hence /1C/4 = C + C = [0,2]. Notice a square with 
vertices (x1,y1), (x2,y1), (x1,y2), (x2,y2); x1 < x2, y1 < y2 has shadow 

X y cot a 

Figure 2 
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[x. + Yt cote, Xz + Yz cote]. 

2. The General Shadow Solution 

The shadow is easy to describe when the angle is "near" 7d4. 

Proposition 2.1. For any e with 1/3 s: cote s: 3, J9 = [0, 1 + cote]. 

Proof. Assume cot 9 ~ 1, since we already know 11tl4 = (0,2]. 

We claim that the shadow cast by each en X en is (0, 1 + cot 9 ]. 
Once this is established, then for any x e [0, I + cot 9 ] we can find a 
square Fn in en X en so that its shadow includes X. Furthermore, these 
Fn 's can be chosen so that Fn c Fn-1 for all n. The collection of these sets 
satisfies the finite intersection condition (i.e. every finite subcollectionhas a finite 
intersection), and hence by [2, Theorem 5.9] we get F = n Fn ~ 0. As the 
diameters of the Fn go to zero, F must consist of exactly one point, 
say (c1,c2). This will show that 19 = (0, 1 + cot 9 ]. 

The claim is proved by induction. By the observations at the end of the 
previous section, the shadow cast by the square C0 x C0 is precisely 
[0, 1 + cot9 ].Assume that the image of C x C is also n n 
[0, 1 + cot e ]. Consider any of the squares in en X en. Let (x, y) be the 
coordinate of the lower left endpoint. The shadow cast by this square is 
[x + ycot 9, (x + 1/3") + (y + 1/3") cot 9 ]. It suffices to show that the four 
squares created by the next iteration cast the same shadow. The four shadows 
cast are 

[x + y cot 9, (x + l/3n • 1 ) + (Y + l/3n • 1) cot 0 1 
[(x + 2/3" + 1) + y cot 9, (x + l/3n) + (y + 1/3" • 1) cot 9] 
[x + (y + 2/3n + 1)cot0, (x + l/3n + 1) + (y + 1/3n)cot0] 

[(x + 2/3" • 1) + (y + 2/3n • 1) cot 0, (x + 1/3") + (Y + 1/3") cot 0 ]. 

It is easy to check that, for 1/3 s: cot 9 s: 3, the union of these four intervals 
is precisely [x + y cot 0, (x + 1/3") + (y + 1/3") cot 0 1. As the shadow cast .. 
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by each Square Of en X en is preserved at the next iteration, the entire ShadOW 
must be preserved. Hence, by induction, the claim is proved, 
and /8 = [0, 1 + cot 9 ]. • 

Figure 3 

Now suppose that 3k < cot 9 ~ 3k • 1 for some integer k ~ 1. Figure 3 
shows that, after only the first iteration, the shadow is no longer connected. 
Instead, we get the following result. 

Lemma 2.2. Let cot 9 > 3k, k ~ I. Let xn be the left endpoint of the nth 

interval of e k· Then the shadow cast by e k x e k is 
2k 
U [xn cot 9, xn cot 9 + 1 + 113k cot 9] . 

n = l 

Proof. Consider any row of squares in ek X ck. The maximum distance 
between any two squares is 1/3. One can show that the shadows of any two 
adjacent squares overlap: clearly, we may assume that this row is on 
the x - axis. Figure 4 shows the case where k = 2: 
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cot a> 3 

Figure 4 

Let A and B be two adjacent squares, having height l/3k. Square A 
casts a shadow with right-hand endpoint 1/Jk cot 9 units to the right of the 
right-hand endpoint of the base of A. As cot 9 > 3k, 1!3k cot 9 > 1 > 1/3, so 
all of the shadows overlap. Thus any shadow cast by the row of squares on 
the x - axis is [0,1 + l/3k cot 9 ]. 

Now consider any two adjacent rows of squares. We may assume they are 
the bottom two rows. Here the shadows created by the these rows do not overlap 
(see Figure 2). To show this, note that the distance between the two rows 
is 1/3k. The bottom row casts a shadow on [0, 1 + 1/3k cot 9 ]. The left 
endpoint of the shadow cast by the upper row 
is 2/3k cot 9. Since cot 9 > 3k, these shadows cannot overlap as 
1 + l/3k cot 9 < 213k cot 9. Since there are 2k intervals in el' the shadow 
related by e k x C k consists of 2k disjoint closed intervals, and they are of 
length I + 1/Jk cot 9. Since each row of squares has its distance to the x -axis 
given by xn, it follows that each interval has left endpoint xn cot9. • 

Proposition 2.3. If 3k < cot 9 ~ 3k ... I, k ~ 1, then the shadow cast 

by C x C is equal to the shadow cast by Ck x ek. 
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Proof Using the method of Proposition 2.1, it can easily be shown that the 
shadow cast by Ck + 1 x Ck + 1 is identical to the shadow cast 
by Ck x Ck. The proof starts with the same inductive argument, using 
C k x C k as the starting point. Then use the finite intersection condition to 
guarantee that an element of C x C will cast a shadow on any point in the 
ShadOW Of Ck X Ck' • 

Remark. Similar results hold for 3 -k - 1 ~ cot 9 < 3 -k. Reflections and 
translations will give us answers when 7rl2 < 9 < 1t, and the case 9 = 7rl2 is 
projection onto the first coordinate. The results are summarized below: 

Theorem 2.4. Let /9 denote the Cantor shadow for the angle 9. For 
each k, let xk.n denote the left-hand endpoint of the nth interval of C t· 

a. If 9 < 7rl4, let k denote the unique nonnegative integer such that 
3k < cot 9 ~ 3k + 1. Then 

2k 
/ 9 = U [xk,n cot 9, xk.n cot 9 + 1 + 1/3k cot 9 ] . 

n = 1 

b. If 7rl4 < 9 < 7rl2, let k denote the unique nonnegative integer such that 
3-k- 1 ~ cot 9 < 3-k. Then 

2k 
19 = U [xk.n' xk.n + 113k + cot 9 ] . 

n = 1 

c. J..J4 = [0,2], J'K/2 = C; and if 7rl2 < 9 < x, then /9 = 1 - Ix _ e· • 

3. The General Structure of ac + hC 

The answer to our initial problem is now quite simple. 
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Coronary 3.1. If a and b are real numbers with b "' 0, and if 
9 = cot-1 (alb), then aC + bC = b/9• 

Proof. Let (c1,c2) E C x C. The shadow cast by (c1,c2) with angle 9 is 
c1 + c2 cot 9, so C + (cot 9) C = 18. Thus C + (alb) C = 18• Multiplying 
both sides of this equation by b gives us aC + bC = b/8• • 

Re11111rk. When 1/3 ~ alb ~ 3 we have aC + bC = [0, a + b] when 
both a and b are positive, aC + bC = [a + b, OJ when they are both 
negative. 1bese are 1he only instances when a single interval is generated, and we 
can create an interval of any length we want by picking the constants 
appropriately. 

Acknowledgements. The authors would like to thank Edward Thomas and Julian 
Fleron for the inspiration and motivation received during the preparation of this 
paper. 
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Factoring n4 + 4" with a Braille 'n Speak 

Wayne M Dymai:!ek 
Angie Matney (student) 

Washington and Lee University 

To better understand our story, we need to introduce ourselves. I am a 
professor of mathematics with all the usual quirks that this implies. Angie, 
when this story was written, was a junior mathematics major at Washington and 
Lee University from which she graduated in June 1997. Her chief interests are 
music and mathematics, and she actively pursues both. She is currently doing 
graduate work in mathematics at the University ofVirginia, and she believes she 
would enjoy teaching at the college level She would also like to work with 
blind students in science and mathematics since she has been totally blind since 
infancy. 

Angie relies heavily upon Braille and recorded materials to complete 
assignments, but she ~as benefited greatly from access to the Internet. For 
Angie, email is much more than a high-tech way to procrastinate (although she 
certainly appreciates that aspect of the Information Superhighway). She uses a 
curious little device known as a Braille 'n Speak to communicate with her email 
accowlt. The Braille 'n Speak has seven buttons (six "dots" and a space key) 
that input Braille characters. The space key can be pressed in combination with 
other keys to perform special functions; such as entering the machine's 
calculatOr mode, checking the time, or executing a macro. The "Speak" part is 
a voice synthesizer that attempts to speak whatever is entered from the keyboard 
or through the serial port and it is in this manner that Angie "reads" her email. 
When mathematics is entered, the result from the voice synthesizer is somewhat 
strange. 

Using T EX code, Angie types her notes and other mathematics directly into 
her Braille 'n Speak. Most ofher mathematics professors send homework to her 
by email and she returns her proofs in the· same manner. When she needs to 
present something in class, she first comects the Braille 'n Speak to a Braille 
embosser to produce a hard copy that she can read. She then emails the 
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professor her notes and the professor prints the T EXed version for her 
classmates. 

Number Theory is not one of our regularly offered courses at Washington 
and Lee, but Angie needed a one credit course to supplement her one credit voice 
lesson and the one credit she received for being a University Chamber singer. 
Another student needed a three credit mathematics course and so I agreed to 
teach a Number Theory course. Angie then decided that having three other 
mathematics courses was not enough, so she dropped her voice lesson and took 
Number Theory for three credits. We decided to used the third edition of 
Kemeth H. Rosen's Elementary Number Theory and Its Applications since it 
was the most recently published book that Angie could get on tape. 

Exercise 5.1.20 of the text asks for which positive integers n isf(n) = n4 + 
4n prime. After assigning this problem, I decided to see if I could do it and 
quickly ~sco~ered that it was a wee bit harder than I anticipated. Obviously, 
f(1) = 5 ts pnme andj(2k) is not prime for any positive integer k. By using 
Fermat's Little Theorem, n4 = l(mod 5) for n ~ O(mod 5). Now 4 = -l(mod 5) 
and so for n odd, 4n = (-1)n =-I = 4(mod 5). Thus, n4 + 4n = I .. I = O(mod 5) 
and hence 5 dividesj(n). 

The next step is to try n = 5. Now j(5) = 17· 97 and with great expectation 
that 17 dividesj(n) for n divisible by 5, I computed 154+ 41s(mod 17). With 
greatdisappoinbnent, I found that 154 +41s = ( .. 2)4 + (42)' • 4 = 16 + (-1)'. 4 = 
16- 4 = 12(mod 17). Recognizing that I was in serious trouble, I asked the class 
for advice. AB we were discussing this, Angie decided to write a macro on her 
Braille •n Speak to factorf(15) = 1,073,792,449. 

The macro that Angie wrote during class was simply trial division. She 
decided to divide f(15) by each odd positive integer and store the quotient in a 
file. She later modified her algorithm so that the Braille 'n Speak would only 
divide by the odd integers that were not divisible by three. I suggested that she 
run the program while she was sleeping during her real analysis class 
(fortunately for me, her aim with her cane is not that good). During her choir 
rehearsal, however, she let the Braille 'n Speak divide to its heart's content. :. 
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Periodically, she would search the file of quotients for a period followed by a 
space; that would indicate a quotient with no fractional part. 

Two days later, I received an email message from Angie with the subject 
line, "Brute force," and the factorization./(15) = 29153 · 36833. Noting that 
215 = 32768lies almost midway between these two factors, it didn't take long to 
seethat29153+36833 =2(215 + 152

). Retumingto./(5)= 17 ·97, we see that 
I7 + 97 = 2(25 + 52

). Could it be true that j(n) = ab with a < b and a + b = 
2(2" + n2)? Observing that 36833 - 29153 = 29 

• 15 and 97- 17 = 24 
• 5, 

perhaps it is also true that b - a = 2mn for some integer m. With two equations 
and two unknowns, a and b, it is easy to see that 

and 

We can solve for m by using n = 5 and checking with n = 15. Hence 
m = (n + 3)/2. It is now trivial to verify that n4 + 4" = ab where a = 2" + n2 

-

n2,..1 and b = 2" + n2 + n2m-t with m = (n + 3)/2. 

Since we have factoredj(n) for n > 1 and answered the exercise, it is time 
to state the morals of our story. First, brute force is sometimes a useful 
teclmique. Second, use whatever technology is appropriate and available. 
Without the Braille 'n Speak, we would not have factored./( 15) and without this 
factorization, we would not have found the g~neral factorization ofj(n). Our 
third and final moral: work the problem before you assign itt 

Acknowledgment: We want to thank Paul Humke of St. Olaf College for his 
enthusiasm and encouragement. Without these, this paper would not have been 
written. 

Curious Numbers 

Xiaolong Ron Yu (student) 
Worcester Polytechnic Institute 

The last four digits of93762 are 9376. Ann-digit nonnegative integer xis 
Called 8 CUriOUS number if and only if r -X is divisible by l On. The purpose of 
this paper is to answer the following two questions. 

1. Is there a closed-form expression for curious numbers? 
2. Are there infinitely many curious numbers? 

Closed-form expressions for the positive roots of i'-x = n (n a nonnegative 
integer) for 2 ~ k ~ 5 have already been obtained by Elia and Filipponi [1, 2]. 
In the case of k = 2, 

_l+J4n+l _ 
x- (n -0,1,2, ... ) 

2 

However there are difficulties when we try to apply the above formula and 
solve for curious numbers, because we do not know the value ofn. We only 
know that n is a multiple of I om if X is an m-digit integer. 

The following theorem is useful for constructing curious numbers. 

Theorem 1: If ann-digit number A,_1 A,_2 ... A0 is a curious number, so is the 
(n - 1 )-digit number A,..2 A,..3 ... A0 (n > 1 ). 

Proof: Since A,.1A,.~,.3• .. A0 = 1 0""1·A,_1 + A,.~,.3• .. A0, 

A, .• A,.~,-3〰 ㉅ 㜯 吱 弰 㔠
띁㤳㐳呣‸⸹ㄶ‷㈱呭ਨㄷ㉪ਲ⸸㠰ㄮ〹‱㤸⸰ㄠ呭ਨㄠ⥔樊䕍䌠吊䉔ਯ吱弱‱⁔⸷㈠ㄹ㤮㤹†呭ਨ⸮㤹㤠呭਼㈵⸷㈊⠱㜲樊㈮㠸〱ਯ卵猹ㄶ‸⸹ㄶ‷⸹㤠ㄲ䔷⽔ㅟ〵 弰‱⁔昊ご挰ㄹ〠た㈠ㄲ‱⁔昊〰呣ⴲ㜠ㅟ㈠㉃〰㉄〹㐠呪䵃 ⽓畳灥‱⁔昊〮〵⁔挠㘠〠〠ㄱ⸵‴㈹⸱獰散琠㰼⼸洊⠰㐴㉪ਲ⸱㔹⸶㜰㔠⥔樊樊⼰㘹⼰㘹㐶㘊⼰㘵呦ਭ〮〳㔠呣䌠ਯ卵㤱弳‱⁔昊呭ਨ〴㠲⸴㍔ㄵ㝔樊〵 呪ㄹ⸸′㤵㌠ㄸ㘮㌱⁔㡭ਨ〴㠲⸴ㄮㄵ㤮㘷〵 呪ਊⴰ⸰㌵⁔挠㠮㤴㘴‰‵䘹⸸‵㘲⸹㌠ㄹ㤮㥦洊⠰㔰㤠㸾䉄㔷呪ਰ㔠⥔樊䕔昊㘮㌯䍯䌠ਰ㍔挰ㄠ㘮㌱‼⽃潮映㰰〴〲䌰〴〳呣‸⸹ㄶ‵ㄵ‰㐮ㄵ㤮㘷〵 䔰㤠ㄹ㠮〱⁔洊⠱ 呪䵃 䕔ੂ吊⽔ㅟㄠㄠ吰⁔挰ㄠ〠ㅟ㈠ㄠ⁔㈰‱㠶⸳ㄠ吸洊⠰㔱㜳㔱㉅㔹⸶㜰㔠⥔樊㝅㤮㠠㔶㈴㤳‱㤹⸹㔵‱㔲㔹⸱䉄㔷吶㤰㔠⥔樊䔹昊㘮㌯䍯䌠ਰ㍔挰ㄠ㘮㌱‼⽃潮映〠㸾䉄䌠ਰ呦ਰ㌹㈠〠㸾䉄䌠ਵ㌱

㸠〶㠹ㄸ㤲䔳㍔〲㈵ ⡮ ⁔ 挠 ㅟ ‹ ⸸ ‵ 㘲 ⸹ ㌠ ㄹ 㤮 㥄 䌵 洊 ⠰ 㘸 〩 ㄷ  ㄶ 樸 呣 㔠 ㄠ
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This result provides an easy way of finding curious numbers recursively. 
Start with a known curious number, and then attach a single digit in front of it, 
square the newly formed number and see if this number repeats itself in its 
square . Be aware that using this method, 0 also counts as a leading digit. For 
example, if we choose curious number 6 to start with, we have the ten possible 
combinations 06, 15, 26, 36, 46, 56, 66, 76, 86 and 96 to square. Then 

and 

062 =36 
162 = 256 
262 = 676 
362 = 1296 
462 = 2116 
562 = 3136 
662 =4356 
762 = 5776 
862 = 7396 
962 =9216. 

So we see that number 76 is another curious number. We can carry out the 
process again by now squaring 076, 176,276, 376,476, 576, 676, 776, 876 and 
976. Then 

and 

0762 = 5776 
1762 = 30976 
2762 = 76176 
3762 = 141376 
4762 = 226576 
5762 = 331776 
6762 = 456976 
7762 = 602176 
8762 = 767376 
9762 = 952576. 

Now we see that number 376 is another curious number. 

CURIOUS NUMBERS, RON YU 821 

In order to find a closed form formula, we have to employ some ideas from 
the number theory. Assume xis ann-digit curious number. By definition, 

r- X must be divisible by 10". Therefore, 

x 2 -x x·(x -1) ---
10n 2n5n 

is an integer. Since x and x - 1 are relatively prime, there are two cases. 

Case 1. x contains all the factors of 2 and x - 1 contains all the factors of 5. 
x=2"· p 

X - 1 = 5" • q (p, q E Z) 
Therefore, 

Case 2. x contains all the factors of 5 and x - 1 contains all the factors of 2. 

x = 5" • r 

Therefore, 

Both cases can be solved using Euler's Theorem (3]. Euler's Theorem says 
that if(a, m) = 1, then 

a 'P<m> = l(mod m) 
where cp(m) is Euler's totient function. <p(m) equals the number of positive 
integers which are less than or equal tom and relatively prime tom. For 
example, cp(2") = 2"·1 and cp(5") = 4 · 5"·1• By Euler's Theorem, 

and so 
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Therefore 

Similarly, 

and so 

Therefore 
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x = 2n·(24'5"-
1-n (mod5n)) (n EN) (Case 1). 

5cp(l") = 1 (mod2n) 

52"-t = 1 (mod 2n). 

x = 5n • (52"-
1-n(mod2n)) (n E N)(Case 2). 

Now we have considered both cases and derived two formulas. Each of 
them produces a sequence of curious numbers. Since n can be any positive 
integer, it is obvious that there is an infinite number of curious numbers. 

Conclusion: 
I. All curious numbers larger than one can be given by one of the following 

two formulas. 
(nEN) 

(nEN) 

2. There are infinitely many curious numbers. 

Lastly, it is possible to rewrite the two formulas using a common modulus, 
namely IO". 

Case 1. 
2"·(2 .. ,.-1_"(mod5")) = 2" -( 2;~-~ (mod5")) 

= 2" -( 2..,.-1 ~10")) 
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= 165"-J (mod 1 on). 

Case 2. 

( 

2"-1 ) 
5" • (5..-

1
-"(mod2")) = 5" • 

5 s• (mod2") 

52"-
1 (mod I on) sn. -~--.;.... 

sn 

= 52"-I (mod 1 on). 

Acknowledgments: The author would like to thank Professor Brigitte 
Servatius for her help with this paper and consistent support and guidance. 
Professor Joseph D. Fehribach deserves gratitude for providing insightful 
comments. The author also owes a thank you to the anonymous referee for 
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References 

1. Elia, M. and Filipponi, P., Equations of the Bring-Jerrard Form, the Golden 
Section, and Square Fibonacci Numbers, Fibonacci Quarterly, June-July 
1998, pp. 282-286. 

2. Filipponi, P., A Curious Property of the Golden Section, Int. J. Math. Educ. 
Sci. Technol., Vol. 23, No.5, September-October 1992, pp. 805-808. 

3. Rose, H.E.,A Course in Number Theory, 1998, pp. 36-37. 

· ... 



BIOGRAPHICAL SKETCHES OF THE AUTHORS 

PaulS. Bruckman was born in Florence, Italy, and received an M.S. degree in 
mathematics from the University of Illinois at Chicago in 1974. From 1960 
through 1990, he was employed with private actuarial firms, most recently as a 
pension plan actuary. Mr. Bruckman has been and continues to be a frequent 
contributor to The Fibonacci Quarterly and the Pi Mu Epsilon Journal . 

Julie C. Jones graduated with honors from Randolph-Macon College in May 
of 1997. The joint research that led to this paper constituted part of her 
departmental honors project. Julie is also a charter member of the Virginia Iota 
chapter of Pi Mu Epsilon. She is currently pursuing a Ph.D. in Mathematics 
from University of Southwestern Louisiana, near her hometown of New Orleans. 

Clayton W. Dodge received his B.A. and M.A. degrees from the University of 
Maine in 1956 and 1959. He taught there for 41 years, retiring as Professor 
Emeritus of Mathematics in 1997. His interests include geometry, teacher 
education, and problems. He was an editor for the Elementary Problem 
Department of the American Mathematical Monthly and has served as Problems 
Editor for this journal since 1980. 

Anthony Shaheen is an undergraduate Computer Science major/Mathematics 
minor at Loyola Marymount University in Los Angeles, California. His 
academic interests are in Theoretical Computer Science and Mathematics. His 
recent research has been in the area of caching and scheduling algorithms, which 
was conducted at DIMACS (Center for Disrete Mathematics and Theoretical 
Computer Science) in Rutgers University. His personal interests include 
basketball, weightlifting, and jazz. 

Melisa Hicks is a senior, pursuing a degree in Math Education, at the 
University of North Florida. She enjoys tutoring and watching movies in her 
spare time. She thanks her family for all their love and support. Beverly 
Collins is a junior majoring in Mathematics Education. In grade six through 
twelve she was educated by parents at home. She sincerely thanks her parents 
for their love and support. 

824 

Tammy M. Muhs graduated in May, 1998, with a B.S. in mathematics. She 
will be pursuing a graduate degree in mathematical science beginning in the Fall 
semester. In addition to being a wife and mother of two children, she keeps busy 
with part time employment at University ofNorth Florida, a variety of interests 
and volunteer work. 

Alan Koch obtained his Ph.D. in 1995 from the State University ofNew York 
at Albany. He has taught at both Rensselaer Polytechnic Institute in Troy, NY 
and Hope College in Holland, MI. He is currently an Assistant Professor at St. 
Edward's University in Austin, TX. James D. Panariello received his Ph.D. 
in 1996 from the State University ofNew York at Albany. He spent a year as 
a Visiting Assistant Professor at Lafayette College in Easton, PA, and is 
currently employed by the software development company Keane, Inc. 

Wayne M. Dymacek is a Professor of Mathematics at Washington and Lee 
University and had previously worked for the National Security Agency. He 
received both his B.S. and Ph.D. degrees from Virginia Tech in 1974 and 1978, 
respectively. His research interests are in graph theory and combinatorics with 
a special interest in Steinhaus graphs. He has published several papers and is 
the co-author of a textbook on discrete mathematics. Along with a computer 
science colleague, he has dir~ted undergraduate students in research work, from 
which four papers have been published. For twelve years he has helped grade 
the AP calculus exams and perhaps this is why he prefers to teach discrete 
mathematics. He is currently on the Mathematical Association of America's 
Committee on Testing. Angie Matney is originally from Iaeger, West Virginia. 
She received her B.S. in mathematics from Washington and Lee University in 
historic Lexington, Virginia in 1997. While at W & L, she served as co
president of the Virginia Theta chapter of Pi Mu Epsilon. Ms. Matney is now 
working towards her Ph.D. in mathematics at the University of Virginia. She is 
an active member of the Blue Ridge Chapter of the National Federation of the 
Blind of Virginia. Her non-mathematical interests include science fiction and 
music. She also enjoys spending time with her guinea pig Molly. 

Xiaolong Ron Yu is currently a fourth year undergraduate student studying at 
Worcester Polytechnic Institute in Massachusetts. He is double majoring in 
Mathematics and Electrical Engineering. After graduation, he is planning to 

825 



attend graduate school. Presently, his mathematical interests include number 
theory, combinatorics, differential equations and optimization problems. In his 
spare time, Xiaolong loves to play with logic and mathematical puzzles and 
enjoys sports, including tennis, table tennis, basketball and swimming. 

PI MU EPSILON 
KEY-PINS 

Gold-clad key-pins are available 
at the National Office at the price 
of $12.00 each. To purchase a 
key-pin, \\Tite to Secretary -

Treasurer Robert M. Woodside, Department of Mathematics, East Carolina 
University, Greenville, NC 27858. 

826 

THE RICHARD V. ANDREE AWARDS 

The Richard V. Andree Awards are given annually to the authors of the 
three papers written by students that have been judged by the officers and 
comtcilors of Pi Mu Epsilon to be the best that have appeared in the Pi Mu 
Epsilon Journal in the past year. 

Until his death in 1987, Richard V. Andree was Professor Emeritus of 
Mathematics at the University of Oklahoma. He has served Pi Mu Epsilon for 
many years and in a variety of capacities: as President, as Secretary-Treasurer, 
and as Editor of the Journal. 

Listed alphabetically, the three winners for 1998 are: 

1. Johuna Miller and C. Ryu Vinroot for their paper "Mauldin
Williams Graphs with Unique Dimension", this Journal 10(1994-
99)#8, 620-628. 

2. Loi Nguyen and Tu Tru for their paper "Seeing Is Not Always 
Believing", this Journall0(1994-99)#9, 689-691. 

3. Tricia Stone (Hovorka) for her paper "Where Do My Sequences 
Lead?", this Journall0(1994-99)#8, 629-633. 

The officers and councilors of the Society congratulate the winners on their 
achievements and wish them well for their futures. 
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1998 NATIONAL PI MU EPSILON MEETING 

The Annual Meeting of the Pi Mu Epsilon National Honorary Mathematics 
Society was held at Toronto from July 15 through July 18. As in the past, the 
meeting was held in conjunction with the national meeting of the Mathematical 
Association of America's Student Sections. 

The J. Sutherland Frame Lecturer was Joseph A. Gallian, University of 
Minnesota - Duluth. His presentation was on "Breaking Drivers' License 
Codes." 

The following thirty-three student papers were presented at the meeting. 

Program-Student Paper Pi Mu Epsilon Sessions 

Cryptography: The Rivest-Shamir-Adleman (RSA) Andrew D. Barlow 
Encryption System Steven F. Austin State University 

Algorithm For Classifying Orientable Surfaces 

Texas Delta 

Stephen Bochanski 
St. Joseph's University 

Pennsylvania Xi 

What Does A Part Time Job Tell Us About High Joyce Cannone 
School Students? Youngstown State University 

Determining Winners Of Round-Robin 
Tournaments 

Using Polya's Theorem To Count Figures 

Ohio Xi 

Mary Elizabeth Cassells 
Lafayette College 
Pennsylvania Tau 

Michael DeCoster 
Miami University 

Ohio Delta 

Possible Orders Of Graphs For A Given Degree Set Melissa Desjarlais 
Alma College 

Michigan Theta 
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Fractals, Geometry And Their Dimensions 

Molecular Computation And Graph Theory 

When Bad Things Happen To Good Trees 

Maximum Degree Growth Of The 
Iterated Line Graph 

Don't Let Topspin Put You In A Tailspin 

From X-rays To CAT-Scans 

Joe Ferguson 
Youngstown State University 

Ohio Xi 

Nathan L. Gibson 
Angela Komorowski 

Worcester Polytechnic Institute 
Massachusetts Alpha 

William Gravemann 
Lafayette College 
Pennsylvania Tau 

Stephen Hartke 
University of Dayton 

Ohio Zeta 

Erin Huebner 
St. Norbert College 

Wisconsin Delta 

TinaHuss 
St. Norbert College 

Wisconsin Delta 

Investigating The Relationship Between The Shape Asif Iqbal 
Of A Coffee Cup And The Shape Of The University of Minnensota 
Caustic Inside It Minnesota Eta 

We Have To Use What? 

The p-Colorability Of The Rational Knot 
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BenJantson 
Youngstown State University 

Ohio Xi 

Michael Kern 
Kent State University 

Ohio Epsilon 

· .. 



Lottery Games In Ohio 

Just About Right Scales 

Rob King 
Youngstown State University 

Ohio Xi 

Mary Beth Lake 
Elmhur.st College 

Illinois Iota 

The Golden Proportion: An Advertising Venture Laura Lemke 
St. Norbert College 

Wisconsin Delta 

Picking Digital Locks With Elliptic Curves Vincent Lucarelli 
Youngstown State University 

Ohio Xi 

Isomorphisms Of Circulant Graphs Kimball Martin 

A Long Line Of Dead Men 

Need For Speed 

University of Maryland Baltimore County 
Mayland Gamma 
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Jodie Matulja 
Youngstown State University 

Ohio Xi 

Adam Messner 
Vincent Lucarelli 

Youngstown State University 
Ohio Xi 

The Isoperimetric Problem On Surfaces 

Baysian Statistics On The TI-83 Calculator 

Quantification Of Shape Difference 
Using SL(2, R) 

The Economics Of Game Theory 

An Iterative Algorithm For Deletion From 
A VL-Balanced Binary Trees 

Mathematical Models And Potato Crops 

Carving The Great Pumpkins 

An Algorithm For Classifying Non-Orientable 
Surfaces 

TingFaiNg 
University of Pennsylvania 

Pennsylvania Alpha 

Cathy O'Bryant 
Villanova University 

Pennsylvania Iota 

Joseph Maxwell Oppong, Jr. 
University of Richmond 

Virginia Alpha 

Erica Pagel 
St. Norbert College 

Wisconsin Delta 

Ben Pfaff 
Michigan State University 

Michigan Alpha 

Kate Rendall 
St. Norbert College 

Wisconsin Delta 

John Slanina 
Youngstown State University 

Ohio Xi 

Harry Smith 
St. Joseph's University 

Pennsylvania Xi 

Height Ridges And Medial Loci For Image Analysis James Tripp 
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Virginia Alpha 



Fractal Image Compression Jason Walter 
Mount Union College 

Ohio Omicron 

Let's Make An Ideal Emilie B. Wiesner 
Washington and Lee University 

Virginia Theta 

For the tenth consecutive year, the American Mathematical Society has given Pi 
Mu Epsllon a grant to be used as prize money for excellent student 
presentations. This year six prizes of$150.00 each and two prizes of$75.00 
each were awarded. The winning speakers were: 

Stephen Bochanski, St. Joseph's University, 
Algorithm for Classifying Oreintable Surfaces 

Joe Ferguson, Youngstown State University, 
Fractals, Geometry and Their Dimensions 

Nathan L. Gibson, Worcester Polytechnic Institute, 
Molecular Computation and Graph Theory 

Stephen Hartke, University of Dayton 
Maximum Degree Growth of the lnterated Line Graph 

Kimball Martin, University of Maryland Baltimore County, 
Isomorphisms of Circulant Graphs 

Ting Fai Ng, University of Pennsylvania, 
The lsoperimetric Problem on Surfaces 

John Slanina, Youngstown State University, 
Carving the Great Pumpkin 

Harry Smith, St. Joseph's University, 
An Algorithm for Classifying Non-Orientable Surfaces 

832 

Miscellany 

Dane W. Wu made the following observation regarding the differentiation 
ofj{xy.<">. 

In calculus, there are various techniques to show that 

(I) 

for nonzero, differentiable functionsj{x) and g(x). 

If/is a nonzero constant function, then 

(2) 

If g is a nonzero constant fi.mction, then 

: [f(xYJ = gf{x~-l d!) . (3) 

It is interesting to note that the sum of the right hand sides of (2) and (3) 
formally agrees with the right hand side of ( 1 ). This interesting discovery offers 
a useful way for students to remember how to differentiate.f{x)i<">. 
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PROBLEM DEPARTMENT 

Edited by Clayton W. Dodge 
University of Maine 

This department welcomes problems believed to be new and at a level 
appropriate for the readers of this journal. Old problems displaying novel 
and elegant methods of solution are also invited. Proposals should be 
accompanied by solutions if available and by any information that will assist 
the editor. An asterisk (*) preceding a problem number indicates that the 
proposer did not submit a solution. 

All communications should be addressed to C. W. Dodge, 5752 
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail: 
dodge@gauss.umemat.maine.edu. Please submit each proposal and solution 
preferably typed or clearly written on a separate sheet (one side only) 
properly identified with name and address. Solutions to problems in this 
issue should be mailed to arrive by December 1, 1999. 

Problems for Solution 

953. Proposed by Mike Pinter, Belmont University, Nashville, 
Tennessee. 

Since we want to enjoy our cake with a minimum amount of guilt, find 
the solution to the following base 10 alphametic that yields the minimum 
value for ICING. 

ICING + CAKE= YUMMY. 

954. Proposed by Florian Luca, Syracuse University, Syracuse, New 
York. 

For any real number y let [y] be the largest integer less than or equal to 
y. Suppose M is a set of positive integers with the following property: if x 
> 1 is an element of M, then both [x lnx] and [{X] are elements of M. Show 
that, if M contains a positive integer greater than 3, then M contains all 
positive integers. 
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PROBLEMS AND SOLUfiONS 835 

955. Proposed by PeterA. Lindstrom, Batavia, New York. 
Let G be a finite geometric series whose terms are all positive integers. 

If G has a sum that is a prime number, then prove that the first term is 1 and 
the number of terms of the series is a prime. 

956. Proposed by Charles Ashbacher, Decisionmark, Cedar Rapids, 
Iowa. 

For any positive integer n, the value of the Smarandache function S(n) 
is the smallest positive integer m such that n divides m!. Thus, for example, 
S(l) =I, S(2) = 2, S(6) = 3, and S(8) = 4. Letp be an odd prime. Prove that 
the following summation diverges: 

• 1 

~ S(plc). 

957. Proposed by the late Jack Garfunke/, Flushing, New York. 
Triangle ABC is inscribed in a circle. The angle bisectors of ABC are 

drawn and extended to the circle to points A ! B! C ~ Triangle A 'B C 1 is 
drawn. Prove that sir ~ s fr 1 where s, s : r, r 1 are respectively the 
semi perimeters and inradii of triangles ABC and A 1 B 1 C ~ 

958. Proposed by George Tsapakidis, Agrinio, Greece. 
In a triangle ABC the length of the bisector AD is equal to the length of 

the median AM, both drawn from the same vertex A. Prove that triangle ABC 
is isosceles. 

959. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
Find in closed form the sum 

960. Proposed by Timothy Sipka, Alma College, Alma, Michigan. 
A triangular number is any number of the form n(n + 1 )/2, where n is 

a positive integer. Prove that the units digit of any triangular number is 0, 
1, 3, 5, 6, or 8. A 
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961. Proposed by Charles Ashbacher, Charles Ashbacher Technologies, 
Hiawatha, Iowa. 

Given any positive integer n, the value of the Pseudo-Smarandache 
function Z(n) is the smallest positive integer m such that n exactly divides 

tk = m(m + 1). 
k=l 2 

Thus Z(l) = 1, Z(2) = 3, Z(3) = 2, Z(4) = 7, etc. 
a) Prove there is an infinite family of integers n such that 3·Z(n) = n. 
b) Prove that there are an infinite number of pairs (m, n) such that 

m·Z(n) = n·Z(m). 

962. Proposed by Richard I. Hess, Rancho Palos Verdes, California. 
Shoelace clock. You are given a shoelace, some matches, and a pair of 

scissors. The shoelace burns like a fuse when lit at either end and takes 
exactly 60 minutes to bum. The bum rate may vary from one point on the 
shoelace to another, but it has a symmetry property in that the burn rate a 
distance x from the left end is the same as the burn rate the same distance 
x from the right end. 

a) Find the shortest time interval you can measure. 
b) Find the shortest time interval you can measure if you have two such 

laces that are identical. 
c) Repeat part b if the two laces, which still burn for 60 minutes each, 

are not identical and not symmetric. 

963. Proposed by Peter A. Lindstrom, Batavia, New York. 
Consider the functions 

j{x) = sin(cosx)) + cosx and g(x) = sin(cosx) - cosx, 

on the interval 0 ~ x ~ 1t. Without using the calculus, 
a) show that their graphs are each symmetric about the point (7t/2, 0). 
b) show that/is always decreasing, so that./{1t) S.j{x) ~.1{0). 
c) show that g is always increasing, so that g(O) ~ g(x) ~ g(1t). 
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~964. Proposed by Ice B. Risteski, Skopje, Macedonia. 
There are nk balls of color k for k = 1, 2, ... , r. The total number of balls 

is n1 + n2 + ... + n, =2m, where m is a positive integer. 
a) In how many ways can these balls be separated into unordered color 

pairs? 
b) Find the probability of selecting a particular color pair. 

965. Proposed by David Iny, Baltimore, Maryland. 
Evaluate the integral 

-JC (oo_e_dx 
Jo 1 + x · 

Solutions 

860. [Spring 1995, Spring 1996, Spring 1997] Proposed by Richard I. 
Hess, Rancho Palos Verdes, California. 

This problem originally appeared in a column by the Japanese problems 
columnist Nob Yoshigahara. Find the minimal positive integer n so that 
2n + 1 circles of unit diameter can be packed inside a 2 by n rectangle. 

Problem 860 

III. Solution by Nick Baxter, Hillsborough, California. 
The circles need to be packed as shown in the figure on the next page. 

For n = 164 there is just enough room for 329 circles. There are 7 circles at 
each end with 105 "triangles" of three circles between them, occupying 
163.99958 ... units of length. 

· .. 
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Comment by the editor. Although he gave no figure or explanation, 
Baxter commented that the smallest rectangle found so far containing 329 
circles has 13 circles on each end and total length 163.9973967 .... It is 
interesting to speculate whether this is the best possible solution. The editor 
welcomes the opportunity to further test his computational and geometric 
skills by checking other solutions. 

~-~ 
1" 1" "'" 163.99958 .. 

1.4931680... 1.984440996... "'1.9819695 ... =14ta- .75 

Problem 860 - Baxter's solution 

927. [Spring 1998] Proposed by Mike Pinter, Belmont University, 
Nashville, Tennessee. 

In the following base ten alphametic, 

a) find the maximum value for FINAL, 

b) find the minimum value for FINAL, and 

c) can you find a solution yielding any other value for FINAL? 

PASS+ THE= FINAL. 

Solution to parts (a) and (b) by Karl Bittenger, student, Austin Peay 
State University, Clarksville, Tennessee. 

a) Since F :F- 0, then P = 9, F = 1, and I= 0. Since the hundreds column 
must sum to more than 10, the largest value for N occurs if {A, T} = {7 ,8} 
and N is 5 or 6. For N = 6 the tens column must sum to more than I 0, 
which is not possible with the remaining digits. Hence we take N = 5. 

Only 2, 3, 4, and 6 remain unused. Next we maximize A. If A= 8 and 
T= 1, then {S,H} = {2,6} and it is not possible to assign values toE and L. 
So let A= 7 and T = 8. Then {S,H} = {3,4} and {E,L} = {2,6}. We find 
that S = 4, H = 3, E = 2, and L = 6 is a solution. Then we obtain 
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9744 + 832 = 10576 

and 10576 is the maximum value for FINAL. 
b) Again P = 9, F = I, and I= 0. To minimize FINAL we try N = 2. 

Then none of the ten possibilities for A and T leads to a solution. So we try 
N = 3. The least value permissible for A is 4 with T = 8. We obtain the 
solution 

9477 + 865 = 10342 

and 10342 is the minimum value for FINAL. 

Editorial note. Two other solutions exist: 9855 + 632 = 10487 and 9588 
+ 764 = 10352. 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, /A, Karen 
Bernard, Arkansas Governor's School, Conway, Paul S. Bruckman, Edmonds, WA, William Chau, 
A T & T Laboratories, Middletown, NJ, Wilson Davis, Arkansas Governor's School, Conway, Mark 
Evans, Louisville, KY, Stephen I. Gendler, Clarion University of Pennsylvania, Richard I. Hess, 
Rancho Palos Yerdes, CA, Eric Jones, Arkansas Governor's School, Conway, Carl Libis, Rust 
College. Holly Springs, MS. Mimi Liu, Arkansas Governor's School, Conway. Yoshinobu Murayoshi, 
Okinawa, Japan, Jawad Sadek and Russell Euler, Northwest Missouri State University, Maryville, 
Rex H. Wu, Brooklyn, NY, Kenneth L. Yokom, South Dakota State University, Brookings, and the 
Proposer. 

928. [Spring 1998] Proposed by the late J. L. Brenner, Palo Alto, 
California. 

Is it true that, as n increases through the integers, the number of primes 
in the open interval {n, 2n) can stay the same, increase by one, or decrease 
by one, but never change by two or more? Student solutions are especially 
invited. 

Solution by Stephen /. Gendler, Clarion University of Pennsylvania, 
Clarion, Pennsylvania. 

When we change from (n, 2n) to (n+I, 2n+l), we lose n+l and add 2n 
and 2n+ I. If n+ I is a prime, then we lose a prime. If 2n+ 1 is a prime, we 
add a prime. Since 2n is never a prime, we may lose one prime, gain one 
prime, or stay the same if both n+ 1 and 2n+ I are prime or if neither is ~ 
prime. 
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Also solved by Paul S. Bruckman, Edmonds, WA, William Chau, A T & T Laboratories, 
Middletown, NJ, Richard I. Hess, Rancho Palos Verdes, CA, Carl Libis, Rust College, Holly Springs, 
MS. Yoshinobu Murayoshi, Okinawa, Japan, Jawad Sadek and Russell Euler, Northwest Missouri 
State University, Maryville, H.-J. Seiffert, Berlin, Germany, Rex H. Wu, Brooklyn, NY, and the 
Proposer. Curiously, there were no student solutions to this problem. 

929. [Spring 1998] Proposed by Richard l Hess, Rancho Palos Verdes, 
California. 

On the ground floor of a building there are on the wall three light 
switches of the usual kind that show whether they are on or off. One of them 
controls a lamp with an ordinary incandescent 1 00-watt bulb located on the 
third floor. The other two switches are not connected to anything, although 
you have no way of telling which switch is the live one. You are allowed to 
toggle the switches at will before climbing to the third floor, which you can 
do just once. From the ground floor you cannot tell whether the lamp is on 
or off, but you have full access to the lamp when you are on the third floor. 

a) Tell how to determine which switch controls the lamp. 
b) Solve the problem if the switches are not marked with on and off 

positions, but you know that the lamp is initially off. 
c) Solve part (b) if you do not know if the lamp is initially on or off. 

I. Solution by Rex H Wu, Brooklyn, New York. 
a) We know the lamp is cold and off to begin with. First, tum the first 

switch on, wait for a while to let the lamp warm up and then turn it off. 
Turn the second switch on and immediately run up to the third floor 
(assuming the problem solver can do so). If the lamp is on, then it is the 
second switch. If it is off and warm, it is the first switch. Otherwise, it is the 
third. 

b) It does not matter whether or not the switches are marked on and off. 
Just flip the switches as in part (a). The result is the same. 

c) Using only on/off and cold/warm is not sufficient in this case. So we 
assume one can distinguish hot, warm, and cold temperatures. Also, if the 
bulb is on originally, it is assumed to be hot; if off, then cold. First, flip the 
first switch and wait long enough for the bulb to reach warm temperature if 
this switch controls the bulb. Then flip the first switch back, flip the second 
switch, and run upstairs. If the first switch is connected to the lamp, then the 
lamp will be warm, since it has had a chance to cool from hot or warm from 
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cold. If it is the second switch, the lamp will be either hot and off or cold 
and on. If it is the third switch, the light will be on and hot or off and cold. 
The table below indicates which switch controls the lamp, according to 
whether the lamp was initially on or off. 

Although this is my original solution, I do not like it. I am waiting for 
a better solution. 

Connected 
Switch 

2 

3 

Lamp originally 
on 

on/warm 

off/hot 

on/hot 

II. Solution to part (c) by the Proposer. 

Lamp originally 
off 

off/warm 

on/cold 

off/cold 

c) By direct observation it takes a 100 watt bulb 30-45 seconds to heat 
up or cool down to a point where it can be comfortably held and twice as 
long to get fully hot or to cool. It takes the bulb socket 3-5 minutes to get 
fully warm or to cool. It takes about 20 seconds to climb to the third floor. 
Change switch 1. Wait 2 minutes. Then change it back, change switch 2, and 
hurry upstairs. If the [light, bulb, socket] is [off, hot, cool] or [on, cool, 
warm], then it is switch 1. If it is [off, hot, warm] or [on, cool, cool], then 
it is switch 2. If it is [off, cool, cool] or [on, hot, warm], then it is switch 3. 

Also solved by the Proposer. 

Editorial note. In early June of 1998 part (a) of this problem was 
presented on the National Public Radio program Car Talk, posed by Jim 
Gardner, son of the problemist Martin Gardner. Apparently one of the car 
talk brothers had stated earlier that Martin Gardner had died. So Jim called 
in to say that his father disagreed. He then posed the light switch problem 
as Car Talk's puzzler of the week. In a subsequent letter to this editor Martin 
Gardner credited Hess as the originator of this proposal. 

930. [Spring 1998] Proposed by the late J. L. Brenner, Palo Alto, 
California. 
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By direct calculation, that is, without using published theorems, show 
that the permutation group generated by (127) and (135)(246) contains all of 
the following types (shapes): 31

, 22,4121
, 31

, 3121
, 71

, and 51
, where (127) is 

of type 31 and (135)(246) is of type 31
• 

Solution by Rex H. Wu, Brooklyn, New York. 
Let a.= (127) and B = (135)(246). Then we have, by direct computation, 
type 22

: ( a.B2a.B)( a.B2a.2B) = ( 17)(25), 
type 4121

: ( a.B2a.B)( a.B2a2B)( a.Ba.2) = ( 17 46)(23 ), 
type 3122

: a.Ba.2B = (15)(263)(47), 
type 71

: a.B = (1352467), and 
type 51

: a.Ba.B2 = (12734). 

Also solved by Stephen I. Gendler, Clarion University of Pennsylvania, and the Proposer. 

931. [Spring 1998] Proposed by Murray S. Klamkin, University of 
Alberta, Edmonton, Alberta, Canada. 

Determine the maximum value of 

_!_ (S + S + ··· + S } 
r nur1 nur2 nur .. ' s, 

where the x1, r1, and u all are positive and 

S I I I 

1 = x1 + ~ + ··· + X11 and r = r1 + r2 + ··· + r m ~ 1. 

Solution by PaulS. Bruckman, Edmonds, Washington. 
We assume that the intent is to allow the x1' s to vary, while all other 

parameters are constant. Let 
m 

K = (S,)-'E s,,. 
i =l f 

Then 
m 11 11 m 

(S")' K = L L (xi)""'• = L L (xi)""'•. 
i=l J=l J=l i=l 
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If all the x/s are equal (say to x), this last expression becomes 

m 
(S,)' K = n L xnur• ~ mnx"'". 

i=l 

Also, (SuJ' = n'x'". Then K ~ mn1"'x<n-l)ur in this case. 

843 

More generally, let y = min(x) and Y = max(x1) for j = I, 2, ... , n. By the 
AM-OM inequality, Su ~ n(ll~ .. 1 x1)"

1n; thus (S11)' ~ n'y'". Also, using Holder's 
inequality, 

which implies 

S 1-r,/r(S )'•'' 1-p/rs ""'• s n nur s n ,,, 

where p = min(r1) for i = 1, 2, ... , m. Then 
m 
~ S ~ mn t-pfrs ~ mn l-pfr Y""' 
L.J nur1 nur ' 
i=l 

and hence 

Equality is attained if and only if all x1 = x and m = 1, in which case p = r, 
y = Y and K = n1"'x<n-l)ur. 

Also solved by the Proposer. 

932. [Spring 1998] Proposed by David Iny, Baltimore, Maryland. 
a) For 0 < J.1 < 8 ~ 1, define a sequence recursively by x0 = 8, and xn+1 

= sin xn for n ~ 0. Thus {xn} is a monotone decreasing sequence of positive 
numbers. Estimate the smallest value of m such that xm ~ Jl. 

b) Repeat Part (a) using the recursion formula xn+l =In (1 + xn). 

Solution by Mark Evans, Louisville, Kentucky. 
a) By Taylor's approximation, xn+l = sinxn ~ xn- x!/6, so then 
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x3 
flx =X -X 1 z .....!!. 11 n+ 6 · 

Thus, to cover the interval dx requires (x3/6)"1 dx iterations. This leads to the 
value 

b) Similarly, since ln(l + x) ~ x- :x'-12, we have 
2 

A XII 
uX = X

11 
- X 1 = X - Jn(1 +X ) z -II+ II II 2 • 

Again, to cover the interval dx requires {x2/2)"1 dx iterations. This leads to the 
value 

E 

m = J2x-2dx = 2(.! -!). 
I' p. E 

I tested these formulae by computer and they are either within 1 iteration 
of being correct or the error is a fraction of a percent. 

Also solved by PaulS. Bruckman, Edmonds, WA, Richard I. Hess, Rllncho Palos Yerdes, CA, 
and the Proposer. 

933. [Spring 1998] Proposed by David lny, Baltimore, Maryland. 
Define for nonnegative integers k and n the sums 

Jkn = _1 (n) + _1 (n) + ... + 1 (n) 
1+k 0 2+k 1 n+l+k n" 

a) Find closed form expressions for J1cn fork= 0, 1, 2, ... 
b) Let p be any nonnegative real number and [ x] the greatest integer less 

than or equal to x. Evaluate 

lim n2-II(J(p11)11). 
II .. • 

I 
I 

1 

' I 
t 
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I. Solution to part (a) by H.-J. Seiffert, Berlin, Germany. 
a). A closed form expression for J1cn is not known. We can, however, give 

some mtegral representations and other sum formulas. For example, we have 

Jkn = "t,. 
1 (~) = "t(~)f

1

xi+kdx = J
1

("t,(~)xi+k)dx, 
i =0 l + 1 + k I · 0 I . • ,.. 0 0 , .. o • 

or, by the binomial theorem, 
1 

Jkn = Jxk(x + l)"dx, k, n e N0• 

0 

II. Solution to part (b) by Richard I. 
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934. [Spring 1998] Proposed by Murray S. Klamkin, University of 
Alberta, Edmonton, Alberta, Canada. 

Evaluate the integral 
00 

I = £sin( n4x2 
+ : 2 )dK. 

Solution by Roger Zarnowski and Charles Diminnie, Angelo State 
University, San Angelo, Texas. 

Our solution uses the well-known Fresnel integrals 

r· . 2 r· 2 In 
Jo smx dx = Jo cosx dx = ~ s· 

Since the integrand is an even function, we get 

1 = z[ sin( n4x2 
+ : 2 )dK 

= z[[ sin( n4x2 
+ : 2 )dK + L m( n4x2 

+ : 2 )dK]. 

provided both integrals exist. Now let u = l/(1t2x2
) in the left integral to get 

j m(n4x2 + _!_)dx = 

1

f1• sin(_!_ + n4u2)(_:!_)dx 
o x2 • u2 n2u2 

and hence, 
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Finally, letting z = 1t2x - 1/x, we obtain 

It is interesting to note that a slight change in the original problem would 
give the interesting evaluation 

f . sin(n2x2 + _!_) dx = - 1-. 
-• x2 {ii 

Also solved by Paul S. Bruckman, Edmonds, WA, Bob Prielipp, University of 
Wisconsin-Oshkosh, Cecil Rousseau, The UniversityofMemphis, TN, H.-J. Seiffert, Berlin, Germany, 

and the Proposer. 
Seiffert noted the interesting evaluation in the Zamowski-Diminnie 

solution and also 

f- . ( 2 1t ) dx 1 sm nx +- = -. 
-• x2 /2 

*935. [Spring 1998] Proposed by M A. Khan, Lucknow, India. 
From a deck of n cards numbered 1, 2, ... , n, select m cards (3 ~ m ~ n) 

at random. Show that the probability p that the numbers on the selected cards 
are in arithmetic progression is given by 

p = (q + l)(R + n + 1 - m) 

z(:) 
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where q is the integral quotient and R the remainder when n - m + 1 is 
divided by m - 1. 

·Solution by PaulS. Bruckman, Edmonds, Washington. 
Let N" denote the number of ways in which the m cards can be drawn 

in such a way that the card numbers are in arithmetic progression with 
common difference k (irrespective of the order in which the numbers are 
drawn). Also, let N = 'fN", summed over all acceptable values of k. Then p 
= NlnCm. Now N1 counts the following possible draws: {1,2, ... ,m}, 
{2,3, ... ,m+ 1}, ... , { n-m+ 1, n-m+2, ... , n}, irrespective of the orde&· in which 
the numbers are drawn. Thus N1 = n - m + 1. 

Similarly, N2 counts the sets {1,3,5,,,2m-1}, {2,4,6, ... ,2m}, ... , {n-2m+2, 
n-2m+4, ... , n}, so N2 = n- 2m+ 2. In general, we see that N" = n- k(m- 1), 
subject to restrictions on k. 

By definition, n- m + 1 = q(m- 1) + R, son= (q + 1)(m- 1) + R, with 
0 ~ R ~ m - 1. Thus, we must restrict k so that N" ~ 0, which requires that 
1 ~ k s; q + I. Then 

q+1 

N = L [n - k(m - 1)] = n(q + 1) - (m - l)(q + l)(q + 2)/2 
k=l 

= !(q + 1)[2n - (m - l)(q + 2)] = !(q + l)(R + n + 1 - m), 
2 2 

which leads to the indicated expression for p. 

.Also. solved by Mark Evans, Louisville, KY, and the Proposer. 

936. [Spring 1998] Proposed by the late Jack Garfunkel, Flushing, New 
York. 

Given the Malfatti configuration, where three mutually external, mutually 
tangent circles with centers A ! B ! C' are inscribed in a triangle ABC so 
that circle (A ') is tangent to the two sides of angle A, circle (B ') is tangent 
to the sides of angle B, and (C 1

) to the sides of C. See the figure. If LA ~ 
LB ~ LC and LA < LC, then prove that we have LC 1

- LA 1 < LC- LA. 

Solution by Rex H. Wu, Brooklyn, New York. 
Let rA., r8 ., and rc· be the radii of circles A~ B~ and C 1 respectively. 

Observe that when LA~ LB ~ LC, then rA . ~ r8.~ rc.and LC'~ LB'~ 
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LA~ Furthermore, because rA. ~ rc· and r8 • ~ rc., then LC 1 ~ LC. This 
can be seen by drawing lines through C' parallel to CA and to CB. 
Similarly, LA 1 ~ LA, so that LC - LA ~ LC'- LA~ Also, we have 
equality only when LA= LB = LC. Hence, if LA< LC, then LC- LA> 
LC'- LA~ 

A 
Problem 936 

.Also solved by Paul S. Bruckman, Edmonds, W .A, Richard I. Hess, Rancho Palos Verdes, C.A, 
and the Proposer. 

Other solvers showed the inequality LC' ~ LB' ~ LA 1 by examining 
trigonometrically the angles between lines CA and C !4 ~ etc. 

937. [Spring 1998] Proposed by R. S. Luthar, Janesville, Wisconsin. 
Let I be the incenter of triangle ABC, let AI cut the triangle's 

circumcircle (again) at point D, and let F be the foot of the perpendicular 
dropped from D to side BC, as shown in the figure. Prove that D/2 = 
2R•DF, where R is the circumradius of triangle ABC. 

B 
Problem 937 

· ... 
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Solution by Miguel Amengual Covas, Ca/a Figuera, Mal/orca, Spain. 
Extend DF to cut the circle again at D ~ forming diameter DD ~ which 

subtends a right angle at B, as seen in the figure. Now BF is the altitude to 
the hypotenuse of right triangle DBD ~ By standard mean proportion, 

Bf>l = DF·DD'= DF·2R. 

Now LBAD = LBAI = Y2LA and LAB/ = Y2LB, so we have LBID = 
Y2(LA + LB). Since LIDB = LADB = LACB = LC, then we also have that 
LDBI = Y2(LA + LB). Therefore, BD = DI and the desired result follows. 

Also solved by PaulS. Bruckman, Edmonds, WA, Yoshinobu Murayoshi, Okinawa, Japan, 
William H. Peirce, Delray Beach, FL, Rex H. Wu, Brooklyn, NY, and the Proposer. 

Problem 938 

938. [Spring 1998] Proposed by R. S. Luthar, Janesville, Wisconsin. 
Find the locus of the midpoints M of the line segments in the first 

quadrant lying between the two axes and tangent to the unit circle centered 
at the origin. See the figure. 

Solution by Keith Mace/i, student, Loyola College, Baltimore, Maryland. 

We consider the equationf(x) = Jt - x2 for 0 s x s 1 of the circle in 
the frrst quadrant and we find an Jguation for the tangent line at x = a, 
where 0 <a< 1. Since /'(a) =-a/ 1 - a2 , we have 

-a (x - a). 

J1 - a2 

PROBLEMS AND SOLUfiONS 851 

ByJ setting x = 0 andy = 0 we obtain respectively the y and x intercepts {0, 
II 1 - a 2 

) jnd (I! a, 0). Therefore, the midpoint M of the segment is at 
(11(2a), 11(2 1 - a 2 )). Now let x = 11(2a), so that a= 11(2x). Substitute 
into the equation y = 1 /( 2 J 1 - a 2 ) to get the equation of the locus of 
midpoints M 

y 1 for x > 112. X 

Thus, the graph, though not a hyperbola, has asymptotesx = 1/2 andy= 112. 

Also solved by Cheril Lin Abeel-Wescoat, Alma College, Ml, Miguel Amengual Covas, Cala 
Figuera, Mal/orca, Spain, Ayoub B. Ayoub, Pennsylvania State University, Abington, Paul S. 
Bruckman, Edmonds, WA, Rob Downes, Plainfield, NJ, Russell Euler and Jawad Sadek, Northwest 
Missouri State University, Maryville, Mark Evans, Louisville, KY, Jayanthi Ganapathy, University of 
Wisconsin-Oshkosh, Robert C. Gebhardt, Hopatcong, NJ, Stephen I. Gendler, Clarion University of 
Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA, Joe Howard, New Mexico Highlands 
University, Las Yegas, Peter A. Lindstrom, Batavia, NY, H.-J. Seiffert, Berlin, Germany, Skidmore 
College Problem Group, Saratoga Springs, NY, Kenneth L. Yokom, South Dakota State University, 
Brookings, Monte J. Zerger, Adams State College, Alamosa, CO, and the Proposer. 

939. [Spring 1998] Proposed by Khiem Viet Ngo, Virginia Polytechnic 
Institute, Blacksburg, Virginia. 

B 
Problem 939 

In the accompanying figure both quadrilaterals ABCD and MNPQ are 
squares, each side of square ABCD has length 1, and the five inscribed 
circles are all congruent to one another. Find their common radius. ,. 
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Solution by Abhiram Shandilya, student, Angelo State University, San 

Angelo, Texas. 
Let 0 denote the center of the incircle of triangle AQD and draw radii 

from 0 to the three sides of that triangle. Let AQ = x and DQ = y. Since the 
area of triangle AQD is the sum of the areas of triangles OAD, OAQ, and 

OQD, and since AD = 1, we have that 

.!.xy = !r + !rx + !ry so xy = r(1 + x + y). 
2 2 2 2 ' 

Multiply both sides of this last equation by 1 - (x + y) and use the fact that 

x2 + y = 1 to get 

l - x- y = -2r. 

Since AQ = AM+ MQ and triangles AQD and BMA are congruent, we have 
x = y + 2r, which, when taken with the last displayed equation and the 
equation x2 + y = 1 yields y = 1/2 (so triangle AQD is a 30°-60° right 

triangle) and 8r + 4r - 1 = 0. Thus 

r=J3-1. 
4 

Also solved by Miguel Amengual Covas, Ca/a Figuera, Mallorca, Spain, Ayoub B. Ayoub, 
Pennsylvania State University, Abington, Scott H. Brown, Auburn University, AL, Paul S. Bruckman, 
Edmonds, WA, Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Mark 
Evans, Louisville, KY. Robert C. Gebhardt, Hopatcong, NJ, Richard I. Hess, Rancho Palos Verdes, 
CA, Joe Howard, New Mexico Highlands University, Las Vegas, Yoshinobu Murayoshi, Okin~.~wa, 
Japan, William H. Peirce, Delray Beach, FL, Carter Price, Arkansas Governor's School, Conway, 
Shiva K. Saksena, University of North Carolin1.1 at Wilmington, Nicholas Seward, Arkansas 
Governor's School, Conway, Rex H. Wu, Brooklyn, NY, Kenneth L. Yokom, South Dakota State 
University, Brookings, Monte J. Zerger, Adams State College, Alamosa, CO, and the Proposer. 
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HOW MANY MATHEMATICIANS 

CAN YOU PACK INTO THE 

STATE OF RHODE ISLAND? 

Find out by attending the 1999 Meeting of the Pi Mu Epsilon National Honorary 
Mathematics Society, which will be held in Providence, RI, on July 31 and August 
l. The meeting will be held in conjunction with the MAA Mathfest, which will run 
from July 31-August 2. Pi Mu Fpsilon will again coordinate its national meeting with 
that of the MAA student chapters. 

The Pi Mu Fpsilon meeting will begin with a reception on the evening of Friday, July 
30. On Saturday morning, July 31, the Pi Mu Epsilon Council will have its annual 
summer meeting. The student presentations will begin later that same day. The 
presentations will continue on Sunday, August 1. The Pi Mu Epsilon Banquet will 
take place that evening, followed by the J. Sutherland Frame Lecture. This year's 
Frame lecture will be given by Fred Rickey, of Bowling Green State University. Pi 
Mu Epsilon members are encouraged to participate in the MAA Student Chapter 
Workshop and Student Lecture, both of which will take place on Monday, August 2. 

Pi Mu Fpsilon will provide travel support for student speakers at the national meeting. 
The first speaker is eligible for 31 cents per mile, up to a maximum of $600. If a 
student chooses to use public transportation, PME will reimburse for the actual cost 
of ttansportation, up to a maximum of $600. In case this request exceeds 31 cents per 
mile, receipts should be presented. The frrst four additional speakers from a given 
chapter are eligible for 20% of whatever amount the frrst speaker receives. In the 
case of more than one speaker from one chapter, the speakers may share the support 
in any way that they see fit. If a chapter is not represented by a student speaker, Pi 
Mu Epsilon will provide one-half support for a student delegate. Every Pi Mu 
Epsilon student member is encouraged to give a presentation at this summer 
meeting! For further infonnation about attending the meeting, preparing a talk to 
present, and receiving travel support: 

SEE YOUR PI MU EPSILON ADVISOR 

PI MU EPSILON 

T-SHIRTS 

The shirts are white Hanes® BEEF ® 
I 00% cotton. The fr~nt h 1 . Y-T , pre-shrunk, 
. . as a arge PI Mu Epsilon shield 

(In black), With the line "I 9 I 4 - oo" b I . 
the shirt has a "IT M E" til" e 

0~ It. The back of 
Scbattscbneider in the PME 1 mg, designed by Doris 
violet The . ' . co ors of gold, lavender and 
Th ·. . shirts are available in sizes large and X-I' 

e pnce Is only $I 0 per shirt, which . 1 d arge. 
handling. To obtain a shirt Inc u es postage and 
order, payable to Pi Mu E ~~send your check or money 

psi on, to: 

Rick Poss 
Mathematics - Pi Mu Epsilon 
St. Norbert CoJJege 
I 00 Grant Street 
DePere, WI 54115 
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